2018合肥市高考二模理科数学(含答案)

合集下载

安徽省合肥一中等六校教育研究会2018届高三上学期第二次联考数学(理)试卷(含答案)

安徽省合肥一中等六校教育研究会2018届高三上学期第二次联考数学(理)试卷(含答案)

安徽六校教育研究会2018届高三第二次联考数学试题(理)命题:合肥一六八中学考试时间:120分钟满分:150分一.选择题(共12小题,每小题5分,共60分)1.若集合,且,则集合B可以是()A.B.C.D.R2.若复数其中a,b是实数,则复数a+bi在复平面内所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.已知是等差数列的前n项和,且对,下列说法不正确的是()A、B、C、成等差数列;D、数列是等差数列;4.已知函数f(x)是定义域在R上的奇函数,且在[0,+∞)单调递增,若实数a满足,则a的取值范围是()A、(-,2]B、(0, ]C、[,2]D、(0,2]5.如图是某几何体的三视图,则该几何体内切球的表面积为()A.3B.C.D、6.已知x,y满足约束条件,则目标函数的最大值和最小值的差等于()A、1B、-1C、2D、-27.若a和b都是计算机在区间(0,2)上产生的随机数,那么ab<1的概率为()A.B.C.D.8.设函数f(x)=是常数,),且函数f(x)的部分图象如图所示,将函数f(x)图象向右平移个单位所得函数图象与g(x)= 图象重合,则的值可以是()A、B、C、D、9.若,若=84,则实数a的值为()A、1B、2C、-2D、-310.已知点P(x,y)满足,过点P作抛物线x2=8y的两条切线,切点为A,B,则直线AB斜率的最大值为()A、B、C、D、11.若数列的前n项和满足:对都有(M为常数)成立,则称数列为“和敛数列”,则数列,,,中是“和敛数列”有()个。

A、1B、2C、3D、412 .定义在R 上的函数f(x) 满足:f(x+1)= f(x-1) ,且当x [0,2) 时,,使方程有3个解的一个充分不必要条件是()A、a (-1,0)B、a (-1, )C、aD、a)二.填空题(共4小题,每小题5分,共20分)13.运行右边程序框图,当输入某个正整数n后,输出的S (10,20),那么n的值为。

2018年全国高考新课标2卷理科数学考试(解析版)

2018年全国高考新课标2卷理科数学考试(解析版)

2018年全国高考新课标2卷理科数学考试(解析版)作者:日期:2018年普通高等学校招生全国统一考试新课标2卷理科数学注意事项:1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2. 作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3. 考试结束后,将本试卷和答题卡一并交回。

每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要 求的。

434 3 3 4 3 4 A ・ 一 T 一 弓 B * -5 + 5i c ∙ - 5 ' 5i D * - 5 + 5i解析:选D2. 已知集合A={(x,y) ∣χ2+y2≤3,x∈Z,y∈Z },则A 中元素的个数为( ) A. 9B. 8C. 5D ・ 4解析:选A 问题为确定圆面内整点个数 3. 函数f (x)=E 2的图像大致为()-、选择题:本题共12小题, 1.l+2i F r2解析:选B f(x)为奇函数,排除 A,x>0,f (x)>0,排除 D,取 x=2,f (2) = e 2-e^24 力,故选B4. 已知向量 a, b 满足 Ial=1, a ∙ b 二-1,则 a ∙ (2a~b)=( ) A. 4B. 3C. 2D.5.双曲线= I (a>0, b>0)的离心率为\龙,则其渐近线方程为( C. y=±迟X9A. y=±j∖βxB. y 二±ι∖βx=∖β C2 二 3¥ b=∖βa C √5 歹专,BC=I,AC 二 5, B. √30C 3 解析:选 A CoSo2cos 右-I= - ~ 2 5解析:选A e-6-在ΔABC 中,COS 则 AB 二() D. y=±A. 4√2 AB^AO+BC2-2AB ∙ BC ∙ COSC=322√5 AB=4√2 D.7. ................................................... 为计算S=I- 2 + 3 ^ 4 ++^ T∞,设计了右侧的程序框图,则在空白框中应填入()A. i=i+lB. i 二i+2C. i 二i+3D. i 二i+4解析:选B8. 我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数 可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的 概率是()3为7+23, 11+19, 13+17,共3种情形,所求概率为P=FF109. 在长方体ABCD-ABc I D I 中,AB=BC=I, AAi=W 则异面直线AD】与DBl 所成角的余弦值为(D.解析:选C 建立空间坐标系,利用向量夹角公式可得。

2018年安徽省合肥市高考数学二模试卷

2018年安徽省合肥市高考数学二模试卷

2021年安徽省合肥市高考数学二模试卷〔理科〕一、选择题:本大题共12个小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.复数z满足z•〔1﹣2i〕=i〔i是虚数〕,那么复数z在复平面内对应的点在〔〕A.第一象限B.第二象限C.第三象限D.第四象限2.集合A={x|﹣2<x<3},集合B={x|x<1},那么A∪B=〔〕A.〔﹣2,1〕B.〔﹣2,3〕C.〔﹣∞,1〕D.〔﹣∞,3〕3.命题p:∀a≥0,关于x的方程x2+ax+1=0有实数解,那么¬p为〔〕A.∃a<0,关于x的方程x2+ax+1=0有实数解B.∃a<0,关于x的方程x2+ax+1=0没有实数解C.∃a≥0,关于x的方程x2+ax+1=0没有实数解D.∃a≥0,关于x的方程x2+ax+1=0有实数解4.在直角坐标系中,假设角α的终边经过点,那么sin 〔π+α〕=〔〕A.B.C.D.5.中国古代词中,有一道“八子分绵〞的数学名题:“九百九十六斤绵,赠分八子做盘缠,次第每人多十七,要将第八数来言〞.题意是:把996斤绵分给8个儿子作盘缠,按照年龄从大到小的顺序依次分绵,年龄小的比年龄大的多17斤绵,那么第8个儿子分到的绵是〔〕A.174斤B.184斤C.191斤D.201斤6.执行如下图的程序框图,假设输出的结果为1,那么输入x的值为〔〕A.3或﹣2 B.2或﹣2 C.3或﹣1 D.﹣2或﹣1或37.小李从网上购置了一件商品,快递员方案在下午5:00﹣6:00之间送货上门,小李下班到家的时间为下午5:30﹣6:00.快递员到小李家时,如果小李未到家,那么快递员会联系小李.假设小李能在10分钟之内到家,那么快递员等小李回来;否那么,就将商品存放在快递柜中.那么小李需要去快递柜收取商品的概率为〔〕A.B.C.D.8.在正方体ABCD﹣A1B1C1D1中,E,F,G分别为棱CD,CC1,A1B1的中点,用过点E,F,G的平面截正方体,那么位于截面以下局部的几何体的侧〔左〕视图为〔〕A.B.C.D.9.函数,实数a,b满足不等式f〔2a+b〕+f〔4﹣3b〕>0,那么以下不等式恒成立的是〔〕A.b﹣a<2 B.a+2b>2 C.b﹣a>2 D.a+2b<210.双曲线C:﹣=1的左,右焦点分别为F1,F2,A,B是双曲线C上的两点,且=3,cos∠AF2B=,那么该双曲线的离心率为〔〕A. B.C.D.11.函数f〔x〕=2sin〔ωx+φ〕〔ω>0,0<φ<π〕,f〔〕=,f〔〕=0,且f〔x〕在〔0,π〕上单调.以下说法正确的选项是〔〕A.B.C.函数f〔x〕在上单调递增D.函数y=f〔x〕的图象关于点对称12.点I在△ABC内部,AI平分∠BAC,,对满足上述条件的所有△ABC,以下说法正确的选项是〔〕A.△ABC的三边长一定成等差数列B.△ABC的三边长一定成等比数列C.△ABI,△ACI,△CBI的面积一定成等差数列D.△ABI,△ACI,△CBI的面积一定成等比数列二、填空题〔每题5分,总分值20分,将答案填在答题纸上〕13.两个单位向量,的夹角为,那么=.14.在〔2x+1〕2〔x﹣2〕3的展开式中,x2的系数等于.15.半径为3cm的球内有一个内接四棱锥S﹣ABCD,四棱锥S﹣ABCD的侧棱长都相等,底面是正方形,当四棱锥S﹣ABCD的体积最大时,它的底面边长等于cm.16.为保护环境,建设美丽乡村,镇政府决定为A,B,C三个自然村建造一座垃圾处理站,集中处理A,B,C三个自然村的垃圾,受当地条件限制,垃圾处理站M只能建在与A村相距5km,且与C村相距的地方.B村在A村的正东方向,相距3km,C村在B村的正北方向,相距,那么垃圾处理站M 与B村相距km.三、解答题〔本大题共5小题,共70分.解容许写出文字说明、证明过程或演算步骤.〕17.〔12.00分〕等比数列{a n}的前n项和S n满足4S5=3S4+S6,且a3=9.〔Ⅰ〕求数列{a n}的通项公式;〔Ⅱ〕设b n=〔2n﹣1〕•a n,求数列{b n}的前n项的和T n.18.〔12.00分〕为了解A市高三数学复习备考情况,该市教研机构组织了一次检测考试,并随机抽取了局部高三理科学生数学成绩绘制如下图的频率分布直方图.〔Ⅰ〕根据频率分布直方图,估计该市此次检测理科数学的平均成绩u0;〔精确到个位〕〔Ⅱ〕研究发现,本次检测的理科数学成绩X近似服从正态分布X~N〔μ,σ2〕〔u=u0,σ约为19.3〕.①按以往的统计数据,理科数学成绩能到达升一本分数要求的同学约占46%,据此估计本次检测成绩到达升一本的理科数学成绩大约是多少分?〔精确到个位〕②A市理科考生约有1000名,某理科学生此次检测数学成绩为107分,那么该学生全市排名大约是多少名?〔说明:表示x>x1的概率,用来将非标准正态分布化为标准正态分布,即X~N〔0,1〕,从而利用标准正态分布表ϕ〔x0〕,求x>x1时的概率P〔x>x1〕,这里x0=.相应于x0的值ϕ〔x0〕是指总体取值小于x0的概率,即ϕ〔x0〕=P〔x<x0〕.参考数据:ϕ〔0.7045〕=0.54,ϕ〔0.6772〕=0.46,ϕ〔0.21〕=0.5832〕.19.〔12.00分〕在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB∥CD,AB⊥AD,O为AD中点,,AD=AB=2CD=2.〔Ⅰ〕求证:平面POB⊥平面PAC;〔Ⅱ〕求二面角A﹣PC﹣D的余弦值.20.〔12.00分〕点A〔1,0〕和动点B,以线段AB为直径的圆内切于圆O:x2+y2=4.〔Ⅰ〕求动点B的轨迹方程;〔Ⅱ〕点P〔2,0〕,Q〔2,﹣1〕,经过点Q的直线l与动点B的轨迹交于M,N两点,求证:直线PM与直线PN的斜率之和为定值.21.〔12.00分〕函数f〔x〕=〔x﹣1〕e x﹣ax2〔e是自然对数的底数〕.〔Ⅰ〕判断函数f〔x〕极值点的个数,并说明理由;〔Ⅱ〕假设∀x∈R,f〔x〕+e x≥x3+x,求a的取值范围.请考生在22、23两题中任选一题作答,如果多做,那么按所做的第一题记分.[选修4-4:坐标系与参数方程]22.〔10.00分〕过点P〔0,﹣1〕的直线l的参数方程为〔t为参数〕,在以坐标原点O为极点,x轴正半轴为极轴的极坐标系中,曲线C的方程为2asinθ﹣ρcos2θ=0〔a>0〕.〔Ⅰ〕求曲线C的直角坐标方程;〔Ⅱ〕假设直线l与曲线C分别交于点M,N,且|PM|,|MN|,|PN|成等比数列,求a的值.[选修4-5:不等式选讲]23.函数f〔x〕=|3x+m|.〔Ⅰ〕假设不等式f〔x〕﹣m≤9的解集为[﹣1,3],求实数m的值;〔Ⅱ〕假设m>0,函数g〔x〕=f〔x〕﹣2|x﹣1|的图象与x轴围成的三角形的面积大于60,求m的取值范围.2021年安徽省合肥市高考数学二模试卷〔理科〕参考答案与试题解析一、选择题:本大题共12个小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.复数z满足z•〔1﹣2i〕=i〔i是虚数〕,那么复数z在复平面内对应的点在〔〕A.第一象限B.第二象限C.第三象限D.第四象限【分析】把等式变形,利用复数代数形式的乘除运算化简,求出z的坐标得答案.【解答】解:由z•〔1﹣2i〕=i,得z=,∴复数z在复平面内对应的点的坐标为〔〕,在第二象限.应选:B.【点评】此题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是根底题.2.集合A={x|﹣2<x<3},集合B={x|x<1},那么A∪B=〔〕A.〔﹣2,1〕B.〔﹣2,3〕C.〔﹣∞,1〕D.〔﹣∞,3〕【分析】利用并集定义直接求解.【解答】解:∵集合A={x|﹣2<x<3},集合B={x|x<1},∴A∪B={x|x<3}={﹣∞,3〕.应选:D.【点评】此题考查并集的求法,考查并集定义等根底知识,考查运算求解能力,考查函数与方程思想,是根底题.3.命题p:∀a≥0,关于x的方程x2+ax+1=0有实数解,那么¬p为〔〕A.∃a<0,关于x的方程x2+ax+1=0有实数解B.∃a<0,关于x的方程x2+ax+1=0没有实数解C.∃a≥0,关于x的方程x2+ax+1=0没有实数解D.∃a≥0,关于x的方程x2+ax+1=0有实数解【分析】利用全称命题的否认是特称命题,写出结果即可.【解答】解:因为全称命题的否认是特称命题,所以,命题p:∀a≥0,关于x的方程x2+ax+1=0有实数解,那么¬p为∃a≥0,关于x的方程x2+ax+1=0没有实数解.应选:C.【点评】此题考查命题的否认,特称命题与全称命题的否认关系,是根本知识的考查.4.在直角坐标系中,假设角α的终边经过点,那么sin 〔π+α〕=〔〕A.B.C.D.【分析】由题意利用任意角的三角函数的定义,求得sin〔π+α〕的值.【解答】解:∵角α终边经过点,即点P〔,〕,∴x=,y=,r=|OP|=1,那么sin〔π+α〕=﹣sinα==﹣y=﹣.应选:A.【点评】此题主要考查任意角的三角函数的定义,属于根底题.5.中国古代词中,有一道“八子分绵〞的数学名题:“九百九十六斤绵,赠分八子做盘缠,次第每人多十七,要将第八数来言〞.题意是:把996斤绵分给8个儿子作盘缠,按照年龄从大到小的顺序依次分绵,年龄小的比年龄大的多17斤绵,那么第8个儿子分到的绵是〔〕A.174斤B.184斤C.191斤D.201斤【分析】由题意可知,数列为等差数列,公差为d=17,n=8,S8=996,以第8个儿子为首项,即可求出答案.【解答】解:由题意可知,数列为等差数列,公差为d=17,n=8,S8=996,以第8个儿子为首项,∴8a1+×17=996,解得a1=184,应选:B.【点评】此题考查了等差数列的求和公式的应用,属于根底题.6.执行如下图的程序框图,假设输出的结果为1,那么输入x的值为〔〕A.3或﹣2 B.2或﹣2 C.3或﹣1 D.﹣2或﹣1或3【分析】根据中的程序框图,分类讨论满足y=1的x值,综合可得答案.【解答】解:当x>2时,由y==1得:x2﹣2x=3,解得:x=3,或x=﹣1〔舍〕当x≤2时,由y=﹣2x﹣3=1,解得:x=﹣2,综上可得假设输出的结果为1,那么输入x的值为3或﹣2,应选:A.【点评】此题考查的知识点是程序框图,分类讨论思想,对数的运算性质,难度中档.7.小李从网上购置了一件商品,快递员方案在下午5:00﹣6:00之间送货上门,小李下班到家的时间为下午5:30﹣6:00.快递员到小李家时,如果小李未到家,那么快递员会联系小李.假设小李能在10分钟之内到家,那么快递员等小李回来;否那么,就将商品存放在快递柜中.那么小李需要去快递柜收取商品的概率为〔〕A.B.C.D.【分析】设快递员送达的时刻为x,小李到家的时刻为y,根据题意列出有序实数对〔x,y〕满足的区域,以及小李去快递柜收取商品对应的平面区域,计算面积比即可得出答案.【解答】解:假设快递员送达的时刻为x,小李到家的时刻为y,那么有序实数对〔x,y〕满足的区域为{〔x,y〕|},小李需要去快递柜收取商品,即序实数对〔x,y〕满足的区域为{〔x,y〕|},如下图;∴小李需要去快递柜收取商品的概率为P===.应选:D.【点评】此题考查几何概型概率的求法,考查数形结合的解题思想方法,是中档题.8.在正方体ABCD﹣A1B1C1D1中,E,F,G分别为棱CD,CC1,A1B1的中点,用过点E,F,G的平面截正方体,那么位于截面以下局部的几何体的侧〔左〕视图为〔〕A.B.C.D.【分析】首先求出截面的图形,进一步利用三视图求出结果.【解答】解:正方体被经过E、F、G点的平面所截,其中左边的正方形的左上顶点A被切去,故少一个角,右下面留一个斜棱,故左视图为C.应选:C.【点评】此题考查的知识要点:三视图的应用.9.函数,实数a,b满足不等式f〔2a+b〕+f〔4﹣3b〕>0,那么以下不等式恒成立的是〔〕A.b﹣a<2 B.a+2b>2 C.b﹣a>2 D.a+2b<2【分析】根据题意,分析可得函数f〔x〕为奇函数且在R上为减函数,那么原不等式变形可得f〔2a+b〕>f〔3b﹣4〕,结合函数的单调性可得2a+b<3b﹣4,变形即可得答案.【解答】解:根据题意,函数,其定义域为R,f〔﹣x〕===﹣﹣f〔x〕,那么函数f〔x〕为奇函数;f〔x〕=﹣=﹣〔1﹣〕=﹣1,那么函数f〔x〕在R为减函数,f〔2a+b〕+f〔4﹣3b〕>0⇒f〔2a+b〕>﹣f〔4﹣3b〕⇒f〔2a+b〕>f〔3b﹣4〕⇒2a+b<3b﹣4⇒b﹣a>2,应选:C.【点评】此题考查函数的单调性与奇偶性的综合应用,关键是求出函数的奇偶性与单调性.10.双曲线C:﹣=1的左,右焦点分别为F1,F2,A,B是双曲线C上的两点,且=3,cos∠AF2B=,那么该双曲线的离心率为〔〕A. B.C.D.【分析】设|F1A|=3x,|F1B|=x,在△ABF2中,由余弦定理列方程可得△ABF2是直角三角形,从而得出a,b,c的关系,即可得该双曲线的离心率.【解答】解:设|F1A|=3x,|F1B|=x,那么|AB|=4x,|BF2|=2a+x,|AF2|=2a+3x,在△ABF2中,由余弦定理得:〔4x〕2=〔2a+x〕2+〔2a+3x〕2﹣2〔2a+x〕〔2a+3x〕×,解得x=a,∴AF2=5a,AB=4a,BF2=3a,∴△ABF2是直角三角形,在Rt△F1BF2中,a2+〔3a〕2=〔2c〕2,代入得10a2=4c2,即e2=.那么该双曲线的离心率为e=.应选:B.【点评】此题考查双曲线的简单性质的应用,考查离心率的计算能力.属于中档题.11.函数f〔x〕=2sin〔ωx+φ〕〔ω>0,0<φ<π〕,f〔〕=,f〔〕=0,且f〔x〕在〔0,π〕上单调.以下说法正确的选项是〔〕A.B.C.函数f〔x〕在上单调递增D.函数y=f〔x〕的图象关于点对称【分析】根据题意,设置满足条件的ω,φ的值,依次对各选项讨论即可.【解答】解:由题意,f〔x〕在〔0,π〕上单调.那周期,即,那么ω≤1.对于A:当ω=时,可得f〔x〕=2sin〔x+φ〕,由,,令,可得φ=.即f〔〕=2sin〔×+〕,∴A不对.由f〔〕=0,即2sin〔φ〕=0,可令φ=π,那么φ=……①由f〔〕=,即2sin〔ω+φ〕=,可得:ω+φ=或ω+φ=,k∈Z;令ω+φ=……②,①②解得:ω=2,不满足题意:令ω+φ=……③,①③解得:ω=,满足题意:∴f〔x〕=2sin〔x+〕对于B:f〔〕=2sin〔﹣×+〕=2sin=,∴B不对.对于C:令x+,解得:,∴函数f〔x〕在上单调递增,∴C对.对于D:当x=,可得f〔〕=2sin〔〕=﹣2sin=﹣1,∴函数y=f〔x〕的图象不是关于点对称,∴D不对.应选:C.【点评】此题主要考查三角函数的图象和性质,根据条件确定一个满足条件的解析式是解决此题的关键.12.点I在△ABC内部,AI平分∠BAC,,对满足上述条件的所有△ABC,以下说法正确的选项是〔〕A.△ABC的三边长一定成等差数列B.△ABC的三边长一定成等比数列C.△ABI,△ACI,△CBI的面积一定成等差数列D.△ABI,△ACI,△CBI的面积一定成等比数列【分析】设∠BAI=∠CAI=α,那么∠IBC=∠ACI=α,设∠ABI=β,∠BCI=γ,AI=BI=m,CI=n,在△ABC中,运用正弦定理,在△ACI和△BCI中,由正弦函数和余弦函数的定义,可得a,b,运用三角函数的和差公式、二倍角公式,化简整理,结合等比数列中项性质,即可得到结论.【解答】解:设∠BAI=∠CAI=α,那么∠IBC=∠ACI=α,设∠ABI=β,∠BCI=γ,AI=BI=m,CI=n,在△ABC中,可得==,可得sin〔α+γ〕=,在△ACI中,可得b=2mcosα,在△BCI中,可得a=mcosγ+ncosα,又msinγ=nsinα,即n=,那么a=mcosγ+cosα•=m•=m•=m••,可得a2=c•2mcosα=cb,即有△ABC的三边长一定成等比数列,应选:B.【点评】此题考查三角形的三边长成等比数列的判断,考查三角形的正弦定理和三角函数的恒等变换,考查化简整理的运算能力,属于难题.二、填空题〔每题5分,总分值20分,将答案填在答题纸上〕13.两个单位向量,的夹角为,那么=.【分析】直接利用向量的数量积的运算法那么求解即可.【解答】解:两个单位向量,的夹角为,那么=2=2﹣﹣1=,故答案为:.【点评】此题考查平面向量数量积的应用,考查计算能力.14.在〔2x+1〕2〔x﹣2〕3的展开式中,x2的系数等于10.【分析】化简〔2x+1〕2〔x﹣2〕3=〔4x2+4x+1〕〔x3﹣6x2+12x﹣8〕,展开后可得含x2项的系数.【解答】解:∵〔2x+1〕2〔x﹣2〕3=〔4x2+4x+1〕〔x3﹣6x2+12x﹣8〕,∴x2的系数等于4×〔﹣8〕+4×12﹣6=10.故答案为:10.【点评】此题考查了二项式展开式的应用问题,也考查了逻辑推理与计算能力,是根底题.15.半径为3cm的球内有一个内接四棱锥S﹣ABCD,四棱锥S﹣ABCD的侧棱长都相等,底面是正方形,当四棱锥S﹣ABCD的体积最大时,它的底面边长等于4cm.【分析】由题意画出图形,设四棱锥的底面边长为2a,高为h〔0<h<6〕,可得2a2+h2=6h,写出棱锥体积,把a用h表示,再由导数求解得答案.【解答】解:如图,设四棱锥的底面边长为2a,高为h〔0<h<6〕,那么底面正方形外接圆的半径为,∴侧棱长SA=,由射影定理可得:2a2+h2=6h,那么四棱锥S﹣ABCD的体积V==〔0<h<6〕,那么V′=﹣2h2+8h,可得当h=4时,V有最大值,此时2a2=24﹣16=8,a=2,那么底面边长等于4.故答案为:4.【点评】此题考查球内接多面体体积的求法,考查数形结合的解题思想方法,训练了导数在求最值问题中的应用,是中档题.16.为保护环境,建设美丽乡村,镇政府决定为A,B,C三个自然村建造一座垃圾处理站,集中处理A,B,C三个自然村的垃圾,受当地条件限制,垃圾处理站M只能建在与A村相距5km,且与C村相距的地方.B村在A村的正东方向,相距3km,C村在B村的正北方向,相距,那么垃圾处理站M 与B村相距2或7km.【分析】建立坐标系,求出两圆的方程和公共弦方程,解出M点坐标得出|MB|.【解答】解:以A为原点,以AB为x轴建立平面坐标系,那么A〔0,0〕,B〔3,0〕,C〔3,3〕,以A为圆心,以5为半径作圆A,以C为圆心,以为半径作圆C,那么圆A的方程为:x2+y2=25,圆C的方程为:〔x﹣3〕2+〔y﹣3〕2=31,即x2+y2﹣6x﹣6y+5=0,∴两圆的公共弦方程为:x+y=5,设M〔x,y〕,那么,解得M〔5,0〕或M〔﹣,〕.∴MB=2或MB==7.故答案为:2或7.【点评】此题考查了直线与圆的位置关系,属于中档题.三、解答题〔本大题共5小题,共70分.解容许写出文字说明、证明过程或演算步骤.〕17.〔12.00分〕等比数列{a n}的前n项和S n满足4S5=3S4+S6,且a3=9.〔Ⅰ〕求数列{a n}的通项公式;〔Ⅱ〕设b n=〔2n﹣1〕•a n,求数列{b n}的前n项的和T n.【分析】〔Ⅰ〕利用条件求出数列的公比,然后求数列{a n}的通项公式;〔Ⅱ〕化简数列的通项公式,利用错位相减法求解数列的和即可.【解答】解:〔Ⅰ〕设数列{a n}的公比为q.由4S5=3S4+S6,得S6﹣S5=3S5﹣3S4,即a6=3a5,∴q=3,∴.〔Ⅱ〕,∴,,∴,∴.【点评】此题考查数列的通项公式的求法,数列求和的方法错位相减法的应用,考查计算能力.18.〔12.00分〕为了解A市高三数学复习备考情况,该市教研机构组织了一次检测考试,并随机抽取了局部高三理科学生数学成绩绘制如下图的频率分布直方图.〔Ⅰ〕根据频率分布直方图,估计该市此次检测理科数学的平均成绩u0;〔精确到个位〕〔Ⅱ〕研究发现,本次检测的理科数学成绩X近似服从正态分布X~N〔μ,σ2〕〔u=u0,σ约为19.3〕.①按以往的统计数据,理科数学成绩能到达升一本分数要求的同学约占46%,据此估计本次检测成绩到达升一本的理科数学成绩大约是多少分?〔精确到个位〕②A市理科考生约有1000名,某理科学生此次检测数学成绩为107分,那么该学生全市排名大约是多少名?〔说明:表示x>x1的概率,用来将非标准正态分布化为标准正态分布,即X~N〔0,1〕,从而利用标准正态分布表ϕ〔x0〕,求x>x1时的概率P〔x>x1〕,这里x0=.相应于x0的值ϕ〔x0〕是指总体取值小于x0的概率,即ϕ〔x0〕=P〔x<x0〕.参考数据:ϕ〔0.7045〕=0.54,ϕ〔0.6772〕=0.46,ϕ〔0.21〕=0.5832〕.【分析】〔I〕以组中值代替小组平均值,根据加权平均数公式计算平均成绩;〔II〕①根据所给公式列方程求出x1;②根据成绩计算概率,得出大体名次.【解答】解:〔I〕该市此次检测理科数学成绩平均成绩约为:u0=65×0.05+75×0.08+85×0.12+95×0.15+105×0.24+115×0.18+125×0.1+135×0.05+145×0.03=103.2≈103.〔II〕①记本次考试成绩到达升一本的理科数学成绩约为x1,根据题意,,即.由ϕ〔0.7054〕=0.54得,,所以,本次考试成绩到达升一本的理科数学成绩约为117分.,所以,理科数学成绩为107分,大约排在10000×0.4168=4168名.【点评】此题考查了正态分布的性质与应用,属于中档题.19.〔12.00分〕在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB∥CD,AB⊥AD,O为AD中点,,AD=AB=2CD=2.〔Ⅰ〕求证:平面POB⊥平面PAC;〔Ⅱ〕求二面角A﹣PC﹣D的余弦值.【分析】〔Ⅰ〕通过Rt△ADC≌Rt△BAO,推出∠DAC=∠ABO,证明AC⊥BO,PO ⊥AD.推出PO⊥平面ABCD.得到AC⊥PO.AC⊥平面POB,即可证明平面POB⊥平面PAC.〔Ⅱ〕以O为空间坐标原点,建立如下图的空间直角坐标系,求出平面PAC的一个法向量,平面PDC的一个法向量,利用向量的数量积求解即可.【解答】〔Ⅰ〕证明:由条件可知,Rt△ADC≌Rt△BAO,∴∠DAC=∠ABO,∴∠DAC+∠AOB=∠ABO+∠AOB=90°,∴AC⊥BO.∵PA=PD,且O为AD中点,∴PO⊥AD.∵,∴PO⊥平面ABCD.又∵AC⊂平面ABCD,∴AC⊥PO.又∵BO∩PO=O,∴AC⊥平面POB.∵AC⊂平面PAC,∴平面POB⊥平面PAC.〔Ⅱ〕解:以O为空间坐标原点,建立如下图的空间直角坐标系,那么P〔0,0,2〕,A〔1,0,0〕,D〔﹣1,0,0〕,C〔﹣1,1,0〕,,,,,设为平面PAC的一个法向量,由得,解得.令x=2,那么.同理可得,平面PDC的一个法向量,∴二面角A﹣PC﹣D的平面角θ的余弦值.【点评】此题考查向量的数量积的应用,二面角的求法,考查直线与平面垂直的判定定理以及性质定理的应用.20.〔12.00分〕点A〔1,0〕和动点B,以线段AB为直径的圆内切于圆O:x2+y2=4.〔Ⅰ〕求动点B的轨迹方程;〔Ⅱ〕点P〔2,0〕,Q〔2,﹣1〕,经过点Q的直线l与动点B的轨迹交于M,N两点,求证:直线PM与直线PN的斜率之和为定值.【分析】〔Ⅰ〕设以线段AB为直径的圆的圆心为C,取A′〔﹣1,0〕.圆C内切于圆O,设切点为D,那么O,C,D三点共线,依椭圆得定义可知,动点B的轨迹为椭圆,由此能求出动点B的轨迹方程.〔Ⅱ〕设直线l的方程为y+1=k〔x﹣2〕.由得〔4k2+3〕x2﹣〔16k2+8k〕x+16k2+16k﹣8=0.由此利用韦达定理、根的判别式,结合条件能证明直线PM与直线PN的斜率之和为定值3.【解答】解:〔Ⅰ〕如图,设以线段AB为直径的圆的圆心为C,取A′〔﹣1,0〕.依题意,圆C内切于圆O,设切点为D,那么O,C,D三点共线,∵O为AA′的中点,C为AB中点,∴A′B=2OC.∴|BA′|+|BA|=2OC+2AC=2OC+2CD=2OD=4>|AA′|=2依椭圆得定义可知,动点B的轨迹为椭圆,其中:|BA′|+|BA|=2a=4,|AA′|=2c=2,∴a=2,c=1,∴b2=a2﹣c2=3,∴动点B的轨迹方程为.〔Ⅱ〕证明:当直线l垂直于x轴时,直线l的方程为x=2,此时直线l与椭圆相切,与题意不符.当直线l的斜率存在时,设直线l的方程为y+1=k〔x﹣2〕.由得〔4k2+3〕x2﹣〔16k2+8k〕x+16k2+16k﹣8=0.设M〔x1,y1〕,N〔x2,y2〕,那么,∴==.∴直线PM与直线PN的斜率之和为定值3.【点评】此题考查动点的轨迹方程的求法,考查两直线的斜率之和为定值的证明,考查推理论证能力、运算求解能力,考查函数与方程思想,是中档题.21.〔12.00分〕函数f〔x〕=〔x﹣1〕e x﹣ax2〔e是自然对数的底数〕.〔Ⅰ〕判断函数f〔x〕极值点的个数,并说明理由;〔Ⅱ〕假设∀x∈R,f〔x〕+e x≥x3+x,求a的取值范围.【分析】〔Ⅰ〕求出函数的导数,通过讨论a的范围,求出函数的单调区间,从而求出函数的极值点的个数即可;〔Ⅱ〕问题转化为对∀x>0恒成立,设,设h〔x〕=e x﹣x﹣1,根据函数的单调性求出a的范围即可.【解答】解:〔Ⅰ〕∵f′〔x〕=xe x﹣2ax=x〔e x﹣2a〕,当a≤0时,f〔x〕在〔﹣∞,0〕上单调递减,在〔0,+∞〕上单调递增,∴f〔x〕有1个极值点;当时,f〔x〕在〔﹣∞,ln2a〕上单调递增,在〔ln2a,0〕上单调递减,在〔0,+∞〕上单调递增,∴f〔x〕有2个极值点;当时,f〔x〕在R上单调递增,此时f〔x〕没有极值点;当时,f〔x〕在〔﹣∞,0〕上单调递增,在〔0,ln2a〕上单调递减,在〔ln2a,+∞〕上单调递增,∴f〔x〕有2个极值点;∴当a≤0时,f〔x〕有1个极值点;当a>0且时,f〔x〕有2个极值点;当时,f〔x〕没有极值点.〔Ⅱ〕由f〔x〕+e x≥x3+x得xe x﹣x3﹣ax2﹣x≥0.当x>0时,e x﹣x2﹣ax﹣1≥0,即对∀x>0恒成立.设,那么.设h〔x〕=e x﹣x﹣1,那么h′〔x〕=e x﹣1.∵x>0,∴h′〔x〕>0,∴h〔x〕在〔0,+∞〕上单调递增,∴h〔x〕>h〔0〕=0,即e x>x+1,∴g〔x〕在〔0,1〕上单调递减,在〔1,+∞〕上单调递增,∴g〔x〕≥g〔1〕=e﹣2,∴a≤e﹣2.当x=0时,不等式恒成立,a∈R;当x<0时,e x﹣x2﹣ax﹣1≤0.设h〔x〕=e x﹣x2﹣ax﹣1,那么h′〔x〕=e x﹣2x﹣a.设φ〔x〕=e x﹣2x﹣a,那么φ′〔x〕=e x﹣2<0,∴h′〔x〕在〔﹣∞,0〕上单调递减,∴h′〔x〕≥h′〔0〕=1﹣a.假设a≤1,那么h′〔x〕≥0,∴h〔x〕在〔﹣∞,0〕上单调递增,∴h〔x〕<h〔0〕=0.假设a>1,∵h′〔0〕=1﹣a<0,∴∃x0<0,使得x∈〔x0,0〕时,h′〔x〕<0,即h〔x〕在〔x0,0〕上单调递减,∴h〔x〕>h〔0〕=0,舍去,∴a≤1.综上可得,a的取值范围是〔﹣∞,e﹣2].【点评】此题考查了函数的单调性、极值问题,考查导数的应用以及分类讨论思想,转化思想,是一道中档题.请考生在22、23两题中任选一题作答,如果多做,那么按所做的第一题记分.[选修4-4:坐标系与参数方程]22.〔10.00分〕过点P〔0,﹣1〕的直线l的参数方程为〔t为参数〕,在以坐标原点O为极点,x轴正半轴为极轴的极坐标系中,曲线C的方程为2asinθ﹣ρcos2θ=0〔a>0〕.〔Ⅰ〕求曲线C的直角坐标方程;〔Ⅱ〕假设直线l与曲线C分别交于点M,N,且|PM|,|MN|,|PN|成等比数列,求a的值.【分析】〔Ⅰ〕直接利用转换关系把参数方程和极坐标方程与直角坐标方程进行转化.〔Ⅱ〕利用直线和曲线的位置关系,把方程组转换为一元二次方程根与系数的关系的应用求出结果.【解答】解〔Ⅰ〕曲线C的方程为2asinθ﹣ρcos2θ=0〔a>0〕.∴2aρsinθ﹣ρ2cos2θ=0.即x2=2ay〔a>0〕.〔Ⅱ〕将代入x2=2ay,得,得.∵a>0,∴解①得.∵|PM|,|MN|,|PN|成等比数列,∴|MN|2=|PM|•|PN|,即,∴,即,解得a=0或.∵,∴.【点评】此题考查的知识要点:参数方程和极坐标方程与直角坐标方程的转化,一元二次方程根与系数的关系的应用.[选修4-5:不等式选讲]23.函数f〔x〕=|3x+m|.〔Ⅰ〕假设不等式f〔x〕﹣m≤9的解集为[﹣1,3],求实数m的值;〔Ⅱ〕假设m>0,函数g〔x〕=f〔x〕﹣2|x﹣1|的图象与x轴围成的三角形的面积大于60,求m的取值范围.【分析】〔Ⅰ〕去掉不等式的绝对值并根据条件限制m的范围,根据题意得出m 的值;〔Ⅱ〕由m>0去掉绝对值,将函数g〔x〕写成分段函数的形式,根据大致图象求出三角形的顶点坐标,代入三角形面积公式,解不等式即可.【解答】〔Ⅰ〕由题意得解①得m≥﹣9.②可化为﹣9﹣m≤3x+m≤9+m,.∵不等式f〔x〕≤9的解集为[﹣1,3],∴,解得m=﹣3,满足m≥﹣9.∴m=﹣3;〔Ⅱ〕依题意得,g〔x〕=|3x+m|﹣2|x﹣1|.又∵m>0,∴,g〔x〕的图象与x轴围成的△ABC的三个顶点的坐标为A〔﹣m﹣2,0〕,,,∴,解得m>12.【点评】此题考查解绝对值不等式的方法,以及三角形的面积公式,属于中档题.。

安徽省合肥市2018届高三第二次质量检测理科综合试卷(word含答案)

安徽省合肥市2018届高三第二次质量检测理科综合试卷(word含答案)

合肥市2018年高三第二次教学质量检测理科综合试题可能用到的相对原子质量:H:1B:11C:12N:14O:16S:32Cl:35.5Cu:64Sn:119第I卷一、选择题:本题共13小题,每小题6分,共78分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列关于细胞内蛋白质和核酸及其相互关系的叙述,正确的是A.控制合成不同蛋白质的DNA分子碱基含量可能相同B同一人体的神经细胞与骨骼肌细胞具有相同的DNA和RNAC.蛋白质功能多样性的根本原因是控制其合成的mRNA具有多样性D.基因的两条链可分别作模板进行转录,以提高蛋白质合成的效率2.研究发现,VPS4B(种蛋白质)能够调控肿瘤细胞的增殖过程。

在癌细胞培养过程中,下调VPS4B的含量,细胞分裂间期各时期比例变化如下表。

下列分析中合理的是A.B.VPS4B的缺失或功能被抑制可导致细胞周期缩短C.VPS4B可能在S期与G2期的转换过程中起重要作用D.下调ⅴPS4B的含量可能成为治疗癌症的新思路3.下列关于探索DNA是遗传物质经典实验的相关叙述,正确的是A.格里菲思发现S型菌与R型菌混合培养,所有R型菌都转化成S型菌B.艾弗里的体外转化试验中,R型菌转化成S型菌的实质是基因突变C.用S型肺炎双球菌的DNA感染小鼠,可以导致小鼠患败血症死亡D.T2噬菌体侵染细菌实验的关键思路是对DNA和蛋白质进行单独跟踪4.辣椒抗病(B)对不抗病(b)为显性,基因型为BB的个体花粉败育,不能产生正常花粉。

现将基因型为Bb的辣椒植株自由交配两代获得F2。

F2中抗病与不抗病植株的比例和花粉正常与花粉败育植株的比例分别为A.3:1 6:1B.2:1 5:1C.3:2 7:1D.1:1 3:15.PM2.5是指大气中直径小于2.5μm的颗粒物,富含大量有毒、有害物质,易通过肺部进入血液。

目前PM2.5已成为空气污染指数的重要指标。

下列有关PM2.5的推测正确的是A.PM2.5进入人体肺泡中即进入了人体的内环境B.颗粒物中的一些酸性物质进入人体血液将导致血浆最终呈酸性C.PM2.5可能成为过敏原,其诱发的过敏反应属于免疫缺陷症D.颗粒物进入呼吸道引起咳嗽属于非条件反射,其中枢不在大脑皮层6.地上枯落物是指由植物地上部分产生并归还到地表的所有有机物质的总称,细枯落物主要由凋落的叶片和草本植物组成,粗糙木质枯落物主要是死亡的木本植物的茎。

2018年高考理科数学模拟试卷(共三套)(含答案)

2018年高考理科数学模拟试卷(共三套)(含答案)

2018年高考理科数学模拟试卷(一)(考试时间120分钟满分150分)一、选择题(共12小题,每小题5分,满分60分)1.已知集合S={1,2},设S的真子集有m个,则m=()A.4 B.3 C.2 D.12.已知i为虚数单位,则的共轭复数为()A.﹣+i B. +i C.﹣﹣i D.﹣i3.已知、是平面向量,如果||=3,||=4,|+|=2,那么|﹣|=()A. B.7 C.5 D.4.在(x﹣)10的二项展开式中,x4的系数等于()A.﹣120 B.﹣60 C.60 D.1205.已知a,b,c,d都是常数,a>b,c>d,若f(x)=2017﹣(x﹣a)(x﹣b)的零点为c,d,则下列不等式正确的是()A.a>c>b>d B.a>b>c>d C.c>d>a>b D.c>a>b>d6.公元263年左右,我国古代数学家刘徽用圆内接正多边形的面积去逼近圆的面积求圆周率π,他从圆内接正六边形算起,令边数一倍一倍地增加,即12,24,48,…,192,…,逐个算出正六边形,正十二边形,正二十四边形,…,正一百九十二边形,…的面积,这些数值逐步地逼近圆面积,刘徽算到了正一百九十二边形,这时候π的近似值是3.141024,刘徽称这个方法为“割圆术”,并且把“割圆术”的特点概括为“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”.刘徽这种想法的可贵之处在于用已知的、可求的来逼近未知的、要求的,用有限来逼近无穷,这种思想及其重要,对后世产生了巨大影响,如图是利用刘徽的“割圆术”思想设计的一个程序框图,若运行改程序(参考数据:≈1.732,sin15°≈0.2588,sin7.5°≈0.1305),则输出n的值为()A.48 B.36 C.30 D.247.在平面区域内随机取一点(a,b),则函数f(x)=ax2﹣4bx+1在区间[1,+∞)上是增函数的概率为()A. B.C.D.8.已知△ABC的内角A、B、C的对边分别为a、b、c.若a=bcosC+csinB,且△ABC的面积为1+.则b的最小值为()A.2 B.3 C.D.9.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.12 B.18 C.24 D.3010.已知常数ω>0,f(x)=﹣1+2sinωxcosωx+2cos2ωx图象的对称中心得到对称轴的距离的最小值为,若f(x0)=,≤x0≤,则cos2x0=()A.B.C.D.11.已知三棱锥P﹣ABC的所有顶点都在表面积为16π的球O的球面上,AC为球O的直径,当三棱锥P﹣ABC的体积最大时,设二面角P﹣AB﹣C的大小为θ,则sinθ=()A. B.C.D.12.抛物线M的顶点是坐标原点O,抛物线M的焦点F在x轴正半轴上,抛物线M的准线与曲线x2+y2﹣6x+4y﹣3=0只有一个公共点,设A是抛物线M上的一点,若•=﹣4,则点A的坐标是()A.(﹣1,2)或(﹣1,﹣2)B.(1,2)或(1,﹣2)C.(1,2) D.(1,﹣2)二、填空题(共4小题,每小题5分,满分20分)13.某校1000名高三学生参加了一次数学考试,这次考试考生的分数服从正态分布N(90,σ2),若分数在(70,110]内的概率为0.7,估计这次考试分数不超过70分的人数为人.14.过双曲线﹣=1(a>0,b>0)的右焦点且垂直于x轴的直线与双曲线交于A,B两点,与双曲线的渐近线交于C,D两点,若|AB|≥|CD|,则双曲线离心率的取值范围为.15.计算=(用数字作答)16.已知f(x)=,若f (x﹣1)<f(2x+1),则x的取值范围为.三、解答题(共5小题,满分60分)17.设数列{a n}的前n项和为S n,a1=1,当n≥2时,a n=2a n S n﹣2S n2.(1)求数列{a n}的通项公式;(2)是否存在正数k,使(1+S1)(1+S2)…(1+S n)≥k对一切正整数n都成立?若存在,求k的取值范围,若不存在,请说明理由.18.云南省20XX年高中数学学业水平考试的原始成绩采用百分制,发布成绩使用等级制,各登记划分标准为:85分及以上,记为A等,分数在[70,85)内,记为B等,分数在[60,70)内,记为C等,60分以下,记为D等,同时认定等级分别为A,B,C都为合格,等级为D为不合格.已知甲、乙两所学校学生的原始成绩均分布在[50,100]内,为了比较两校学生的成绩,分别抽取50名学生的原始成绩作为样本进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]分别作出甲校如图1所示样本频率分布直方图,乙校如图2所示样本中等级为C、D的所有数据茎叶图.(1)求图中x的值,并根据样本数据比较甲乙两校的合格率;(2)在选取的样本中,从甲、乙两校C等级的学生中随机抽取3名学生进行调研,用X表示所抽取的3名学生中甲校的学生人数,求随机变量X的分布列和数学期望.19.如图,在四棱锥S﹣ABCD中,底面ABCD是矩形,平面ABCD⊥平面SBC,SB=SC,M是BC的中点,AB=1,BC=2.(1)求证:AM⊥SD;(2)若二面角B﹣SA﹣M的正弦值为,求四棱锥S﹣ABCD的体积.20.已知椭圆E的中心在原点,焦点F1、F2在y轴上,离心率等于,P 是椭圆E上的点,以线段PF1为直径的圆经过F2,且9•=1.(1)求椭圆E的方程;(2)做直线l与椭圆E交于两个不同的点M、N,如果线段MN被直线2x+1=0平分,求l的倾斜角的取值范围.21.已知e是自然对数的底数,实数a是常数,函数f(x)=e x﹣ax﹣1的定义域为(0,+∞).(1)设a=e,求函数f(x)在切点(1,f(1))处的切线方程;(2)判断函数f(x)的单调性;(3)设g(x)=ln(e x+x3﹣1)﹣lnx,若∀x>0,f(g(x))<f(x),求a 的取值范围.[选修4-4:坐标系与参数方程选讲]22.已知直线L的参数方程为(t为参数),以原点O为极点,以x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=.(Ⅰ)直接写出直线L的极坐标方程和曲线C的普通方程;(Ⅱ)过曲线C上任意一点P作与L夹角为的直线l,设直线l与直线L的交点为A,求|PA|的最大值.[选修4-5:不等式选讲]23.已知函数f(x)=|x+a|+|x﹣2|的定义域为实数集R.(Ⅰ)当a=5时,解关于x的不等式f(x)>9;(Ⅱ)设关于x的不等式f(x)≤|x﹣4|的解集为A,B={x∈R|2x﹣1|≤3},如果A∪B=A,求实数a的取值范围.参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.解:∵集合S={1,2},∴S的真子集的个数为:22﹣1=3.故选:B.2.解:∵=,∴的共轭复数为.故选:C.3.解:根据条件:==4;∴;∴=9﹣(﹣21)+16=46;∴.故选:A.==(﹣1)r x10﹣2r,4.解:通项公式T r+1令10﹣2r=4,解得r=3.∴x4的系数等于﹣=﹣120.故选:A5.解:由题意设g(x)=(x﹣a)(x﹣b),则f(x)=2017﹣g(x),所以g(x)=0的两个根是a、b,由题意知:f(x)=0 的两根c,d,也就是g(x)=2017 的两根,画出g(x)(开口向上)以及直线y=2017的大致图象,则与f(x)交点横坐标就是c,d,f(x)与x轴交点就是a,b,又a>b,c>d,则c,d在a,b外,由图得,c>a>b>d,故选D.6.解:模拟执行程序,可得:n=6,S=3sin60°=,不满足条件S≥3.10,n=12,S=6×sin30°=3,不满足条件S≥3.10,n=24,S=12×sin15°=12×0.2588=3.1056,满足条件S≥3.10,退出循环,输出n的值为24.故选:D.7.解:作出不等式组对应的平面区域如图:对应的图形为△OAB,其中对应面积为S=×4×4=8,若f(x)=ax2﹣4bx+1在区间[1,+∞)上是增函数,则满足a>0且对称轴x=﹣≤1,即,对应的平面区域为△OBC,由,解得,∴对应的面积为S1=××4=,∴根据几何概型的概率公式可知所求的概率为=,故选:B.8.解:由正弦定理得到:sinA=sinCsinB+sinBcosC,∵在△ABC中,sinA=sin[π﹣(B+C)]=sin(B+C),∴sin(B+C)=sinBcosC+cosBsinC=sinCsinB+sinBcosC,∴cosBsinC=sinCsinB,∵C∈(0,π),sinC≠0,∴cosB=sinB,即tanB=1,∵B∈(0,π),∴B=,=acsinB=ac=1+,∵S△ABC∴ac=4+2,由余弦定理得到:b2=a2+c2﹣2accosB,即b2=a2+c2﹣ac≥2ac﹣ac=4,当且仅当a=c时取“=”,∴b的最小值为2.故选:A.9.解:由已知中的三视图可得该几何体是一个以俯视图为底面的三棱锥,切去一个三棱锥所得的组合体,其底面面积S=×3×4=6,棱柱的高为:5,棱锥的高为3,故组合体的体积V=6×5﹣×6×3=24,故选:C10.解:由f(x)=﹣1+2sinωxcosωx+2cos2ωx,化简可得:f(x)=sin2ωx+cos2ωx=2sin(2ωx+)∵对称中心得到对称轴的距离的最小值为,∴T=π.由,可得:ω=1.f(x0)=,即2sin(2x0+)=∵≤x0≤,∴≤2x0+≤∴sin(2x0+)=>0∴cos(2x0+)=.那么:cos2x0=cos(2x0+﹣)=cos(2x0+)cos+sin(2x0+)sin=故选D11.解:如图所示:由已知得球的半径为2,AC为球O的直径,当三棱锥P﹣ABC的体积最大时,△ABC为等腰直角三角形,P在面ABC上的射影为圆心O,过圆心O作OD⊥AB于D,连结PD,则∠PDO为二面角P﹣AB﹣C的平面角,在△ABC△中,PO=2,OD=BC=,∴,sinθ=.故选:C12.解:x2+y2﹣6x+4y﹣3=0,可化为(x﹣3)2+(y+2)2=16,圆心坐标为(3,﹣2),半径为4,∵抛物线M的准线与曲线x2+y2﹣6x+4y﹣3=0只有一个公共点,∴3+=4,∴p=2.∴F(1,0),设A(,y0)则=(,y0),=(1﹣,﹣y0),由•=﹣4,∴y0=±2,∴A(1,±2)故选B.二、填空题(共4小题,每小题5分,满分20分)13.解:由X服从正态分布N(90,σ2)(σ>0),且P(70≤X≤110)=0.35,得P(X≤70)=(1﹣0.35)=.∴估计这次考试分数不超过70分的人数为1000×=325.故答案为:325.14.解:设双曲线﹣=1(a>0,b>0)的右焦点为(c,0),当x=c时代入双曲线﹣=1得y=±,则A(c,),B(c,﹣),则AB=,将x=c代入y=±x得y=±,则C(c,),D(c,﹣),则|CD|=,∵|AB|≥|CD|,∴≥•,即b≥c,则b2=c2﹣a2≥c2,即c2≥a2,则e2=≥,则e≥.故答案为:[,+∞).15.解:由===.故答案为:.16.解:∵已知f(x)=,∴满足f(﹣x)=f(x),且f(0)=0,故f(x)为偶函数,f(x)在[0,+∞)上单调递增.若f(x﹣1)<f(2x+1),则|x﹣1|<|2x+1|,∴(x﹣1)2<(2x+1)2,即x2+2x>0,∴x>0,或x<﹣2,故答案为:{x|x>0,或x<﹣2}.三、解答题(共5小题,满分60分)17.解:(1)∵当n≥2时,a n=2a n S n﹣2S n2,∴a n=,n≥2,∴(S n﹣S n﹣1)(2S n﹣1)=2S n2,∴S n﹣S n﹣1=2S n S n﹣1,∴﹣2,n≥2,∴数列{}是以=1为首项,以2为公差的等差数列,∴=1+2(n﹣1)=2n﹣1,∴S n=,∴n≥2时,a n=S n﹣S n﹣1=﹣=﹣,∵a1=S1=1,∴a n=,(2)设f(n)=,则==>1,∴f(n)在n∈N*上递增,要使f(n)≥k恒成立,只需要f(n)min≥k,∵f(n)min=f(1)=,∴0<k≤18.解:(1)由频率分布直方图可得:(x+0.012+0.056+0.018+0.010)×10=1,解得x=0.004.甲校的合格率P1=(1﹣0.004)×10=0.96=96%,乙校的合格率P2==96%.可得:甲乙两校的合格率相同,都为96%.(2)甲乙两校的C等级的学生数分别为:0.012×10×50=6,4人.X=0,1,2,3.则P(X=k)=,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==.∴X的分布列为:X0123PE(X)=0+1×+2×+3×=.19.证明:(1)∵SB=SC,M是BC的中点,∴SM⊥BC,∵平面ABCD⊥平面SBC,平面ABCD∩平面SBC=BC,∴SM⊥平面ABCD,∵AM⊂平面ABCD,∴SM⊥AM,∵底面ABCD是矩形,M是BC的中点,AB=1,BC=2,∴AM2=BM2==,AD=2,∴AM2+BM2=AD2,∴AM⊥DM,∵SM∩DM=M,∴AM⊥平面DMS,∵SD⊂平面DMS,∴AM⊥SD.解:(2)∵SM⊥平面ABCD,∴以M为原点,MC为x轴,MS为y轴,过M作平面BCS的垂线为z轴,建立空间直角坐标系,设SM=t,则M(0,0,0),B(﹣1,0,0),S(0,t,0),A(﹣1,0,1),=(0,0,1),=(1,t,0),=(﹣1,0,1),=(0,t,0),设平面ABS的法向量=(x,y,z),则,取x=1,得=(1,﹣,0),设平面MAS的法向量=(a,b,c),则,取a=1,得=(1,0,1),设二面角B﹣SA﹣M的平面角为θ,∵二面角B﹣SA﹣M的正弦值为,∴sinθ=,cosθ==,∴cosθ===,解得t=,∵SM⊥平面ABCD,SM=,∴四棱锥S﹣ABCD的体积:V S﹣=== ABCD.20.解:(1)由题意可知:设题意的方程:(a>b>0),e==,则c=a,设丨PF1丨=m,丨PF2丨=n,则m+n=2a,线段PF1为直径的圆经过F2,则PF2⊥F1F2,则n2+(2c)2=m2,9m•n×cos∠F1PF2=1,由9n2=1,n=,解得:a=3,c=,则b==1,∴椭圆标准方程:;(2)假设存在直线l,依题意l交椭圆所得弦MN被x=﹣平分,∴直线l的斜率存在.设直线l:y=kx+m,则由消去y,整理得(k2+9)x2+2kmx+m2﹣9=0∵l与椭圆交于不同的两点M,N,∴△=4k2m2﹣4(k2+9)(m2﹣9)>0,即m2﹣k2﹣9<0①设M(x1,y1),N(x2,y2),则x1+x2=﹣∴=﹣=﹣,∴m=②把②代入①式中得()2﹣(k2+9)<0∴k>或k<﹣,∴直线l倾斜角α∈(,)∪(,).21.解:(1)a=e时,f(x)=e x﹣ex﹣1,f(1)=﹣1,f′(x)=e x﹣e,可得f′(1)=0,故a=e时,函数f(x)在切点(1,f(1))处的切线方程是y=﹣1;(2)f(x)=e x﹣ax﹣1,f′(x)=e x﹣a,当a≤0时,f′(x)>0,则f(x)在R上单调递增;当a>0时,令f′(x)=e x﹣a=0,得x=lna,则f(x)在(﹣∞,lna]上单调递减,在(lna,+∞)上单调递增.(3)设F(x)=e x﹣x﹣1,则F′(x)=e x﹣1,∵x=0时,F′(x)=0,x>0时,F′(x)>0,∴F(x)在[0,+∞)递增,∴x>0时,F(x)>F(0),化简得:e x﹣1>x,∴x>0时,e x+x3﹣1>x,设h(x)=xe x﹣e x﹣x3+1,则h′(x)=x(e x﹣ex),设H(x)=e x﹣ex,H′(x)=e x﹣e,由H′(x)=0,得x=1时,H′(x)>0,x<1时,H′(x)<0,∴x>0时,H(x)的最小值是H(1),x>0时,H(x)≥H(1),即H(x)≥0,∴h′(x)≥0,可知函数h(x)在(0,+∞)递增,∴h(x)>h(0)=0,化简得e x+x3﹣1<xe x,∴x>0时,x<e x+x3﹣1<xe x,∴x>0时,lnx<ln(e x+x3﹣1)<lnx+x,即0<ln(e x+x3﹣1)﹣lnx<x,即x>0时,0<g(x)<x,当a≤1时,由(2)得f(x)在(0,+∞)递增,得f(g(x))<f(x)满足条件,当a>1时,由(2)得f(x)在(0,lna)递减,∴0<x≤lna时,f(g(x))>f(x),与已知∀x>0,f(g(x))<f(x)矛盾,综上,a的范围是(﹣∞,1].[选修4-4:坐标系与参数方程选讲]22.解:(Ⅰ)直线L的参数方程为(t为参数),普通方程为2x+y﹣6=0,极坐标方程为2ρcosθ+ρsinθ﹣6=0,曲线C的极坐标方程为ρ=,即ρ2+3ρ2cos2θ=4,曲线C 的普通方程为=1;(Ⅱ)曲线C上任意一点P(cosθ,2sinθ)到l的距离为d=|2cosθ+2sinθ﹣6|.则|PA|==|2sin(θ+45°)﹣6|,当sin(θ+45°)=﹣1时,|PA|取得最大值,最大值为.[选修4-5:不等式选讲]23.解:(Ⅰ)当a=5时,关于x的不等式f(x)>9,即|x+5|+|x﹣2|>9,故有①;或②;或③.解①求得x<﹣6;解②求得x∈∅,解③求得x>3.综上可得,原不等式的解集为{x|x<﹣6,或x>3}.(Ⅱ)设关于x的不等式f(x)=|x+a|+|x﹣2|≤|x﹣4|的解集为A,B={x∈R|2x﹣1|≤3}={x|﹣1≤x≤2 },如果A∪B=A,则B⊆A,∴,即,求得﹣1≤a≤0,故实数a的范围为[﹣1,0].2018年高考理科数学模拟试卷(二)(考试时间120分钟满分150分)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.复数z满足方程=﹣i(i为虚数单位),则复数z在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限2.已知集合A={x|x2+x﹣2<0},集合B={x|(x+2)(3﹣x)>0},则(∁R A)∩B 等于()A.{x|1≤x<3}B.{x|2≤x<3}C.{x|﹣2<x<1}D.{x|﹣2<x≤﹣1或2≤x<3}3.下列函数中,在其定义域内,既是奇函数又是减函数的是()A.f(x)=B.f(x)=C.f(x)=2﹣x﹣2x D.f(x)=﹣tanx 4.已知“x>2”是“x2>a(a∈R)”的充分不必要条件,则a的取值范围是()A.(﹣∞,4)B.(4,+∞)C.(0,4]D.(﹣∞,4]5.已知角α是第二象限角,直线2x+(t anα)y+1=0的斜率为,则cosα等于()A. B.﹣C.D.﹣6.执行如图所示的程序框图,若输入n的值为8,则输出s的值为()A.16 B.8 C.4 D.27.(﹣)8的展开式中,x的系数为()A.﹣112 B.112 C.56 D.﹣568.在△ABC中,∠A=60°,AC=3,面积为,那么BC的长度为()A.B.3 C.2D.9.记曲线y=与x轴所围成的区域为D,若曲线y=ax(x ﹣2)(a<0)把D的面积均分为两等份,则a的值为()A.﹣B.﹣C.﹣D.﹣10.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分的中位数为m e,众数为m0,平均值为,则()A.m e=m0=B.m e=m0<C.m e<m0<D.m0<m e<11.已知矩形ABCD的顶点都在半径为5的球O的球面上,且AB=6,BC=2,则棱锥O﹣ABCD的侧面积为()A.20+8B.44 C.20 D.4612.函数f(x)=2sin(2x++φ)(|φ|<)的图象向左平移个单位后关于y轴对称,则以下判断不正确的是()A.是奇函数 B.为f(x)的一个对称中心C.f(x)在上单调递增D.f(x)在(0,)上单调递减二、填空题:本大题共4小题,每小题5分,共20分.13.若变量x,y满足约束条件,则z=2x﹣y的最大值为.14.如图所示是一个几何体的三视图,则这个几何体的体积为.15.已知抛物线y2=8x的焦点F到双曲线C:﹣=1(a>0,b>0)渐近线的距离为,点P是抛物线y2=8x上的一动点,P到双曲线C的上焦点F1(0,c)的距离与到直线x=﹣2的距离之和的最小值为3,则该双曲线的方程为.16.已知向量,的夹角为θ,|+|=2,|﹣|=2则θ的取值范围为.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.已知S n为等差数列{a n}的前n项和,S6=51,a5=13.(1)求数列{a n}的通项公式;(2)数列{b n}的通项公式是b n=,求数列{b n}的前n项和S n.18.袋中有大小相同的四个球,编号分别为1、2、3、4,从袋中每次任取一个球,记下其编号.若所取球的编号为偶数,则把该球编号改为3后放同袋中继续取球;若所取球的编号为奇数,则停止取球.(1)求“第二次取球后才停止取球”的概率;(2)若第一次取到偶数,记第二次和第一次取球的编号之和为X,求X的分布列和数学期望.19.在三棱椎A﹣BCD中,AB=BC=4,AD=BD=CD=2,在底面BCD内作CE ⊥CD,且CE=.(1)求证:CE∥平面ABD;(2)如果二面角A﹣BD﹣C的大小为90°,求二面角B﹣AC﹣E的余弦值.20.在平面直角坐标系xOy中,已知椭圆C: +=1(a>b>0)的离心率为.且过点(3,﹣1).(1)求椭圆C的方徎;(2)若动点P在直线l:x=﹣2上,过P作直线交椭圆C于M,N两点,使得PM=PN,再过P作直线l′⊥MN,直线l′是否恒过定点,若是,请求出该定点的坐标;若否,请说明理由.21.已知函数f(x)=m(x﹣1)2﹣2x+3+lnx(m≥1).(1)求证:函数f(x)在定义域内存在单调递减区间[a,b];(2)是否存在实数m,使得曲线C:y=f(x)在点P(1,1)处的切线l与曲线C有且只有一个公共点?若存在,求出实数m的值;若不存在,请说明理由.[选修4-1:几何证明选讲]22.选修4﹣1:几何证明选讲如图,已知PA是⊙O的切线,A是切点,直线PO交⊙O于B、C两点,D是OC 的中点,连接AD并延长交⊙O于点E,若PA=2,∠APB=30°.(Ⅰ)求∠AEC的大小;(Ⅱ)求AE的长.[选修4-4:极坐标与参数方程]23.选修4﹣4:坐标系与参数方程在平面直角坐标系x0y中,动点A的坐标为(2﹣3sinα,3cosα﹣2),其中α∈R.在极坐标系(以原点O为极点,以x轴非负半轴为极轴)中,直线C的方程为ρcos (θ﹣)=a.(Ⅰ)判断动点A的轨迹的形状;(Ⅱ)若直线C与动点A的轨迹有且仅有一个公共点,求实数a的值.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣1|+|x﹣a|.(1)若a=2,解不等式f(x)≥2;(2)若a>1,∀x∈R,f(x)+|x﹣1|≥1,求实数a的取值范围.参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.解:由=﹣i,得,即z=1+i.则复数z在复平面内对应的点的坐标为(1,1).位于第一象限.故选:A.2.解:∵集合A={x|x2+x﹣2<0}={x|﹣2<x<1},集合B={x|(x+2)(3﹣x)>0}={x|﹣2<x<3},∴(C R A)∩B={x|x≤﹣2或x≥1}∩{x|﹣2<x<3}={x|1≤x<3}.故选:A.3.解:A中,f(x)=是奇函数,但在定义域内不单调;B中,f(x)=是减函数,但不具备奇偶性;C中,f(x)2﹣x﹣2x既是奇函数又是减函数;D中,f(x)=﹣tanx是奇函数,但在定义域内不单调;故选C.4.解:由题意知:由x>2能得到x2>a;而由x2>a得不出x>2;∵x>2,∴x2>4;∴a≤4;∴a的取值范围是(﹣∞,4].故选:D.5.解:由题意得:k=﹣=,故tanα=﹣,故cosα=﹣,故选:D.6.解:开始条件i=2,k=1,s=1,i<8,开始循环,s=1×(1×2)=2,i=2+2=4,k=1+1=2,i<8,继续循环,s=×(2×4)=4,i=6,k=3,i<8,继续循环;s=×(4×6)=8,i=8,k=4,8≥8,循环停止,输出s=8;故选B:=(﹣2)r C8r x4﹣r,7.解:(﹣)8的展开式的通项为T r+1令4﹣r=1,解得r=2,∴展开式中x的系数为(﹣2)2C82=112,故选:B.8.解:在图形中,过B作BD⊥ACS△ABC=丨AB丨•丨AC丨sinA,即×丨AB丨×3×sin60°=,解得:丨AB丨=2,∴cosA=,丨AD丨=丨AB丨cosA=2×=1,sinA=,则丨BD丨=丨AB丨sinA=2×=,丨CD丨=丨AC丨﹣丨AD丨=3﹣1=2,在△BDC中利用勾股定理得:丨BC丨2=丨BD丨2+丨CD丨2=7,则丨BC丨=,故选A.9.解:由y=得(x﹣1)2+y2=1,(y≥0),则区域D表示(1,0)为圆心,1为半径的上半圆,而曲线y=ax(x﹣2)(a<0)把D的面积均分为两等份,∴=,∴(﹣ax2)=,∴a=﹣,故选:B.10.解:根据题意,由题目所给的统计图可知:30个得分中,按大小排序,中间的两个得分为5、6,故中位数m e=5.5,得分为5的最多,故众数m0=5,其平均数=≈5.97;则有m0<m e<,故选:D.11.解:由题意可知四棱锥O﹣ABCD的侧棱长为:5.所以侧面中底面边长为6和2,它们的斜高为:4和2,所以棱锥O﹣ABCD的侧面积为:S=4×6+2=44.故选B.12.解:把函数f(x)=2sin(2x++φ)(|φ|<)的图象向左平移个单位后,得到y=2sin(2x++φ+π)=﹣2sin(2x++φ)的图象,再根据所得关于y轴对称,可得+φ=kπ+,k∈Z,∴φ=,∴f(x)=2sin(2x++φ)=2cos2x.由于f(x+)=2cos(2x+)=﹣sin2x是奇函数,故A正确;当x=时,f(x)=0,故(,0)是f(x)的图象的一个对称中心,故B正确;在上,2x∈(﹣,﹣),f(x)没有单调性,故C不正确;在(0,)上,2x∈(0,π),f(x)单调递减,故D正确,故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.解:由约束条件作出可行域如图,联立,解得A(4,2),化目标函数z=2x﹣y为y=2x﹣z,由图可知,当直线y=2x﹣z过点A时,直线在y 轴上的截距最小,z有最大值为6.故答案为:6.14.解:由三视图得到几何体如图:其体积为;故答案为:15.解:抛物线y2=8x的焦点F(2,0),双曲线C:﹣=1(a>0,b >0)一条渐近线的方程为ax﹣by=0,∵抛物线y2=8x的焦点F到双曲线C:﹣=1(a>0,b>0)渐近线的距离为,∴,∴2b=a,∵P到双曲线C的上焦点F1(0,c)的距离与到直线x=﹣2的距离之和的最小值为3,∴FF1=3,∴c2+4=9,∴c=,∵c2=a2+b2,a=2b,∴a=2,b=1,∴双曲线的方程为﹣x2=1.故答案为:﹣x2=1.16.解:由|+|=2,|﹣|=2,可得:+2=12,﹣2=4,∴=8≥2,=2,∴cosθ=≥.∴θ∈.故答案为:.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.解:(1)设等差数列{a n}的公差为d,则∵S6=51,∴×(a1+a6)=51,∴a1+a6=17,∴a2+a5=17,∵a5=13,∴a2=4,∴d=3,∴a n=a2+3(n﹣2)=3n﹣2;(2)b n==﹣2•8n﹣1,∴数列{b n}的前n项和S n==(8n﹣1).18.解:(1)记“第二次取球后才停止取球”为事件A.∴第一次取到偶数球的概率为=,第二次取球时袋中有三个奇数,∴第二次取到奇数球的概率为,而这两次取球相互独立,∴P(A)=×=.(2)若第一次取到2时,第二次取球时袋中有编号为1,3,3,4的四个球;若第一次取到4时,第二次取球时袋中有编号为1,2,3,3的四个球.∴X的可能取值为3,5,6,7,∴P(X=3)=×=,P(X=5)=×+×=,P(X=6)=×+×=,P(X=7)=×=,∴X的分布列为:X3567P数学期望EX=3×+5×+6×+7×=.19.(1)证明:∵BD=CD=2,BC=4,∴BD2+CD2=BC2,∴BD⊥CD,∵CE⊥CD,∴CE∥BD,又CE⊄平面ABD,BD⊂平面ABD,∴CE∥平面ABD;(2)解:如果二面角A﹣BD﹣C的大小为90°,由AD⊥BD得AD⊥平面BDC,∴AD⊥CE,又CE⊥CD,∴CE⊥平面ACD,从而CE⊥AC,由题意AD=DC=2,∴Rt△ADC中,AC=4,设AC的中点为F,∵AB=BC=4,∴BF⊥AC,且BF=2,设AE中点为G,则FG∥CE,由CE⊥AC得FG⊥AC,∴∠BFG为二面角B﹣AC﹣E的平面角,连接BG,在△BCE中,∵BC=4,CE=,∠BCE=135°,∴BE=,在Rt△DCE中,DE==,于是在Rt△ADE中,AE==3,在△ABE中,BG2=AB2+BE2﹣AE2=,∴在△BFG中,cos∠BFG==﹣,∴二面角B﹣AC﹣E的余弦值为﹣.20.解:(1)∵椭圆C: +=1(a>b>0)的离心率为.且过点(3,﹣1),∴,解得a2=12,b2=4,∴椭圆C的方程为.(2)∵直线l的方程为x=﹣2,设P(﹣2,y0),,当y0≠0时,设M(x1,y1),N(x2,y2),由题意知x1≠x2,联立,∴,∴,又∵PM=PN,∴P为线段MN的中点,∴直线MN的斜率为,又l′⊥MN,∴l′的方程为,即,∴l′恒过定点.当y0=0时,直线MN为,此时l′为x轴,也过点,综上,l′恒过定点.21.(1)证明:令f′(x)=0,得mx2﹣(m+2)x+1=0.(*)因为△=(m+2)2﹣4m=m2+4>0,所以方程(*)存在两个不等实根,记为a,b (a<b).因为m≥1,所以a+b=>0,ab=>0,所以a>0,b>0,即方程(*)有两个不等的正根,因此f′(x)≤0的解为[a,b].故函数f(x)存在单调递减区间;(2)解:因为f′(1)=﹣1,所以曲线C:y=f(x)在点P(1,1)处的切线l为y=﹣x+2.若切线l与曲线C只有一个公共点,则方程m(x﹣1)2﹣2x+3+lnx=﹣x+2有且只有一个实根.显然x=1是该方程的一个根.令g(x)=m(x﹣1)2﹣x+1+lnx,则g′(x)=.当m=1时,有g′(x)≥0恒成立,所以g(x)在(0,+∞)上单调递增,所以x=1是方程的唯一解,m=1符合题意.当m>1时,令g′(x)=0,得x1=1,x2=,则x2∈(0,1),易得g(x)在x1处取到极小值,在x2处取到极大值.所以g(x2)>g(x1)=0,又当x→0时,g(x)→﹣∞,所以函数g(x)在(0,)内也有一个解,即当m>1时,不合题意.综上,存在实数m,当m=1时,曲线C:y=f(x)在点P(1,1)处的切线l与C 有且只有一个公共点.[选修4-1:几何证明选讲]22.解:(Ⅰ)连接AB,因为:∠APO=30°,且PA是⊙O的切线,所以:∠AOB=60°;∵OA=OB∴∠AB0=60°;∵∠ABC=∠AEC∴∠AEC=60°.(Ⅱ)由条件知AO=2,过A作AH⊥BC于H,则AH=,在RT△AHD中,HD=2,∴AD==.∵BD•DC=AD•DE,∴DE=.∴AE=DE+AD=.[选修4-4:极坐标与参数方程]23.解:(Ⅰ)设动点A的直角坐标为(x,y),则,利用同角三角函数的基本关系消去参数α可得,(x﹣2)2+(y+2)2=9,点A的轨迹为半径等于3的圆.(Ⅱ)把直线C方程为ρcos(θ﹣)=a化为直角坐标方程为+=2a,由题意可得直线C与圆相切,故有=3,解得a=3 或a=﹣3.[选修4-5:不等式选讲]24.解:(1)当a=2时,,由于f(x)≥2,则①当x<1时,﹣2x+3≥2,∴x≤;②当1≤x≤1时,1≥2,无解;③当x>2时,2x﹣3≥2,∴x≥.综上所述,不等式f(x)≥2的解集为:(﹣∞,]∪[,+∞);(2)令F(x)=f(x)+|x﹣1|,则,所以当x=1时,F(x)有最小值F(1)=a﹣1,只需a﹣1≥1,解得a≥2,所以实数a的取值范围为[2,+∞).2018年高考理科数学模拟试卷(三)(考试时间120分钟满分150分)一、选择题(共12小题,每小题5分,满分60分)1.已知复数z满足z(1﹣i)2=1+i(i为虚数单位),则z=()A. +i B.﹣i C.﹣+i D.﹣﹣i2.已知集合A={x|(x﹣1)2≤3x﹣3,x∈R},B={y|y=3x+2,x∈R},则A∩B=()A.(2,+∞)B.(4,+∞)C.[2,4]D.(2,4]3.甲、乙两类水果的质量(单位:kg)分别服从正态分布N(μ1,σ12)及N(μ2,σ22),其正态分布的密度曲线如图所示,则下列说法错误的是()A.乙类水果的质量服从的正态分布的参数σ2=1.99B.甲类水果的质量比乙类水果的质量更集中C.甲类水果的平均质量μ1=0.4kgD.甲类水果的平均质量比乙类水果的平均质量小4.已知数列{a n}的前n项和S n满足S n+S m=S n(n,m∈N*)且a1=5,则a8=()+mA.40 B.35 C.12 D.55.设a=(),b=(),c=ln,则a,b,c的大小关系是()A.a>b>c B.b>a>c C.b>c>a D.a>c>b6.执行如图所示的程序框图,则输出b的值为()A.2 B.4 C.8 D.167.若圆C:x2+y2﹣2x+4y=0上存在两点A,B关于直线l:y=kx﹣1对称,则k的值为()A.﹣1 B.﹣C.﹣D.﹣38.某同学在运动场所发现一实心椅子,其三视图如图所示(俯视图是圆的一部分及该圆的两条互相垂直的半径,有关尺寸如图,单位:m),经了解,建造该类椅子的平均成本为240元/m3,那么该椅子的建造成本约为(π≈3.14)()A.94.20元 B.240.00元C.282.60元D.376.80元9.当函数f(x)=sinx+cosx﹣t(t∈R)在闭区间[0,2π]上,恰好有三个零点时,这三个零点之和为()A.B. C. D.2π10.有5位同学排成前后两排拍照,若前排站2人,则甲不站后排两端且甲、乙左右相邻的概率为()A.B.C.D.11.某工厂拟生产甲、乙两种实销产品.已知每件甲产品的利润为0.4万元,每件乙产品的利润为0.3万元,两种产品都需要在A,B两种设备上加工,且加工一件甲、乙产品在A,B设备上所需工时(单位:h)分别如表所示.甲产品所需工时乙产品所需工时A设备23B设备41若A设备每月的工时限额为400h,B设备每月的工时限额为300h,则该厂每月生产甲、乙两种产品可获得的最大利润为()A.40万元B.45万元C.50万元D.55万元12.若函数g(x)满足g(g(x))=n(n∈N)有n+3个解,则称函数g(x)为“复合n+3解”函数.已知函数f(x)=(其中e是自然对数的底数,e=2.71828…,k∈R),且函数f(x)为“复合5解”函数,则k的取值范围是()A.(﹣∞,0)B.(﹣e,e)C.(﹣1,1)D.(0,+∞)二、填空题(共4小题,每小题5分,满分20分)13.在Rt△ABC中,D是斜边AB的中点,若BC=6,CD=5,则•=.14.有下列四个命题:①垂直于同一条直线的两条直线平行;②垂直于同一条直线的两个平面平行;③垂直于同一平面的两个平面平行;④垂直于同一平面的两条直线平行.其中正确的命题有(填写所有正确命题的编号).15.若等比数列{a n}的公比为2,且a3﹣a1=2,则++…+=.16.设抛物线C:y2=2px(p>0)的焦点为F,点A在C上,若|AF|=,以线段AF为直径的圆经过点B(0,1),则p=.三、解答题(共5小题,满分60分)17.在△ABC中,设内角A,B,C所对边分别为a,b,c,且sin(A﹣)﹣cos(A+)=.(1)求角A的大小;(2)若a=,sin2B+cos2C=1,求△ABC的面积.18.某大学有甲、乙两个图书馆,对其借书、还书的等待时间进行调查,得到下表:甲图书馆12345借(还)书等待时间T1(分钟)频数1500 1000 500 500 1500乙图书馆12345借(还)书等待时间T2(分钟)频数100050020001250250以表中等待时间的学生人数的频率为概率.(1)分别求在甲、乙两图书馆借书的平均等待时间;(2)学校规定借书、还书必须在同一图书馆,某学生需要借一本数学参考书,并希望借、还书的等待时间之和不超过4分钟,在哪个图书馆借、还书更能满足他的要求?19.如图所示,在Rt△ABC中,AC⊥BC,过点C的直线VC垂直于平面ABC,D、E分别为线段VA、VC上异于端点的点.(1)当DE⊥平面VBC时,判断直线DE与平面ABC的位置关系,并说明理由;(2)当D、E、F分别为线段VA、VC、AB上的中点,且VC=2BC时,求二面角B ﹣DE﹣F的余弦值.20.已知椭圆+=1(a>b>0)过点P(2,1),且离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)设O为坐标原点,在椭圆短轴上有两点M,N满足=,直线PM、PN分别交椭圆于A,B.(i)求证:直线AB过定点,并求出定点的坐标;(ii)求△OAB面积的最大值.21.已知函数f(x)=lnx﹣2ax(其中a∈R).(Ⅰ)当a=1时,求函数f(x)的图象在x=1处的切线方程;(Ⅱ)若f(x)≤1恒成立,求a的取值范围;(Ⅲ)设g(x)=f(x)+x2,且函数g(x)有极大值点x0,求证:x0f(x0)+1+ax02>0.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,双曲线E的参数方程为(θ为参数),设E的右焦点为F,经过第一象限的渐进线为l.以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(1)求直线l的极坐标方程;(2)设过F与l垂直的直线与y轴相交于点A,P是l上异于原点O的点,当A,O,F,P四点在同一圆上时,求这个圆的极坐标方程及点P的极坐标.[选修4-5:不等式选讲]23.已知函数f(x)=|x+a|﹣2a,其中a∈R.(1)当a=﹣2时,求不等式f(x)≤2x+1的解集;(2)若x∈R,不等式f(x)≤|x+1|恒成立,求a的取值范围.参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.解:∵z(1﹣i)2=1+i,∴,故选:C.2.解:集合A={x|(x﹣1)2≤3x﹣3,x∈R}={x|(x﹣1)(x﹣4)≤0}={x|1≤x ≤4}=[1,4];B={y|y=3x+2,x∈R}={y|y>2}=(2,+∞),则A∩B=(2,4].故选:D.3.解:由图象可知,甲类水果的平均质量μ1=0.4kg,乙类水果的平均质量μ2=0.8kg,故B,C,D正确;乙类水果的质量服从的正态分布的参数σ2=,故A 不正确.故选:A.4.解:数列{a n}的前n项和S n满足S n+S m=S n+m(n,m∈N*)且a1=5,令m=1,则S n+1=S n+S1=S n+5.可得a n+1=5.则a8=5.故选:D.5.解:b=()=>()=a>1,c=ln<1,∴b>a>c.故选:B.6.解:第一次循环,a=1≤3,b=2,a=2,第二次循环,a=2≤3,b=4,a=3,第三次循环,a=3≤3,b=16,a=4,第四次循环,a=4>3,输出b=16,故选:D.7.解:圆C:x2+y2﹣2x+4y=0的圆心(1,﹣2),若圆C:x2+y2﹣2x+4y=0上存在两点A,B关于直线l:y=kx﹣1对称,可知直线经过圆的圆心,可得﹣2=k﹣1,解得k=﹣1.故选:A.8.解:由三视图可知:该几何体为圆柱的.∴体积V=.∴该椅子的建造成本约为=×240≈282.60元.故选:C.9.解:f(x)=2sin(x+)﹣t,令f(x)=0得sin(x+)=,做出y=sin(x+)在[0,2π]上的函数图象如图所示:∵f(x)在[0,2π]上恰好有3个零点,∴=sin=,解方程sin(x+)=得x=0或x=2π或x=.∴三个零点之和为0+2π+=.故选:B.10.解:由题意得:p===,故选:B.11.C解:设甲、乙两种产品月的产量分别为x,y件,约束条件是目标函数是z=0.4x+0.3y由约束条件画出可行域,如图所示的阴影部分由z=0.4x+0.3y,结合图象可知,z=0.4x+0.3y在A处取得最大值,由可得A(50,100),此时z=0.4×50+0.3×100=50万元,故选:C.12.解:函数f(x)为“复合5解“,∴f(f(x))=2,有5个解,设t=f(x),∴f(t)=2,∵当x>0时,f(x)=,∴f(x)=,当0<x<1时,f′(x)<0,函数f(x)单调递减,当x>1时,f′(x)>0,函数f(x)单调递增,∴f(x)min=f(1)=1,∴t≥1,∴f(t)=2在[1,+∞)有2个解,当x≤0时,f(x)=kx+3,函数f(x)恒过点(0,3),当k≤0时,f(x)≥f(0)=3,∴t≥3∵f(3)=>2,∴f(t)=2在[3,+∞)上无解,当k>0时,f(x)≤f(0)=3,∴f(t)=2,在(0,3]上有2个解,在(∞,0]上有1个解,综上所述f(f(x))=2在k>0时,有5个解,故选:D二、填空题(共4小题,每小题5分,满分20分)13.解:在Rt△ABC中,D是斜边AB的中点,若BC=6,CD=5,可得AD=BD=5,即AB=10,由勾股定理可得AC==8,则•=﹣•=﹣||•||•cosA=﹣5×8×=﹣32.14.解:如图在正方体ABCD﹣A′B′C′D′中,对于①,AB⊥BB′,BC⊥BB′,AB、BC不平行,故错;对于②,两底面垂直于同一条侧棱,两个底面平面平行,故正确;对于③,相邻两个侧面同垂直底面,这两个平面不平行,故错;对于④,平行的侧棱垂直底面,侧棱平行,故正确.故答案为:②④15.解:∵等比数列{a n}的公比为2,且a3﹣a1=2,∴=2,解得a1=.∴a n==.∴=.则++…+=3×==1﹣.故答案为:1﹣.16.解:由题意,可得A(,),AB⊥BF,∴(,﹣1)•(,﹣1)=0,∴﹣+1=0,∴p(5﹣p)=4,∴p=1或4.三、解答题(共5小题,满分60分)17.解:(1)sin(A﹣)﹣cos(A+)=sin(A﹣)﹣cos(2π﹣A)=sin(A﹣)﹣cos(A+)=sinA﹣cosA﹣cosA﹣sinA=即cosA=,∵0<A<π,∴A=.(2)由sin2B+cos2C=1,可得sin2B=2sin2C,由正弦定理,得b2=2c2,即.a=,cosA==,解得:c=1,b=∴△ABC的面积S=bcsinA=.18.解:(1)根据已知可得T1的分布列:T1(分钟)12345P0.30.20.10.10.3T1的数学期望为:E(T1)=1×0.3+2×0.2+3×0.1+4×0.1+5×0.3=2.9.T2(分钟)12345P0.20.10.4 0.250.05T2的数学期望为:E(T1)=1×0.2+2×0.1+3×0.4+4×0.25+5×0.05=2.85.因此:该同学甲、乙两图书馆借书的平均等待时间分别为:2.9分钟,2.85分钟.(2)设T11,T12分别表示在甲图书馆借、还书所需等待时间,设事件A为“在甲图书馆借、还书的等待时间之和不超过4分钟”.T11+T12≤4的取值分别为:(1,1),(1,2),(1,3),(2,1),(2,2),(3,1).。

合肥市高考数学二模试卷(理科)A卷

合肥市高考数学二模试卷(理科)A卷

合肥市高考数学二模试卷(理科)A卷姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分)设全集U=R,集合M={x|y=},N={y|y=3﹣2x},则图中阴影部分表示的集合是()A . {x|<x≤3}B . {x|<x<3}C . {x|≤x<2}D . {x|<x<2}2. (2分)在复平面内,复数(是虚数单位)所对应的点位于()A . 第一象限B . 第二象限C . 第三象限D . 第四象限3. (2分)已知α是第四象限角,tanα=﹣,则sinα=()A .B .C .D .4. (2分)(2017·新课标Ⅰ卷文) 如图,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A .B .C .D .5. (2分)(2016·绍兴模拟) 设f(x)=cos2x﹣ sin2x,把y=f(x)的图象向左平移φ(φ>0)个单位后,恰好得到函数g(x)=﹣cos2x﹣ sin2x的图象,则φ的值可以为()A .B .C .D .6. (2分)若如下框图所给的程序运行结果为,那么判断框中应填入的关于k的条件是()A .B .C .D .7. (2分)(x+1+)6的展开式中的常数项为()A . 32B . 90C . 140D . 1418. (2分)已知双曲线,抛物线,若抛物线的焦点到双曲线的渐近线的距离为3,则p=()A .B . 5C .D . 109. (2分) (2017高二下·南阳期末) 函数f(x)= x﹣sinx(x∈R)的部分图象是()A .B .C .D .10. (2分) (2016高三上·福州期中) △ABC的外接圆的圆心为O,半径为1,且,则向量在方向上的投影为()A .B .C .D .11. (2分)(2017·昆明模拟) 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为()A .B .C .D .12. (2分) (2017高二下·衡水期末) 已知函数f(x)是定义在(﹣∞,0)∪(0,+∞)上的偶函数,当x>0时,f(x)= 则函数g(x)=2f(x)﹣1的零点个数为()个.A . 5B . 6C . 7D . 8二、填空题 (共4题;共4分)13. (1分)(2017·合肥模拟) 双曲线M:﹣ =1(a>0,b>0)的左、右焦点分别为F1 , F2 ,直线x=a与双曲线M渐近线交于点P,若sin∠PF1F2= ,则该双曲线的离心率为________.14. (1分) (2016高二上·如东期中) 己知实数x,y满足条件,则x+y的取值范围是________15. (1分)若圆锥的侧面积与过轴的截面面积之比为2,则其母线与轴的夹角的大小为________ .16. (1分) (2017高一下·衡水期末) 在△ABC中,如果sinA=sinC,B=30°,角B所对的边长b=2,则△ABC 的面积为________.三、解答题 (共7题;共65分)17. (10分) (2017高一下·钦州港期末) 已知数列{an}的前n项和为Sn ,且Sn=2an﹣2,数列{bn}满足b1=1,且bn+1=bn+2.(1)求数列{an},{bn}的通项公式;(2)设cn= ,求数列{cn}的前2n项和T2n.18. (15分) (2016高二下·晋江期中) 设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.(1)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;(2)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;(3)记ξ表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求ξ的分布列及期望.19. (10分) (2016高二上·诸暨期中) 如图,四棱锥P﹣ABCD的底面ABCD是矩形,平面PAB⊥平面ABCD,PA=AB=3,BC=2,E、F分别是棱AD,PC的中点(1)求证:EF⊥平面PBC(2)若直线PC与平面ABCD所成角为,点P在AB上的射影O在靠近点B的一侧,求二面角P﹣EF﹣A的余弦值.20. (5分) (2016高二上·重庆期中) 已知椭圆C: =1(a>b>0)的左、右焦点分别为F1 , F2 ,且F1 , F2与短轴的一个顶点Q构成一个等腰直角三角形,点P(,)在椭圆C上.(I)求椭圆C的标准方程;(Ⅱ)过F2作互相垂直的两直线AB,CD分别交椭圆于点A,B,C,D,且M,N分别是弦AB,CD的中点,求△MNF2面积的最大值.21. (10分) (2018高二下·虎林期末) 已知函数(1)求曲线在点处的切线方程;(2)若函数恰有个零点,求实数的取值范围22. (10分)(2017·郎溪模拟) [选修4-4:坐标系与参数方程]设在平面上取定一个极坐标系,以极轴作为直角坐标系的x轴的正半轴,以θ= 的射线作为y轴的正半轴,以极点为坐标原点,长度单位不变,建立直角坐标系,已知曲线C的直角坐标方程为x2+y2=2,直线l的参数方程(t为参数).(1)写出直线l的普通方程与曲线C的极坐标方程;(2)设平面上伸缩变换的坐标表达式为,求C在此变换下得到曲线C'的方程,并求曲线C′内接矩形的最大面积.23. (5分)(2019·枣庄模拟) 已知函数f(x)=|x-m|-|2x+2m|(m>0).(Ⅰ)当m=1时,求不等式f(x)≥1的解集;(Ⅱ)若∀x∈R,∃t∈R,使得f(x)+|t-1|<|t+1|,求实数m的取值范围.参考答案一、选择题: (共12题;共24分)1-1、答案:略2-1、答案:略3-1、答案:略4-1、5-1、答案:略6-1、7-1、答案:略8-1、答案:略9-1、答案:略10-1、答案:略11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共65分) 17-1、答案:略17-2、答案:略18-1、答案:略18-2、答案:略18-3、答案:略19-1、答案:略19-2、答案:略20-1、21-1、答案:略21-2、答案:略22-1、答案:略22-2、答案:略23-1、。

2018届安徽省合肥市高三第二次教学质量检测数学(理)试题(解析版)

2018届安徽省合肥市高三第二次教学质量检测数学(理)试题(解析版)

2018届安徽省合肥市高三第二次教学质量检测数学理试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知复数满足(是虚数),则复数在复平面内对应的点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】∴,∴,∴复数点为,位于第二象限.选B.2. 已知集合,集合,则()A. B. C. D.【答案】D【解析】∵,,∴.选D.3. 命题,关于的方程有实数解,则为()A. ,关于的方程有实数解B. ,关于的方程没有实数解C. ,关于的方程没有实数解D. ,关于的方程有实数解【答案】C【解析】根据含有量词的命题的否定可得,为:,关于的方程没有实数解.选C.4. 在直角坐标系中,若角的终边经过点,则()A. B. C. D.【答案】A【解析】由条件得点的坐标为,∴.∴.选A.5. 中国古代词中,有一道“八子分绵”的数学名题:“九百九十斤绵,赠分八子做盘缠,次第每人多十七,要将第八数来言”.题意是:把996斤绵分给8个儿子作盘缠,按照年龄从大到小的顺序依次分绵,年龄小的比年龄大的多17斤绵,那么第8个儿子分到的绵是()A. 174斤B. 184斤C. 191斤D. 201斤【答案】B【解析】用表示8个儿按照年龄从大到小得到的绵数,由题意得数列是公差为17的等差数列,且这8项的和为996,∴,解得.∴.选B.6. 执行如图所示的程序框图,若输出的结果为1,则输入的的值为()A. 3或-2B. 2或-2C. 3或-1D. -2或-1或3【答案】A【解析】由题意可得本题是求分段函数中,求当时的取值.当时,由,解得,符合题意.当时,由,得,解得或(舍去).综上可得或.选A.7. 小李从网上购买了一件商品,快递员计划在下午5:00-6:00之间送货上门,已知小李下班到家的时间为下午5:30-6:00.快递员到小李家时,如果小李未到家,则快递员会电话联系小李.若小李能在10分钟之内到家,则快递员等小李回来;否则,就将商品存放在快递柜中.则小李需要去快递柜收取商品的概率为()A. B. C. D.【答案】D【解析】设快递员到小李家的时间为x,小李到家的时间为y,由题意可得所有基本事件构成的平面区域为,设“小李需要去快递柜收取商品”为事件A,则事件A包含的基本事件构成的平面区域为,如图阴影部分所示的直角梯形.在中,当时,;当时,.∴阴影部分的面积为,由几何概型概率公式可得,小李需要去快递柜收取商品的概率为.选D.8. 在正方体中,,,分别为棱,,的中点,用过点,,的平面截正方体,则位于截面以下部分的几何体的侧(左)视图为()A. B. C. D.【答案】C【解析】取的中点连,则为过点,,的平面与正方体的面的交线.延长,交的延长线与点,连,交于,则为过点,,的平面与正方体的面的交线.同理,延长,交的延长线于,连,交于点,则为过点,,的平面与正方体的面的交线.所以过点,,的平面截正方体所得的截面为图中的六边形.故可得位于截面以下部分的几何体的侧(左)视图为选项C所示.选C .9. 已知函数,实数,满足不等式,则下列不等式恒成立的是()A. B. C. D.【答案】C【解析】由题意得,故函数为奇函数.又,故函数在R上单调递减.∵,∴,∴,∴.选C.10. 已知双曲线的左,右焦点分别为,,,是双曲线上的两点,且,,则该双曲线的离心率为()A. B. C. D.【答案】B【解析】如图,设,是双曲线左支上的两点,令,由双曲线的定义可得.在中,由余弦定理得,整理得,解得或(舍去).∴,∴为直角三角形,且.在中,,即,∴,∴.即该双曲线的离心率为.选B.点睛:(1)求双曲线的离心率时,将提供的双曲线的几何关系转化为关于双曲线基本量的方程或不等式,利用和转化为关于e的方程或不等式,通过解方程或不等式求得离心率的值或取值范围.(2)对于焦点三角形,要注意双曲线定义的应用,运用整体代换的方法可以减少计算量.11. 已知函数,,,且在上单调.下列说法正确的是()A. B.C. 函数在上单调递增D. 函数的图象关于点对称【答案】C【解析】由题意得函数的最小正周期为,∵在上单调,∴,解得.∵,,∴,解得,∴.对于选项A,显然不正确.对于选项B,,故B不正确.对于选项C,当时,,所以函数单调递增,故C正确.对于选项D,,所以点不是函数图象的对称中心,故D不正确.综上选C.点睛:解决函数综合性问题的注意点(1)结合条件确定参数的值,进而得到函数的解析式.(2)解题时要将看作一个整体,利用整体代换的方法,并结合正弦函数的相关性质求解.(3)解题时要注意函数图象的运用,使解题过程直观形象化.12. 已知点在内部,平分,,对满足上述条件的所有,下列说法正确的是()A. 的三边长一定成等差数列B. 的三边长一定成等比数列C. ,,的面积一定成等差数列D. ,,的面积一定成等比数列【答案】B【解析】设.在中,可得.在中,分别由余弦定理得,①,②.③由①+②整理得,∴,将代入上式可得.又由三角形面积公式得,∴,∴,∴,∴.由③得,∴,整理得.故选B.点睛:本题难度较大,解题时要合理引入变量,通过余弦定理、三角形的面积公式,建立起三角形三边间的联系,然后通过消去变量的方法逐步得到三边的关系.由于计算量较大,在解题时要注意运算的准确性和合理性.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知两个单位向量,的夹角为,则__________.【答案】【解析】.答案:14. 在的展开式中,的系数等于__________.【答案】10【解析】含项为,故系数为.15. 已知半径为的球内有一个内接四棱锥,四棱锥的侧棱长都相等,底面是正方形,当四棱锥的体积最大时,它的底面边长等于__________.【答案】4【解析】如图,设四棱锥的侧棱长为,底面正方形的边长为,棱锥的高为.由题意可得顶点在地面上的射影为底面正方形的中心,则球心在高上.在中,,∴,整理得.又在中,有,∴.∴,∴.设,则,∴当时,单调递增,当时,单调递减.∴当时取得最大值,即四棱锥的体积取得最大值,此时,解得.∴四棱锥的体积最大时,底面边长等于4.答案:4【答案】2或7【解析】以为为坐标原点,为x轴建立平面直角坐标系,则.由题意得处理站在以为圆心半径为5的圆A上,同时又在以为圆心半径为的圆C上,两圆的方程分别为和.,解得或.∴垃圾处理站的坐标为或,∴或,即垃圾处理站与村相距或.答案:2或7点睛:解答本题的关键是读懂题意,深刻理解垃圾处理站所在的位置,然后通过合理建立平面直角坐标系,将所求问题转化为求两圆交点的问题,解方程组得到两圆交点坐标后再通过两点间的距离公式求解.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知等比数列的前项和满足,且.(1)求数列的通项公式;(2)设,求数列的前项的和.【答案】(1);(2).【解析】试题分析:(1)由变形得,即,于是可得公比,由此可得通项公式.(2)由(1)得,然后利用错位相减法求和.试题解析:(1)设等比数列的公比为.由,得,即,,∴.(2)由(1)得,,①∴,②①-②得,∴.18. 为了解市高三数学复习备考情况,该市教研机构组织了一次检测考试,并随机抽取了部分高三理科学生数学成绩绘制如图所示的频率分布直方图.(1)根据频率分布直方图,估计该市此次检测理科数学的平均成绩;(精确到个位)(2)研究发现,本次检测的理科数学成绩近似服从正态分布(,约为19.3).按以往的统计数据,理科数学成绩能达到升一本分数要求的同学约占,据此估计本次检测成绩达到升一本的理科数学成绩大约是多少分?(精确到个位)已知市理科考生约有1000名,某理科学生此次检测数学成绩为107分,则该学生全市排名大约是多少名?(说明:表示的概率,用来将非标准正态分布化为标准正态分布,即,从而利用标准正态分布表,求时的概率,这里.相应于的值是指总体取值小于的概率,即.参考数据:,,).【答案】(1)103;(2)①117;②4168名.【解析】试题分析:试题解析:(1)该市此次检测理科数学成绩平均成绩约为:.(2)记本次考试成绩达到升一本的理科数学成绩约为,根据题意,,即.由,得解得,所以本次考试成绩达到升一本的理科数学成绩约为117分.,所以理科数学成绩为107分时,大约排在名.19. 在四棱锥中,平面平面,,,为中点,,.(1)求证:平面平面;(2)求二面角的余弦值.【答案】(1)见解析;(2).【解析】试题分析:(1)由并结合平面几何知识可得.又由及平面平面可得平面,于是得,由线面垂直的判定定理可得平面,进而可得平面平面.(2)根据,建立以为坐标原点的空间直角坐标系,通过求出平面和平面法向量的夹角并结合图形可得所求二面角的余弦值.试题解析:(1)由条件可知,,,,.,且为中点,.∵,,,平面.又平面,.,平面.平面,平面平面.(2)由(1)知,以为坐标原点,建立如图所示的空间直角坐标系,则,,,,∴,,,,设为平面的一个法向量,由,得.令,得.同理可得平面的一个法向量.∴.由图形知二面角为锐角,∴二面角的余弦值为.点睛:用空间向量求解立体几何问题的注意点(1)建立坐标系时要确保条件具备,即要证明得到两两垂直的三条直线,建系后要准确求得所需点的坐标.(2)用平面的法向量求二面角的大小时,要注意向量的夹角与二面角大小间的关系,这点需要通过观察图形来判断二面角是锐角还是钝角,然后作出正确的结论.20. 已知点和动点,以线段为直径的圆内切于圆.(1)求动点的轨迹方程;(2)已知点,,经过点的直线与动点的轨迹交于,两点,求证:直线与直线的斜率之和为定值.【答案】(1);(2)见解析.【解析】试题分析:(1)设以线段为直径的圆的圆心为,取,借助几何知识分析可得动点的轨迹是以为焦点,长轴长为4的椭圆,根据待定系数法可得动点的轨迹方程为.(2)①当直线垂直于轴时,不合题意;②当直线的斜率存在时,设直线的方程为,与椭圆方程联立消元后可得二次方程,根据二次方程根与系数的关系及斜率公式可得,为定值.试题解析:(1)如图,设以线段为直径的圆的圆心为,取.依题意,圆内切于圆,设切点为,则,,三点共线,为的中点,为中点,.,∴动点的轨迹是以为焦点,长轴长为4的椭圆,设其方程为,则,,,,,动点的轨迹方程为.(2)①当直线垂直于轴时,直线的方程为,此时直线与椭圆相切,与题意不符.②当直线的斜率存在时,设直线的方程为.由消去y整理得.∵直线与椭圆交于,两点,∴,解得.设,,则,(定值).点睛:(1)解题时注意圆锥曲线定义的两种应用,一是利用定义求曲线方程,二是根据曲线的定义求曲线上的点满足的条件,并进一步解题.(2)求定值问题常见的方法①从特殊入手,求出定值,再证明这个值与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.21. 已知函数(是自然对数的底数)(1)判断函数极值点的个数,并说明理由;(2)若,,求的取值范围.【答案】(1)见解析;(2).【解析】试题分析:(1)对求导可得,根据的取值,分,,和四种情况讨论函数的单调性,然后得到极值点的个数.(2)由题意可得对恒成立.然后分,和三种情况分别求解,通过分离参数或参数讨论的方法可得的取值范围.试题解析:(1)∵,∴,当时,在上单调递减,在上单调递增,有1个极值点;当时,在上单调递增,在上单调递减,在上单调递增,有2个极值点;当时,在上单调递增,此时没有极值点;当时,在上单调递增,在上单调递减,在上单调递增,有2个极值点;综上可得:当时,有1个极值点;当且时,有2个极值点;当时,没有极值点.(2)由得.①当时,由不等式得,即对在上恒成立.设,则.设,则.,,在上单调递增,,即,在上单调递减,在上单调递增,,.②当时,不等式恒成立,;③当时,由不等式得.设,则.设,则,在上单调递减,.若,则,在上单调递增,.若,,,使得时,,即在上单调递减,,舍去..综上可得,的取值范围是.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程已知过点的直线的参数方程为(为参数),在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线的方程为.(1)求曲线的直角坐标方程;(2)若直线与曲线分别交于点,,且,,成等比数列,求的值.【答案】(1);(2).【解析】试题分析:(1)根据极坐标和直角坐标间的转化公式求解即可.(2)利用直线的参数方程中参数的几何意义并结合一元二次方程根于系数的关系求解.试题解析:(1),,将代入上式可得,∴曲线的直角坐标方程.(2)将代入消去整理得,∵直线与抛物线交于两点,∴,又,∴.设,对应的参数分别为,则.,,成等比数列,,即,,即,解得或(舍去).点睛:利用直线参数方程中参数的几何意义求解问题经过点P(x0,y0),倾斜角为α的直线l的参数方程为(t为参数).若A,B为直线l上两点,其对应的参数分别为,线段AB的中点为M,点M所对应的参数为,则以下结论在解题中经常用到:(1) ;(2) ;(3);(4).23. 选修4-5:不等式选讲已知函数.(1)若不等式的解集为,求实数的值;(2)若,函数的图象与轴围成的三角形的面积大于60,求的取值范围.【答案】(1);(2).【解析】试题分析:(1)解不等式可得且,根据不等式的解集为得到,解得,即为所求.(2)由题意可得函数的图象与轴围成的的三个顶点的坐标为,,,于是,解得,即为所求的范围.试题解析:(1)由题意得解得.可化为,解得.不等式的解集为,,解得,满足..(2)依题意得,.又,∴的图象与轴围成的的三个顶点的坐标为,,,解得.∴实数的取值范围为.。

2018合肥二模数学理,答案

2018合肥二模数学理,答案

高三数学试题(理科)答案 第1 页(共4页)合肥市2018年高三第二次教学质量检测 数学试题(理科)参考答案及评分标准一、选择题:本大题共12小题,每小题5分.题号 1 2 3 4 5 6 7 8 9 1011 12 答案BDCABADCCBCB二、填空题:本大题共4小题,每小题5分.(13)12(14)10 (15)4 (16)2或7三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分) (Ⅰ)设数列{}n a 的公比为q .由54643S S S =+,得655433S S S S -=-,即653a a =,∴3q =, ……………3分 ∴31933n n n a --=⋅=. ……………5分 (Ⅱ)()()121213n n n b n a n -=-⋅=-⋅, ……………6分∴0121133353(21)3n n T n -=⋅+⋅+⋅++-⋅ , ……………8分()()12131333233213n n n T n n -=⋅+⋅++-⋅+-⋅ ,∴()()121212323232132223n n n n T n n --=+⋅+⋅++⋅--⋅=-+-⋅ ,∴()131n n T n =-⋅+. ……………12分(18)(本小题满分12分)(Ⅰ)该市此次检测理科数学平均成绩约为:0650.05750.08850.12950.151050.241150.181250.11350.051450.03μ=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯ 103.2103=≈. ………………5分 (Ⅱ)①记本次考试成绩达到升一本的理科数学成绩约为1x ,根据题意得,()1011103110.4619.3x x P x x μσ--⎛⎫⎛⎫>=-Φ=-Φ= ⎪ ⎪⎝⎭⎝⎭,即11030.5419.3x -⎛⎫Φ= ⎪⎝⎭. 由(0.7054)0.54Φ=得,111030.7054116.611719.3x x -=⇒=≈, 故本次考试成绩达到升一本的理科数学成绩约为117分. ………………8分②()()107103107110.207210.58320.416819.3P x -⎛⎫>=-Φ=-Φ≈-=⎪⎝⎭,故理科数学成绩为107分,大约排在100000.41684168⨯=名.………………12分(19)(本小题满分12分)(Ⅰ)由条件可知,Rt ADC ∆≌Rt BAO ∆,∴DAC ABO ∠=∠, ∴90DAC AOB ABO AOB ∠+∠=∠+∠= ,∴AC BO ⊥.高三数学试题(理科)答案 第2 页(共4页).∵PA PD =,且O 为AD 中点,∴PO AD ⊥.∵PAD ABCD PAD ABCD ADPO AD PO PAD⊥⎧⎪=⎪⎨⊥⎪⎪⊂⎩ 平面平面平面平面平面,∴PO ABCD ⊥平面.又∵AC ABCD ⊂平面,∴AC PO ⊥. 又∵BO PO O = ,∴AC POB ⊥平面.∵AC PAC ⊂平面,∴平面POB ⊥平面PAC . …………5分 (Ⅱ)以O 为原点,建立如图所示的空间直角坐标系.则P (0,0,2),A (1,0,0),D (-1,0,0),C (-1,1,0),()102PA =- ,,,()210AC =- ,,,()102PD =-- ,,, ()0 1 0CD =-,,.设()1x y z =,,n 为平面PAC 的一个法向量,由 1100PA AC ⎧⋅=⎪⎨⋅=⎪⎩ n n 得2020x z x y -=⎧⎨-+=⎩,解得122z xy x⎧=⎪⎨⎪=⎩. 令2x =,则()1241=,,n . 同理可得,平面PDC 的一个法向量()2201=-,,n , ∴二面角A PC D --的平面角θ的余弦值1212cos 35θ⋅===n n n n . …………12分(20)(本小题满分12分)(Ⅰ)如图,设以线段AB 为直径的圆的圆心为C ,取A '(-1,0).依题意,圆C 内切于圆O .设切点为D ,则O C D ,,三点共线. ∵O 为AA '的中点,C 为AB 中点,∴2A B OC '=.∴2222242BA BA OC AC OC CD OD AA ''+=+=+==>=.依椭圆的定义可知,动点B 的轨迹为椭圆,其中: 24 22BA BA a AA c ''+====,,∴21a c ==,,∴2223b a c =-=,∴动点B 的轨迹方程为22143x y +=. ………………5分(Ⅱ)当直线l 垂直于x 轴时,直线l 的方程为2x =,此时直线l 与椭圆22143x y +=相切,与题意不符.当直线l 的斜率存在时,设直线l 的方程为()12y k x +=-.由()2212143y k x x y ⎧+=-⎪⎨+=⎪⎩得()()222243168161680k x k k x k k +-+++-=.高三数学试题(理科)答案 第3 页(共4页)设()()1122M x y N x y ,,,,则2122212168431616843102k k x x k k k x x k k ⎧++=⎪+⎪⎪+-=⎨+⎪⎪∆>⇒<⎪⎩, ∴()()12121212122121112222222PM PN k x k x y y k k k x x x x x x ----⎛⎫+=+=+=-+ ⎪------⎝⎭()()()121212121244222224x x x x k k x x x x x x +-+-=-=----++222221684432232316168168244343k k k k k k k k k k k k ⎛⎫+- ⎪+⎝⎭=-=+-=⎛⎫+-+-+ ⎪++⎝⎭. ……………12分 (21) (本小题满分12分)(Ⅰ)∵()()22x x f x xe ax x e a '=-=-.当0a ≤时,()f x 在() 0-∞,上单调递减,在()0+∞,上单调递增,∴()f x 有1个极值点; 当102a <<时,()f x 在() ln 2a -∞,上单调递增,在()ln 2 0a ,上单调递减,在()0+∞,上单调递增,∴()f x 有2个极值点;当12a =时,()f x 在R 上单调递增,此时()f x 没有极值点; 当12a >时,()f x 在() 0-∞,上单调递增,在()0 ln 2a ,上单调递减,在()ln 2 a +∞,上单调递增,∴()f x 有2个极值点;综上所述,当0a ≤时,()f x 有1个极值点;当102a a >≠且时,()f x 有2个极值点; 当12a =时,()f x 没有极值点. …………………6分 (Ⅱ)由()3x f x e x x +≥+得 320x xe x ax x ---≥.当0x >时,210xe x ax ---≥,即21x e x a x--≤对0x ∀>恒成立.设()21x e x g x x --=,则()()()211xx e x g x x ---'=.()1, '()e 1.0, '()0, ()(0,)()(0)0,x x h x e x h x x h x h x h x h =--=->∴>∴+∞∴>= 设则在上单调递增, 1x e x >+即,∴()g x 在()01,单调递减,在()1+∞,上单调递增,∴()()12g x g e ≥=-,∴2a e ≤-. 当0x =时,不等式恒成立,a R ∈;高三数学试题(理科)答案 第4 页(共4页)当0x <时,210x e x ax ---≤.设()21x h x e x ax =---,则()2x h x e x a '=--. 设()2x x e x a ϕ=--,则()20x x e ϕ'=-<,∴()h x '在()0-∞,上单调递减,∴()()01h x h a '≥'=-. 若1a ≤,则()0h x '≥,∴()h x 在()0-∞,上单调递增,∴()()00h x h <=. 若1a >,∵()010h a '=-<,∴00x ∃<,使得()0 0x x ∈,时,()0h x '<,即()h x 在()0 0x ,上单调递减,∴()()00h x h >=,舍去. ∴1a ≤. 综上可得,a 的取值范围是-∞(,e-2]. ………………12分(22)(本小题满分10分)选修4-4:坐标系与参数方程(Ⅰ)∵22sin cos 0a θρθ-=,∴222sin cos 0a ρθρθ-=,即22x ay =(0a >). …………5分(Ⅱ)将1212x t y ⎧=⎪⎪⎨⎪=-+⎪⎩代入22x ay =,得280t a -+=,得21212()480 8a t t t t a⎧∆=--⋅>⎪⎪+=⎨⎪=⎪⎩①. ∵20, .3a a ∴>>解①得∵ PM MN PN ,,成等比数列,∴2MN PM PN =⋅,即21212t t t t -=, ∴()21212124t t t t t t +-=,即2)400a -=,解得56a =,满足23a >.56a ∴=. ……10分 (23)(本小题满分10分)选修4-5:不等式选讲(Ⅰ)由题意得9039m x m m +≥⎧⎪⎨+≤+⎪⎩①②,解①得m ≥-9.②可化为939m x m m --≤+≤+,∴9233mx --≤≤. ∵不等式()9f x ≤的解集为[]13-,,∴9213m--=-, 解得3m =-,满足m ≥-9. ∴ m =-3. …………5分 (II)依题意得,()321g x x m x =+--.又∵0m >,∴()()2 352132 1.m x m x m g x x m x x m x ⎧⎛⎫---≤- ⎪⎪⎝⎭⎪⎪⎛⎫=+--<<⎨ ⎪⎝⎭⎪⎪++≥⎪⎩,,()g x 的图象与x 轴围成的ABC ∆的三个顶点的坐标为()20A m --,,2 05m B -⎛⎫⎪⎝⎭,,2 233m m C ⎛⎫--- ⎪⎝⎭,,∴()243160215ABCC m S AB y ∆+=⋅=>,解得12m >. ………………10分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
C. (−∞,1)
D. (−∞,3)
(3)命题 p : ∀a ≥ 0 ,关于 x 的方程 x + ax + 1 = 0 有实数解,则 ¬p 为 A. ∃a < 0 ,关于 x 的方程 x 2 + ax + 1 = 0 有实数解 B. ∃a < 0 ,关于 x 的方程 x 2 + ax + 1 = 0 没有实数解 C. ∃a ≥ 0 ,关于 x 的方程 x 2 + ax + 1 = 0 没有实数解 D. ∃a ≥ 0 ,关于 x 的方程 x 2 + ax + 1 = 0 有实数解 (4)在平面直角坐标系中,若角α 的终边经过点 P sin , cos ,则 sin (π + α ) = 3 3 A. −
8 5 7 C. D. 12 12 9 (8)在正方体 ABCD − A1 B1C1 D1 中, E,F,G 分别为棱 CD,CC1,A1 B 1 的中点,用过点 E,F,G 的平面
A.
1 9
B.
截正方体,则位于截面以下部分的几何体的侧(左)视图为
(9)已知函数 f ( x) =
1 − 2x , 实数 a,b 满足不等式 f ( 2a + b ) + f ( 4 − 3b ) > 0 , 则下列不等关系恒成立的是 1 + 2x A. b − a < 2 B. a + 2b > 2 C. b − a > 2 D. a + 2b < 2 uuur uuur x2 y2 (10)已知双曲线 C: 2 − 2 = 1 的左,右焦点分别为 F1,F2 , A,B 是双曲线 C 上的两点,且 AF1 = 3F1 B , a b 3 cos ∠AF2 B = ,则该双曲线的离心率为 5
合肥市 2018 年高三第二次教学质量检测
数学试题(理科)
(考试时间:120 分钟 满分:150 分)
第Ⅰ卷
一、选择题:本大题共 12 小题,每小题 5 分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1)已知复数 z 满足 z ⋅ (1 − 2i ) = i ( i 是虚数单位),则复数 z 在复平面内对应的点在 A.第一象限 B.第二象限 C.第三象限 D.第四象限 (2)已知集合 A = { x −2 < x < 3} ,集合 B = { x | x(−2,3)
1
A. 10
B.
10 2
C.
5 2
D. 5
π π
且 f ( x) 在 ( 0,π ) 上单 (11)已知函数 f ( x ) = 2 sin (ω x + ϕ ) ( ω > 0,0 < ϕ < π ), f = 2,f = 0 , 8 2 调.下列说法正确的是 A. ω =
1 2 5π 5π
B. −
3 2
C.
1 2
D.
3 2
(5)中国古诗词中, 有一道 “八子分绵” 的数学名题: “九百九十六斤绵, 赠分八子做盘缠.次第每人多十七,要将第八数来言”.题意是:把 996 斤绵分给 8 个儿子作盘缠, 按照年龄从大到小的顺序依次分绵, 年龄小 的比年龄大的多 17 斤绵,那么第 8 个儿子分到的绵是 A.174 斤 B.184 斤 C.191 斤 D.201 斤 (6)执行如图所示的程序框图,若输出的结果为1 ,则输入的 x 的值为 A.3 或-2 B.2 或-2 C.3 或-1 D.-2 或-1 或 3 (7)小李从网上购买了一件商品,快递员计划在下午 5︰00-6︰00 之间 送货上门,已知小李下班到家的时间为下午 5︰30-6︰00.快递员到小 李家时,如果小李未到家,则快递员会电话联系小李.若小李能在 10 分钟之内到家, 则快递员等小李回来; 否则, 就将商品存放在快递柜中. 则小李需要去快递柜收取商品的概率为
1 2
B. f − = 8
π
6− 2 2
π C.函数 f ( x) 在 −π , − 上单调递增 2
3π D.函数 y = f ( x ) 的图象关于点 , 0 对称 4
1 2
(12)已知点 I 在 ∆ABC 内部, AI 平分 ∠BAC , ∠IBC = ∠ACI = ∠BAC .对满足上 述条件的所有 ∆ABC ,下列说法正确的是 A. ∆ABC 的三边长一定成等差数列; B. ∆ABC 的三边长一定成等比数列; C. ∆ABI , ∆ACI , ∆CBI 的面积一定成等差数列; D. ∆ABI , ∆ACI , ∆CBI 的面积一定成等比数列.
第Ⅱ卷
本卷包括必考题和选考题两部分.第(13)题—第(21)题为必考题, 每个试题考生都必须作答.第(22)题、 第 (23)题为选考题,考生根据要求作答. 二、填空题:本大题共 4 小题,每小题 5 分.把答案填在答题卡的相应位置. (13)已知两个单位向量 a , b 的夹角为
2 3
r
r
r r r r π ,则 2a + b ⋅ a − b = 3
(
)(
)
. .
(14)在 ( 2 x + 1) ( x − 2 ) 的展开式中, x 2 的系数等于
(15)已知半径为 3cm 的球内有一个内接四棱锥 S − ABCD ,四棱锥 S − ABCD 的侧棱长都相等,底面是正 方形.当四棱锥 S − ABCD 的体积最大时,它的底面边长等于 cm. (16)为保护生态环境,建设美丽乡村,镇政府决定为 A,B,C 三个自然村建造一座垃圾处理站,集中处理 A, B, C 三个自然村的垃圾.受当地条件的限制, 垃圾处理站 M 只能建在与 A 村相距 5km, 且与 C 村相距 31 km 的地方.已知 B 村在 A 村的正东方向,相距 3km;C 村在 B 村的正北方向,相距 3 3 km,则垃圾处理站 M 与 B 村相距 km. 三、解答题:解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分 12 分) 已知等比数列{an } 的前 n 项和Sn 满足 4 S5 = 3S4 + S6 ,且 a3 = 9 . (Ⅰ)求数列{an } 的通项公式 an ; (Ⅱ)设 bn = ( 2n − 1) ⋅ an ,求数列{bn } 的前 n 项的和Tn .
相关文档
最新文档