光谱 玻尔理论

合集下载

第2章 玻尔理论

第2章 玻尔理论

3.光谱 3.光谱 α粒子的大角度散射,肯定了原子核的存在,但核外电 粒子的大角度散射,肯定了原子核的存在, 的大角度散射 子的分布及运动情况仍然是个迷, 子的分布及运动情况仍然是个迷,而光谱是原子结构的反 因此研究原子光谱是揭示这个迷的必由之路。 映,因此研究原子光谱是揭示这个迷的必由之路。 电磁波谱
n = 1, 2 , 3 ....
一个硬性的规定常常是在建立一个新理 论开始时所必须的。 论开始时所必须的。
三、关于氢原子的主要结果
1、量子化轨道半径 电子定态轨道角动量满足量子化条件: 电子定态轨道角动量满足量子化条件: 圆周运动: 圆周运动:
me rn vn = nh
2 vn Ze 2 me = rn 4πε 0 rn2
back next 目录 结束
1 1 1 1 2 ( )A = RA ( 2 − 2 )Z = RA ( m 2 − n 2 ) λ m n ( z ) (Z )
1
对He+,Z=2 ,
( )He+
1
λ
1
1 1 = RA ( m 2 − n 2 ) ( 2 ) (2)
设m=4,则n=5,6,7… 则 …
back
next
目录
结束
毕克林系与巴尔末系的区别 (1)毕克林系的谱线比巴尔末系多; (1)毕克林系的谱线比巴尔末系多; 毕克林系的谱线比巴尔末系多 不同,即使n=k的相应谱线, n=k的相应谱线 (2)RHe+与RH不同,即使n=k的相应谱线,位置 也不同。 也不同。 3.类氢离子公式 3.类氢离子公式
跃迁频率: 跃迁频率:
En − Em ν = h
(3) 角动量量子化假设 为保证定态假设中能量取不连续值, 取不连续值, 为保证定态假设中能量取不连续值,必须 rn 取不连续值, 如何做到? 如何做到?

1.4 玻尔理论

1.4 玻尔理论

n 3.56
13
取整,被激发到
n n3
激发态。
1
氢原子可能辐射的波长是
hc 102.6nm EE hc 656.3nm EE hc 121.6nm EE
3 1 23 3 2 12 2 1
6562.8Å 4861.3Å 4340.5Å 4101.7Å




H∞
图 氢原子光谱(Balmer系)
1 1 R( 2 2 ) 波数 nf ni
1
R 109677 .581 cm
1
Balmer公式与观测结果的惊人符合,引起了光谱学家的注 意。紧接着就有不少人对光谱线波长(数)的规律进行了 大量分析,发现,每一种原子都有它特有的一系列光谱项 T(n),而原子发出的光谱线的波数,总可以表成两个光谱 项之差:
T (m) T (n)
其中m, n是某些整数。 显然,光谱项的数目比光谱线的数目要少得多。
1913年,玻尔首先把量子论应用到原子结构的研究上,使物 质结构理论进入了一个新阶段。 二、 玻尔基本假设 1. 稳定态假设
核外电子在一系列圆形轨道上绕核运动。在轨道上运动时无辐射, 为电子的稳定态,或定态,能量为 E1 E 2 E 3
4. 能级图
eV 0
-0.30 -0.54 -0.85 -151 帕邢系 -3.39
2
E 136eV n
n
6 5 4 3 2
巴尔末系
Rhc E 2 n
n

-13.58
n
n 1
电离能
基态
E 赖曼系 n 1 激发态
n
1
E

E1 136eV

玻尔理论的基本假设现象氢原子光谱是分立线状

玻尔理论的基本假设现象氢原子光谱是分立线状
第四节
原子的能级结构
回顾
19世纪末20世纪初,人类叩开了微观世界
的大门,物理学家根据研究提出了关于原子
结构的各种模型,卢瑟福的核式结构模型能
够很好
盾.
经典电磁理论
经典电磁理论认为:电子绕核作匀速圆周运动, 绕核运动的电子将不断向外辐射电磁波。由于原子 不断地向外辐射能量,能量 v 逐渐减小,电子绕核旋转的频 e F
Em>En 发射光子, Em<En 吸收光子
能级结构猜想
能级:原子内部不连续的能量称为原子的能级。
数值上等于原子在定态时的能量值。 跃迁:原子从一个能级变化到另一个能级的过程。 在跃迁的过程中,原子辐射(或吸收)光子的能 量为:
hv= Em- En
Em和En分别为跃迁前后的能级
(1)处于高能级的原子会自发
由 T ( m ) T ( n ) 知道,氢原子辐射光谱的波长取决 于两光谱项之差;而hv=Em-En式则揭示出氢原子 辐射光的频率取决于两能级之差。 能级与光谱项之间的关系 最先得出氢原子能级表达式的,是丹麦物理学 家玻尔,他在吸取前人思想的基础上,通过大胆假 设,推导出氢原子的能级满足:
在解决核外电子的运动时 成功引入了量子化的观念
同时又应用了“轨 道”等经典概念和 有关牛顿力学规律
除了氢原子光谱外,在解决 其他问题上遇到了很大的困难.
半经典半量子理论,存在逻辑上的缺点,即把微观粒子看成是遵 守经典力学的质点,同时,又赋予它们量子化的特征。
玻尔理论解决了原子的稳定性和 辐射的频率条件问题,把原子结构的 理论向前推进了一步 .
率也逐渐改变,原子的发射光 谱应是连续谱。由于原子总能 量减小,电子将最终逐渐接近 原子核,而使原子变得不稳定。

高中物理氢原子光谱知识点

高中物理氢原子光谱知识点

高中物理氢原子光谱知识点一、氢原子光谱的发现历程。

1. 巴尔末公式。

- 1885年,巴尔末发现氢原子光谱在可见光区的四条谱线的波长可以用一个简单的公式表示。

巴尔末公式为(1)/(λ)=R((1)/(2^2) - (1)/(n^2)),其中λ是谱线的波长,R称为里德伯常量,R = 1.097×10^7m^-1,n = 3,4,5,·s。

- 巴尔末公式的意义在于它反映了氢原子光谱的规律性,表明氢原子光谱的波长不是连续的,而是分立的,这是量子化思想的体现。

2. 里德伯公式。

- 里德伯将巴尔末公式推广到更一般的形式(1)/(λ)=R((1)/(m^2)-(1)/(n^2)),其中m = 1,2,·s,n=m + 1,m + 2,·s。

当m = 1时,对应赖曼系(紫外区);当m = 2时,就是巴尔末系(可见光区);当m = 3时,为帕邢系(红外区)等。

二、氢原子光谱的实验规律与玻尔理论的联系。

1. 玻尔理论对氢原子光谱的解释。

- 玻尔提出了三条假设:定态假设、跃迁假设和轨道量子化假设。

- 根据玻尔理论,氢原子中的电子在不同的定态轨道上运动,当电子从高能级E_n向低能级E_m跃迁时,会发射出频率为ν的光子,满足hν=E_n-E_m。

- 结合氢原子的能级公式E_n=-(13.6)/(n^2)eV(n = 1,2,3,·s),可以推出氢原子光谱的波长公式,从而很好地解释了氢原子光谱的实验规律。

例如,对于巴尔末系,当电子从n(n>2)能级跃迁到n = 2能级时,发射出的光子频率ν满足hν = E_n-E_2,进而可以得到波长与n的关系,与巴尔末公式一致。

2. 氢原子光谱的不连续性与能级量子化。

- 氢原子光谱是分立的线状光谱,这一现象表明氢原子的能量是量子化的。

在经典理论中,电子绕核做圆周运动,由于辐射能量会逐渐靠近原子核,最终坠毁在原子核上,且辐射的能量是连续的,这与实验观察到的氢原子光谱不相符。

15-2康普顿效应,氢原子光谱和玻尔理论

15-2康普顿效应,氢原子光谱和玻尔理论

--
-
--
很快被卢瑟福的粒子散射实验否定!
粒子散射实验:
粒子
原子核 2. 卢瑟福的原子核式模型(1911年)
原子由原子核和核外电子构成,原子核带正电荷,占据整 个原子的极小一部分空间,而电子带负电,绕着原子核转 动,如同行星绕太阳转动一样。 原子核直径的数量级:10-14m,质量占99.95% 原子直径的数量级:10-10m
1 12
1 32
0.975 107
1 1.025107 m
1 2
1.097 107
1 12
1 22
0.975 107
2 1.216107 m
1 3
1.097 107
1 22
1 32
0.152 107
3 6.579107 m
主要内容
康普顿效应的量子解释
康普顿散射公式:
0
h m0c
h
cc
m0c (1 cos ) ( v v0 ) 0
康普顿散射公式:
0
h m0c
1
cos
康普顿波长:
c
h m0c
2.426
310
241012 m
结论: • 波长的改变量 与散射体无关,
• 波长的改变量 与散射角θ有关,散 射角θ 越大,
也越大。
3. 波长的改变量与入射光的波长无关。
vn
-
+ rn
电子轨道半径:rn
0h2 me2
n2
r1n2
n 1,2,3,
玻尔半径:
r1
0h2 me2
5.291011m
rn r1n2 4r1 , 9r1 ,16r1 , n 1, 2, 3,

氢原子光谱玻尔氢原子理论

氢原子光谱玻尔氢原子理论

根据电子绕核作圆周运动的模型及角动量 量子化条件可以计算出氢原子处于各定态时的 电子轨道半径。
玻尔的氢原子理论
rn n2 (m0he22 ),n 1,2,3,
r1 0.5291010m 玻尔 半径
电子处在半径为 rn的轨道上运动时,可以计
算出氢原子系统的能量 En为
En
1 n2
பைடு நூலகம்
(8m0e2h4 2 ), n
● 量子化条件的引进没有适当的理论解释。 ● 对谱线的强度、宽度、偏振等无法处理。
氢原子光谱
例题18-6 在气体放电管中,用能量为12.5eV的电子通 过碰撞使氢原子激发,问受激发的原子向低能级 跃迁时,能发射那些波长的光谱线?
解: 设氢原子全部吸收电子的能量后最高能激发到第n
个能级,此能级的能量为
态跃迁到另一能量为 Ek的定态时,就要发射
或吸收一个频率为 kn 的光子。
kn
En
Ek h
玻尔频率公式
玻尔的氢原子理论
(3)量子化条件 在电子绕核作圆周运动中,
其稳定状态必须满足电子的角动量 L等于 h
的整数倍的条件。
2
L n h , n 1,2,3,
2
n为量子数
角动量量子化条件
3. 氢原子轨道半径和能量的计算
§18-4 氢原子光谱 玻尔的氢原子理论
1. 氢原子光谱的规律性
原子发光是重要的原子现象之一, 光谱学 的数据对物质结构的研究具有重要意义。
氢原子谱线的波长可以用下列经验公式表示:
~
R(
1 k2
1 n2
)
~ 1
k 1,2,3, n k 1, k 2, k 3,
波数
R 1.096776 107 m-1 里德伯常量

氢原子光谱的特征

氢原子光谱的特征

)

1 r 2s in


2 2φ
]
8π2m
Ze2

h2
(E
)Ψ 0 r
(2)
(2)式即为薛定谔方程在球坐标下的形式。经过坐标变换,
三个变量不再同时出现在势能项中。
如果我们把坐标变换作为解薛定谔方程的第一步,那么变量 分离则是第二步。
解薛定谔方程(2)得到的波函数应是 ( r,, )。
1-3 波函数和原子轨道
波函数 的几何图象可以用来表示微观粒子活动的区域。
1926 年,奥地利物理学家薛定谔(Schodinger ) 提出 一个方程,被命名为薛定谔方程。波函数 就是通过解 薛定谔方程得到的。
薛定谔方程
2 x 2

2 y2

2 z 2

82m h2
(E
我们采取坐标变换的方法来解决(或者说简化)这一问题。 将三维直角坐标系变换成球坐标系。
将直角坐标三变量 x,y,z 变换成球坐标三变量 r,, 。
P 为空间一点
r OP 的长度
(0 — )
z
OP 与 z 轴的夹角 ( 0 — )
OP 在 xoy 平面内的投影 OP′
P
与 x 轴的夹角 ( 0 — 2 )

V)

0
(1)
这是一个二阶偏微分方程
式中 波函数 , E 能量 , V 势能 , m 微粒的质量, 圆周率 , h 普朗克常数
,
,

x
y
z
偏微分符号
2 , x 2
2 , y 2
2 z 2
二阶偏微分符号
解二阶偏微分方程将会得到一个什么结果呢 ?

玻尔理论推导氢原子能级公式

玻尔理论推导氢原子能级公式

玻尔理论推导氢原子能级公式
氢原子的能级公式:en=1/n2e1(n=1,2,3,…),其中e1为基态能量。

氢原子能级:原子各个定态对应的能量是不连续的,这些能量值叫做能级。

在氢光谱中,
n=2,3,4,5,…...向n=1光子闪烁构成赖曼线系;
n=3,4,5,6……向n=2跃迁发光形成巴耳末线系;
n=4,5,6,7……向n=3光子闪烁构成帕邢线系;
n=5,6,7,8……向n=4跃迁发光形成布喇开线系,
其中只有巴耳末线系的前4条谱线落到红外线区域内。

能量最低的能级叫做基态,其他能级叫做激发态。

电子“远离”原子核,不再受原子核的吸引力时的状态叫做电离态,电离态的能级为0(电子由基态跃迁到电离态时,吸收的能量最大)。

能级光子首先由波尔(niels bohr)明确提出,但是波尔将宏观规律使用其中,所以除了氢原子的能级光子之外,在对其他繁杂的原子的光子规律的探究中,波尔碰到了非常大的困难。

组成物质的原子中,有不同数量的粒子(电子)分布在不同的能级上,在高能级上的粒子受到某种光子的激发,会从高能级跳到(跃迁)到低能级上,这时将会辐射出与激发它的光相同性质的光。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档