八年级数学上学期期末考试试卷

合集下载

八年级上学期数学《期末检测试卷》及答案解析

八年级上学期数学《期末检测试卷》及答案解析

人 教 版 数 学 八 年 级 上 学 期期 末 测 试 卷一.细心选一选(本大题共10个小题,每小题3分,满分30分.每小题有四个选择支,其中只有一个符合题意,请将序号填入题后的括号中)1. 下列计算正确的是( )A. 0(5)0-=B. 235x x x +=C. 2325()ab a b =D. 22a ·12a a -= 2. 要使分式5x 1-有意义,则x 的取值范围是( ) A. x 1≠ B. x 1> C. x 1< D. x 1≠- 3. 下列等式成立的是( )A. 123a b a b+=+ B.212a b a b =++ C. 2ab a ab b a b =-- D. a a a b a b =--++ 4. 如图,小敏做了一个角平分仪ABCD ,其中AB=AD ,BC=DC ,将仪器上的点A 与∠PRQ 的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A ,C 画一条射线AE ,AE 就是∠PRQ 的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ADC ,这样就有∠QAE=∠PAE .则说明这两个三角形全等的依据是[来( )A. SASB. ASAC. AASD. SSS 5. 若关于x 的分式方程121m x -=-的解为非负数,则m 的取值范围是( ) A. m >-1 B. m ≥-1 C. m >-1且m ≠1 D. m ≥-1且m ≠1 6. 若一个多边形的外角和与它的内角和相等,则这个多边形是( )A. 三角形B. 四边形C. 五边形D. 六边形 7. 如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画了一个与书上完全一样的三角形,那么亮亮画图的依据是( )A. SSSB. SASC. ASAD. AAS8. 如图,地面上有三个洞口A、B、C,老鼠可以从任意一个洞口跑出,猫为能同时最省力地顾及到三个洞口(到A、B、C三个点的距离相等),尽快抓到老鼠,应该蹲守在()A. △ABC三边垂直平分线的交点B. △ABC三条角平分线的交点C. △ABC三条高所在直线的交点D. △ABC三条中线的交点9. 把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是()A. a=2,b=3B. a=-2,b=-3C. a=-2,b=3D. a=2,b=-310. 如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A. AC=BDB. ∠CAB=∠DBAC. ∠C=∠DD. BC=AD二、精心填一填(本大题共10小题,每小题3分,满分30分)11. 某种细胞的直径是0.00000095米,将0.00000095用科学记数法表示为_______________.12. 分解因式234x x--=________________.13. 如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=6,则点P 到BC的距离是_______.14. a ,b 互为倒数,代数式22211()a ab b a b a b++÷++的值为__. 15. 若分式方程211x m x x -=--有增根,则m =________. 16. 若()22316x m x +-+是完全平方式,则m 的值等于_____.17. 如图是一副三角尺拼成图案,则∠AEB=_____度.18. 如图,已知△ABC 为等边三角形,BD 为中线,延长BC 至点E ,使CE=CD=1 ,连接DE ,则BE=________.19. 如果一个多边形的内角和为1260°,那么从这个多边形的一个顶点出发共有________条对角线. 20. 如图,在△ABC 中,∠A=50°,O 是△ABC 内一点,且∠ABO=20°,∠ACO=30°.∠BOC 的度数是_________.三、耐心做一做(本大题共9个小题,满分60分)21. 化简:(1)2()()()2a b a b a b ab ++-+-;(2)2232(2)()a b ab b b a b --÷--.22. 因式分解:(1)22mx my -;(2)(1)(3)1x x --+.23. 先化简:222122(1)1211x x x x x x x x ++-+÷+--+-,然后从22x -<≤的范围内选取一个合适的整数为x 的值代入求值.24. 如图,为了促进当地旅游发展,某地要在三条公路围成的一块平地上修建一个度假村P ,使这个度假村P 到三条公路的距离相等请在图中用直尺和圆规作出P 点.25. (1)已知6x y +=,7xy =,求33x y xy +的值;(2)已知3m x =,2n x =,求32m n x +的值. 26. 已知△ABC ,AB=AC ,将△ABC 沿BC 方向平移到△DCE .(1)如图(1),连接AE ,BD ,求证:AE=BD ;(2)如图(2),点M 为AB 边上一点,过点M 作BC 的平行线MN 分别交边AC ,DC ,DE 于点G ,H ,N ,连接BH ,GE .求证:BH =GE .27. 如图,△ABC 为等腰三角形,AC=BC ,△BDC 和△CAE 分别为等边三角形,AE 与BD 相交于点F ,连接CF 并延长,交AB 于点G .求证:∠ACG=∠BCG .28. 已知:△ACB 和△DCE 都是等腰直角三角形,∠ACB =∠DCE =90°,连接AE ,BD 交于点O ,AE 与DC 交于点M ,BD 与AC 交于点N .(1)如图1,求证:A E=BD;(2)如图2,若AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.29. 某工程队修建一条长1200m的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?答案与解析一.细心选一选(本大题共10个小题,每小题3分,满分30分.每小题有四个选择支,其中只有一个符合题意,请将序号填入题后的括号中)1. 下列计算正确的是( )A. 0(5)0-=B. 235x x x +=C. 2325()ab a b =D. 22a ·12a a -=【答案】D【解析】【分析】直接利用零指数幂、合并同类项、积的乘方、同底数幂的乘除、负整数指数幂的运算法则分别化简进而得出答案.【详解】A 、0(5)1-=,错误,该选项不符合题意; B 、23x x +不能合并,该选项不符合题意;C 、2362()ab a b =,错误,该选项不符合题意;D 、22a ·12a a -=,正确,该选项符合题意;故选:D .【点睛】本题主要考查了负整数指数幂,同底数幂的乘除,积的乘方,合并同类项,零指数幂,正确应用相关运算法则是解题关键.2. 要使分式5x 1-有意义,则x 的取值范围是( ) A. x 1≠B. x 1>C. x 1<D. x 1≠-【答案】A【解析】【分析】根据分式分母不为0的条件进行求解即可.【详解】由题意得x-1≠0,解得:x ≠1,故选A.3. 下列等式成立的是( )A. 123a b a b +=+B. 212a b a b =++C. 2ab a ab b a b =--D. a a a b a b =--++ 【答案】C【解析】【分析】 根据分式的运算,分别对各选项进行运算得到结果,即可做出判断.【详解】A 、221b b a aba +=+,故A 错误; B 、22a b+,分子分母具有相同的因式才可以约分,故B 错误; C 、2()ab ab a ab b b a b a b ==---,故C 正确; D 、a a a b a b=--+-,故D 错误; 故选C .【点睛】本题主要考查了分式的运算,熟悉分式的通分以及约分的重要法则是解决本题的关键.4. 如图,小敏做了一个角平分仪ABCD ,其中AB=AD ,BC=DC ,将仪器上的点A 与∠PRQ 的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A ,C 画一条射线AE ,AE 就是∠PRQ 的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是[来( )A. SASB. ASAC. AASD. SSS【答案】D【解析】 试题解析:在△ADC 和△ABC 中,AD AB DC BC AC AC ⎧⎪⎨⎪⎩===,∴△ADC ≌△ABC (SSS ),∴∠DAC=∠BAC ,即∠QAE=∠PAE .故选D .5. 若关于x 的分式方程121m x -=-的解为非负数,则m 的取值范围是( ) A. m >-1B. m ≥-1C. m >-1且m ≠1D. m ≥-1且m ≠1 【答案】D【解析】【分析】先解关于x 的分式方程,求得x 的值,然后再依据“解是非负数”建立不等式求m 的取值范围.【详解】去分母得,()121m x -=-, ∴12m x +=, ∵方程的解是非负数,∴10m +≥即1m ≥-,又因为10x -≠,∴1x ≠, ∴112m +≠, ∴1m ≠,则m 的取值范围是1m ≥-且1m ≠.故选:D .【点睛】本题考查了分式方程的解,解答本题时,易漏掉1m ≠,这是因为忽略了10x -≠这个隐含的条件而造成的,这应引起同学们的足够重视.6. 若一个多边形的外角和与它的内角和相等,则这个多边形是( )A. 三角形B. 四边形C. 五边形D. 六边形 【答案】B【解析】【分析】任意多边形的外角和为360°,然后利用多边形的内角和公式计算即可.【详解】解:设多边形的边数为n .根据题意得:(n-2)×180°=360°,解得:n=4.故选:B.【点睛】本题主要考查的是多边形的内角和和外角和,掌握任意多边形的外角和为360°和多边形的内角和公式是解题的关键.7. 如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画了一个与书上完全一样的三角形,那么亮亮画图的依据是()A. SSSB. SASC. ASAD. AAS【答案】C【解析】【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【详解】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:C.【点睛】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.8. 如图,地面上有三个洞口A、B、C,老鼠可以从任意一个洞口跑出,猫为能同时最省力地顾及到三个洞口(到A、B、C三个点的距离相等),尽快抓到老鼠,应该蹲守在()A. △ABC三边垂直平分线交点B. △ABC三条角平分线的交点C. △ABC三条高所在直线的交点D. △ABC三条中线的交点【答案】A【解析】【分析】根据题意,知猫应该到三个洞口的距离相等,则此点就是三角形三边垂直平分线的交点.【详解】解:∵三角形三边垂直平分线的交点到三个顶点的距离相等,∴猫应该蹲守在△ABC三边垂直平分线的交点处.故选A.【点睛】本题考查线段垂直平分线的性质,掌握三角形三边垂直平分线的交点到三个顶点的距离相等是本题的解题关键.9. 把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是()A. a=2,b=3B. a=-2,b=-3C. a=-2,b=3D. a=2,b=-3【答案】B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a、b即可.详解:(x+1)(x-3)=x2-3x+x-3=x2-2x-3所以a=2,b=-3,故选B.点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键. 10. 如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A. AC=BDB. ∠CAB=∠DBAC. ∠C=∠DD. BC=AD【答案】A【解析】【分析】根据全等三角形的判定:SAS,AAS,ASA,可得答案.【详解】解:由题意,得∠ABC=∠BAD,AB=BA,A、∠ABC=∠BAD,AB=BA,AC=BD,(SSA)三角形不全等,故A错误;B 、在△ABC 与△BAD 中,ABC BAD AB BA CAB DBA ∠=∠⎧⎪=⎨⎪∠=∠⎩,△ABC ≌△BAD (ASA ),故B 正确;C 、在△ABC 与△BAD 中,C D ABC BAD AB BA ∠=∠⎧⎪∠=∠⎨⎪=⎩,△ABC ≌△BAD (AAS ),故C 正确;D 、在△ABC 与△BAD 中,BC AD ABC BAD AB BA =⎧⎪∠=∠⎨⎪=⎩,△ABC ≌△BAD (SAS ),故D 正确;故选:A .【点睛】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二、精心填一填(本大题共10小题,每小题3分,满分30分)11. 某种细胞的直径是0.00000095米,将0.00000095用科学记数法表示为_______________.【答案】9.5×10-7 【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:将0.00000095米用科学记数法表示为9.5×10-7, 故答案为9.5×10-7. 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.12. 分解因式234x x --=________________.【答案】(4)(1)x x -+【解析】【分析】把-4写成-4×1,又-4+1=-3,所以利用十字相乘法分解因式即可.【详解】∵-4=-4×1,又-4+1=-3∴234(4)(1)x x x x --=-+.故答案为:(4)(1)x x -+【点睛】本题考查了因式分解-十字相乘法,熟练掌握十字相乘的方法是解本题的关键.13. 如图,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠DCB ,AD 过点P ,且与AB 垂直.若AD=6,则点P 到BC 的距离是_______.【答案】3【解析】分析:过点P 作PE ⊥BC 于E ,根据角平分线上的点到角的两边的距离相等,可得PA=PE ,PD=PE ,那么PE=PA=PD ,又AD=6,进而求出PE=3.详解:如图,过点P 作PE ⊥BC 于E ,∵AB ∥CD ,PA ⊥AB ,∴PD ⊥CD ,∵BP 和CP 分别平分∠ABC 和∠DCB ,∴PA=PE ,PD=PE ,∴PE=PA=PD ,∵PA+PD=AD=6,∴PA=PD=3,∴PE=3.故答案为3.点睛:本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质并作辅助线是解题的关键.14. a ,b 互为倒数,代数式22211()a ab b a b a b++÷++的值为__. 【答案】1【解析】对待求值的代数式进行化简,得22211a ab b a b a b ++⎛⎫÷+ ⎪+⎝⎭()2a b a b a b ab ++⎛⎫=÷ ⎪+⎝⎭()ab a b a b =+⋅+ ab =∵a ,b 互为倒数,∴ab =1.∴原式=1.故本题应填写:1.15. 若分式方程211x m x x-=--有增根,则m =________. 【答案】-1【解析】【分析】首先根据分式方程的解法求出x 的值,然后根据增根求出m 的值.【详解】解:解方程可得:x=m+2,根据方程有增根,则x=1,即m+2=1,解得:m=-1.故答案为:-1【点睛】本题考查分式方程的增根,掌握增根的概念是本题的解题关键.16. 若()22316x m x +-+是完全平方式,则m 的值等于_____. 【答案】7或1-【解析】【分析】由222)2(a ab b a b ±+=±,观察积的2倍项的系数特点得2(3)8,2(3)8m m -=-=-可得答案.【详解】解:因为:222)2(a ab b a b ±+=±,所以2(3)8,2(3)8m m -=-=-解得:7m =或1m =-故答案为:7或1-【点睛】本题考查完全平方式的特点,熟练掌握两个完全平方式是解题关键.17. 如图是一副三角尺拼成图案,则∠AEB=_____度.【答案】75º【解析】【分析】根据三角板的特殊角和三角形的内角和是180度求解即可.【详解】由图知, ∠A=60°, ∠ABE=∠ABC-∠DBC=90°-45°=45°,∴∠AEB=180°-(∠A+∠ABE)= 180°-(60°+45°)=75° .故答案为:7518. 如图,已知△ABC 为等边三角形,BD 为中线,延长BC 至点E ,使CE=CD=1 ,连接DE ,则BE=________.【答案】3【解析】【分析】根据等边三角形和三角形中线的定义求出BC=AC=2CD=2,即可求得BE 的长.【详解】∵△ABC为等边三角形,∴AB=BC=AC,∵BD为中线,∴AD=CD,∵CD=CE=1,∴BC=AC=2CD=2,∴BE=BC+CE=2+1=3.故答案为:3.【点睛】本题考查了等边三角形性质,三角形中线的定义等知识点的应用,关键是求出BC=AC=2CD=2.19. 如果一个多边形的内角和为1260°,那么从这个多边形的一个顶点出发共有________条对角线.【答案】6【解析】【分析】设此多边形的边数为x,根据多边形内角和公式求出x的值,再计算对角线的条数即可.【详解】设此多边形的边数为x,由题意得:(x-2)×180=1260,解得;x=9,从这个多边形的一个顶点出发所画的对角线条数:9-3=6,故答案为6.【点睛】本题考查了多边形内角和公式,多边形的对角线,关键是掌握多边形的内角和公式180(n-2),n边形的一个顶点有(n-3)条对角线.20. 如图,在△ABC中,∠A=50°,O是△ABC内一点,且∠ABO=20°,∠ACO=30°.∠BOC的度数是_________.【答案】100°【解析】【分析】延长BO 交AC 于E ,根据三角形内角与外角的性质可得∠1=∠A+∠ABO ,∠BOC=∠ACO+∠1,再代入相应数值进行计算即可.【详解】解:延长BO 交AC 于E ,∵∠A=50°,∠ABO=20°,∴∠1=∠A+∠ABO =50°+20°=70°,∵∠ACO=30°,∴∠BOC=∠1+∠ACO=70°+30°=100°故答案为:100°【点睛】此题主要考查了三角形内角与外角的关系,关键是掌握三角形内角与外角的关系定理. 三、耐心做一做(本大题共9个小题,满分60分)21. 化简:(1)2()()()2a b a b a b ab ++-+-;(2)2232(2)()a b ab b b a b --÷--.【答案】(1)22a ;(2)22b -【解析】【分析】(1)利用完全平方公式和平方差公式展开,合并同类项即可;(2)利用多项式除以单项式进行运算,同时利用完全平方公式展开,合并同类项即可.详解】(1)2()()()2a b a b a b ab ++-+- 2222(2)()2a ab b a b ab =+++--22a =;(2)2232(2)()a b ab b b a b --÷--22222(2)a ab b a ab b =----+222222a ab b a ab b =---+-22b =-.【点睛】本题是整式的混合运算,考查了完全平方公式,平方差公式,多项式除以单项式,熟练掌握整式混合运算的法则是解题的关键.22. 因式分解:(1)22mx my -;(2)(1)(3)1x x --+.【答案】(1)()()m x y x y +-;(2)2(2)x - 【解析】【分析】(1)提公因式m 后,再利用平方差公式继续分解即可;(2)根据多项式乘多项式展开,合并后再利用完全平方公式分解即可.【详解】(1)22mx my - 22()m x y =-()()m x y x y =+-;(2)(1)(3)1x x --+2431x x =-++2(2)x =-.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.23. 先化简:222122(1)1211x x x x x x x x ++-+÷+--+-,然后从22x -<≤的范围内选取一个合适的整数为x 的值代入求值. 【答案】241x x -+,当2x =时,原式=0. 【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时根据除法法则变形,约分得到最简结果,将适合的x 的值代入计算即可求出值.【详解】原式=211(1)2(1)1(1)(1)(1)x x x x x x x x x ++---⋅+-++- =22(1)21(1)1x x x x x x -⋅--++ =2(1)211x x x --++ =241x x -+, ∵满足22x -≤≤的整数有±2,±1,0,而x=±1,0时,原式无意义,∴x=±2,当x=2时,原式=224021⨯-=+,当x=-2时,原式=2(2)4821⨯--=-+. 24. 如图,为了促进当地旅游发展,某地要在三条公路围成的一块平地上修建一个度假村P ,使这个度假村P 到三条公路的距离相等请在图中用直尺和圆规作出P 点.【答案】见解析【解析】【分析】根据角平分线上的点到角两边的距离相等可得度假村的修建位置在∠ABC 和∠BCA 的角平分线的交点处.【详解】如图所示:点P 即为所求.【点睛】本题主要考查了作图的应用,关键是掌握角平分线交点到角两边的距离相等.25. (1)已知6x y +=,7xy =,求33x y xy +的值;(2)已知3m x =,2n x =,求32m n x +的值.【答案】(1)154;(2)108【解析】【分析】(1)原式先提取公因式xy ,再利用完全平方公式变形,然后整体代入计算即可;(2)根据同底数幂的乘法,幂的乘方的运算法则计算即可.【详解】(1)33x y xy +22()xy x y =+2[()2]xy x y xy =+-,当6x y +=,7xy =时,原式=()27627⨯-⨯=154;(2)32m n x +32()()m n x x =⋅当3m x =,2n x =时,原式32()()m n x x =⋅108=.【点睛】本题考查了代数式求值,因式分解的应用,同底数幂的乘法,幂的乘方的性质,熟练掌握运算性质和法则是解题的关键.26. 已知△ABC ,AB=AC ,将△ABC 沿BC 方向平移到△DCE .(1)如图(1),连接AE ,BD ,求证:AE=BD ;(2)如图(2),点M 为AB 边上一点,过点M 作BC 的平行线MN 分别交边AC ,DC ,DE 于点G ,H ,N ,连接BH ,GE .求证:BH =GE .【答案】(1)见解析;(2)见解析【解析】【分析】(1)根据等腰三角形的性质和平移的性质,可得∠ABC=∠ACB=∠DCE=∠DEC,AB=AC=DC=DE,根据全等三角形的判定与性质,可得答案;(2)利用平行线的性质证得CG=CH,根据全等三角形的判定与性质,可得答案.【详解】(1)由平移,知△ABC≌△DCE,∵AB=AC=DC=DE,∴∠ABC=∠ACB=∠DCE=∠DEC,∴∠BCD=∠ECA,∴△ACE≌DCB(SAS),∴AE=BD;(2)∵GH∥BE,∴∠CHG=∠HCE=∠ACB=∠CGH,∴CG=CH,∵∠BCH=∠ECG,BC=CE,∴△BCH≌△ECG(SAS),∴BH=GE.【点睛】本题考查了全等三角形的判定与性质,平移的性质,平行线的性质,等腰三角形的性质,掌握全等三角形的判定与性质是解题的关键.27. 如图,△ABC为等腰三角形,AC=BC,△BDC和△CAE分别为等边三角形,AE与BD相交于点F,连接CF并延长,交AB于点G.求证:∠ACG=∠BCG.【答案】见解析【解析】【分析】根据等边三角形的性质和等腰三角形的性质得出∠FAG=∠FBG,得到FA=FB,推出FC为AB的垂直平分线,根据等腰三角形底边三线合一即可解题.【详解】∵△BDC和△ACE分别为等边三角形,∴∠CAE=∠CBD=60°,∵AC=BC,∴∠CAB=∠CBA,∴∠FAG=∠FBG,∴FA=FB,又∵CA=CB,∴FC为AB的垂直平分线,∴∠ACG=∠BCG.【点睛】本题考查了等边三角形的性质,等腰三角形的性质,线段垂直平分线的判定和性质.掌握等腰三角形底边三线合一的性质是解题的关键.28. 已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD交于点O,AE与DC 交于点M,BD与AC交于点N.(1)如图1,求证:A E=BD;(2)如图2,若AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.【答案】(1)证明见解析;(2)△ACB≌△DCE,△EMC≌△BCN,△AON≌△DOM,△AOB≌△DOE.【解析】【分析】(1)根据全等三角形的性质即可求证△ACE≌△BCD,从而可知AE=BD;(2)根据条件即可判断图中的全等直角三角形.【详解】(1)∵△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,DC=EC,∴∠ACB+∠ACD=∠DCE+∠ACD,∴∠BCD=∠ACE,在△ACE与△BCD中,∵AC=BC,∠ACE=∠BCD,CE=CD,∴△ACE≌△BCD(SAS),∴AE=BD;(2)∵AC=DC,∴AC=CD=EC=CB,△ACB≌△DCE(SAS);由(1)可知:∠AEC=∠BDC,∠EAC=∠DBC,∴∠DOM=90°,∵∠AEC=∠CAE=∠CBD,∴△EMC≌△BCN(ASA),∴CM=CN,∴DM=AN,△AON≌△DOM(AAS),∵DE=AB,AO=DO,∴△AOB≌△DOE(HL).29. 某工程队修建一条长1200m的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?【答案】(1)100;(2)二十.【解析】试题分析:(1)设原计划每天修建道路x米,则实际每天修建道路1.5x米,根据题意,列方程解答即可;(2)由(1)的结论列出方程解答即可.试题解析:解:(1)设原计划每天修建道路x米,可得:1200120041.5x x=+,解得:x=100,经检验x=100是原方程的解.答:原计划每天修建道路100米;(2)设实际平均每天修建道路的工效比原计划增加y%,可得:120012002 100100100%y=++,解得:y=20,经检验y=20是原方程的解.答:实际平均每天修建道路的工效比原计划增加百分之二十.。

黑龙江省牡丹江市2023-2024学年八年级上学期期末考试数学试卷(含解析)

黑龙江省牡丹江市2023-2024学年八年级上学期期末考试数学试卷(含解析)

2023-2024学年黑龙江省牡丹江市八年级(上)期末数学试卷一、单项选择题(本题12个小题,每小题3分,共36分)1.(3分)习近平总书记强调,“垃圾分类工作就是新时尚”.下列垃圾分类标识的图形中,轴对称图形个数是( )A.1个B.2个C.3个D.4个2.(3分)下列运算正确的是( )A.a3•a4=a12B.2b+5a=7abC.(a+b)2=a2+b2D.(a2b3)2=a4b63.(3分)2023年9月9日,上海微电子研发的28nm浸没式光刻机的成功问世,标志着我国在光刻机领域迈出了坚实的一步.已知28nm为0.000000028米,数据0.000000028用科学记数法表示为( )A.2.8×10﹣10B.2.8×10﹣8C.2.8×10﹣6D.2.8×10﹣94.(3分)下列各式,,,,,中,最简分式的个数是( )A.4B.3C.2D.15.(3分)将一把直角三角尺和一把直尺按如图所示的位置放置.若∠1=65°,则∠2等于( )A.145°B.150°C.155°D.160°6.(3分)若分式的值是整数,则满足条件的所有正整数m的和等于( )A.9B.8C.7D.57.(3分)如图,在等腰直角三角形ABC中,AB=AC,∠BAC=90°,∠ABC外角平分线交CA延长线于点D,DE⊥BC,垂足是E,若△ABC周长是8,则线段CD的长为( )A.B.9C.8D.78.(3分)如果x2﹣2(m﹣1)x+5﹣2m是一个完全平方式,则满足条件的整数m的个数是( )A.1B.2C.3D.49.(3分)有两个正方形A,B,现将B放在A的内部,得到图①,将A,B并列放置后构成新的正方形,得到图②.若图①和图②中的阴影面积分别是3和8,则正方形A,B的面积之和是( )A.9B.11C.12D.1510.(3分)某地开展建设绿色家园活动,活动期间,计划每天种植相同数量的树木.该活动开始后,实际每天比原计划多植树20棵,实际植树800棵所需时间与原计划植树600棵所需时间相同.设实际每天植树x 棵,则下列方程正确的是( )A.B.C.D.11.(3分)一组按规律排列的式子:,,,,…,第n个式子是(n为正整数)( )A.B.C.D.12.(3分)在以“长方形的折叠”为主题的数学活动课上,某位同学进行了如下操作:第一步:在长方形纸片ABCD的BC边上取一点E,将△ABE沿AE翻折,使点B落在点B'处,边EB'交AD于点F,第二步:将△ECD沿DE翻折,点C的对应点C′恰好落在线段EB'上.根据以上的操作,若BC=6,C'是EB'的中点,则线段AF的长为( )A.B.3C.D.4二、填空题(本题8个小题,每小题3分,共24分)13.(3分)如图,∠CAB=∠DBA,只需补充一个条件 ,就可以根据“ASA”得到△ABC≌△BAD.14.(3分)若分式的值为0,则m的值为 .15.(3分)如图,在△ABC中,AB=AC=8,∠BAC=150°,点P,Q分别在边AB,BC上,则AQ+PQ的最小值为 .16.(3分)若x m=4,x n=6,则x3m﹣n的值为 .17.(3分)如图,网格内每个小正方形的边长都是1个单位长度,A,B,C,D都是格点,AB与CD相交于点P,则∠A+∠D= .18.(3分)关于x的分式方程的解是非负数,则m的取值范围是 .19.(3分)等腰三角形ABC中,高BD与一腰所夹的锐角是40°,则等腰三角形ABC底角的度数为 .20.(3分)如图,在△ABC中,AB=AC,点D在AC边上,点F在AB边上,过点D作DE⊥BC,垂足是E,∠FED=∠B,4∠FDE﹣∠A=180°.下列结论:①2∠CDE=∠A;②BC=BF+CD;③△DEF是等边三角形;④过点D作DM⊥DE,交AB边于点M,若M是AF的中点,DM=3,则BC=9.其中正确的是 .三、解答题(60分)21.(18分)(1)计算:(﹣1)2024+()﹣2﹣(π﹣3)0;(2)计算:(m﹣n)2﹣2m(m﹣n);(3)因式分解:a2(x﹣y)+4(y﹣x);(4)解分式方程:﹣3=.22.(6分)先化简:,再从﹣2,﹣1,﹣6,中选择一个适合的数x代入求值.23.(7分)如图,在平面直角坐标系中,△ABC的顶点A,B,C在格点上.(1)请在图中作出△ABC关于y轴对称的△A′B′C';(2)写出点B',点C'的坐标,以A',B,C′为顶点的三角是 三角形;(3)点P在图中格点上,若△PBC是等腰三角形,则点P的个数是 .24.(9分)在△ABC中,∠BAC=∠BCA,D是平面内一点,∠DAB=∠ABC=90°,点E在AB边所在直线上,CE⊥BD,垂足是F.(1)当点E在线段AB上时,如图①,求证:AE+AD=BC;(2)当点E在线段BA延长线上时,如图②;当点E在线段AB延长线上时,如图③,请猜想并直接写出线段AE,AD,BC的数量关系;(3)如图③,若BF+CF=6,则S四边形ADFC﹣S△BEF= .25.(10分)2024年是中国农历甲辰龙年.元旦前,某商场进货员预测一种“吉祥龙”挂件能畅销市场,就用6000元购进一批这种“吉祥龙”挂件,面市后果然供不应求,商场又用12800元购进了第二批这种“吉祥龙”挂件,所购数量是第一批购进数量的2倍,但每件的进价贵了4元.(1)该商场购进第一批、第二批“吉祥龙”挂件每件的进价分别是多少元?(2)若两批“吉祥龙”挂件按相同的标价销售,要使两批“吉祥龙”挂件全部售完后获利不低于7300(不考虑其他因素),且最后的50件“吉祥龙”挂件按八折优惠售出,那么每件“吉祥龙”挂件的标价至少是多少元?26.(10分)如图,△ABC在平面直角坐标系中,顶点B(m,0),C(n,0)在x轴上,顶点A在y轴的正半轴上,BD⊥AC,垂足是D,BD交AO于点E,∠AED﹣∠BAO=45°,(m+4)2+(n﹣6)2=0.请解答下列问题:(1)求点B、点C的坐标;(2)求线段AE的长;(3)连接CE.若OE=2,在坐标轴上是否存在点F,使S△ACF=S△ACE?若存在,请直接写出点F的个数和其中一个点F的坐标;若不存在,请说明理由.参考答案与解析一、单项选择题(本题12个小题,每小题3分,共36分)1.(3分)习近平总书记强调,“垃圾分类工作就是新时尚”.下列垃圾分类标识的图形中,轴对称图形个数是( )A.1个B.2个C.3个D.4个【解答】解:左起第一、第四个图形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形.第二、第三这两个图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.故选:B.2.(3分)下列运算正确的是( )A.a3•a4=a12B.2b+5a=7abC.(a+b)2=a2+b2D.(a2b3)2=a4b6【解答】解:A、原式=a7,不符合题意;B、原式不能合并,不符合题意;C、原式=a2+2ab+b2,不符合题意;D、原式=(a2)2•(b3)2=a4b6,符合题意.故选:D.3.(3分)2023年9月9日,上海微电子研发的28nm浸没式光刻机的成功问世,标志着我国在光刻机领域迈出了坚实的一步.已知28nm为0.000000028米,数据0.000000028用科学记数法表示为( )A.2.8×10﹣10B.2.8×10﹣8C.2.8×10﹣6D.2.8×10﹣9【解答】解:0.000000028=2.8×10﹣8.故选:B.4.(3分)下列各式,,,,,中,最简分式的个数是( )A.4B.3C.2D.1【解答】解:==﹣,=5a,=,都不是最简分式,,,是最简分式,故选:B.5.(3分)将一把直角三角尺和一把直尺按如图所示的位置放置.若∠1=65°,则∠2等于( )A.145°B.150°C.155°D.160°【解答】解:∵直尺的两边互相平行,∠1=65°,∴∠3=∠1=65°,∴∠4=∠3=65°,∴∠2=∠4+90°=65°+90°=155°.故选:C.6.(3分)若分式的值是整数,则满足条件的所有正整数m的和等于( )A.9B.8C.7D.5【解答】解:∵分式的值是整数,∴m+1是6的约数,即m+1=1或2或3或6,解得:m=0(舍去)或1或2或5,则满足条件的所有正整数m的和为1+2+5=8.故选:B.7.(3分)如图,在等腰直角三角形ABC中,AB=AC,∠BAC=90°,∠ABC外角平分线交CA延长线于点D,DE⊥BC,垂足是E,若△ABC周长是8,则线段CD的长为( )A.B.9C.8D.7【解答】解:在等腰直角三角形ABC中,AB=AC,∠BAC=90°,设AB=AC=x,则BC=x,∵△ABC周长是8,∴x+x+x=8,∴x=8﹣4,∴AB=AC=8﹣4,BC=(8﹣4)×=8﹣8,∵BD是∠ADE的角平分线,DE⊥BE,AB⊥AD,∴BE=AB=8﹣4,又∵BD=BD,∴Rt△BDE≌Rt△BDA(HL),∴DE=DA,设CD=m,则AD=DE=m﹣8+4,∵S,∴(m﹣8+4)×=(8﹣4)(2m﹣8+4),解得m=8,即CD=8,故选:C.8.(3分)如果x2﹣2(m﹣1)x+5﹣2m是一个完全平方式,则满足条件的整数m的个数是( )A.1B.2C.3D.4【解答】解:∵x2﹣2(m﹣1)x+5﹣2m是一个完全平方式,∴(m﹣1)2=5﹣2m,解得m=±2.故选:B.9.(3分)有两个正方形A,B,现将B放在A的内部,得到图①,将A,B并列放置后构成新的正方形,得到图②.若图①和图②中的阴影面积分别是3和8,则正方形A,B的面积之和是( )A.9B.11C.12D.15【解答】解:设正方形A、B的边长分别是a、b,则正方形A,B的面积之和是a2+b2.根据题意,图①中阴影部分的图形是正方形,边长为(a﹣b),图②中新正方形的边长为(a+b),根据图①和图②中的阴影面积分别是3和8,得,经整理,得,∴a2+b2=11,∴正方形A,B的面积之和是11.故选:B.10.(3分)某地开展建设绿色家园活动,活动期间,计划每天种植相同数量的树木.该活动开始后,实际每天比原计划多植树20棵,实际植树800棵所需时间与原计划植树600棵所需时间相同.设实际每天植树x 棵,则下列方程正确的是( )A.B.C.D.【解答】解:由题意可得:=,故选:B.11.(3分)一组按规律排列的式子:,,,,…,第n个式子是(n为正整数)( )A.B.C.D.【解答】解:∵第奇数个式子的符号为“负”,∴第n个式子的符号可用(﹣1)n表示.∵分母中单项式的系数分别为1,2,3...n,字母a的指数分别是1,2,3...n,∴第n个式子的分母可表示为:na n.∵分子分别是2,5,8,11...(3n﹣1),∴第n个式子的分母是3n﹣1.∴第n个式子为:(﹣1)n.故选:D.12.(3分)在以“长方形的折叠”为主题的数学活动课上,某位同学进行了如下操作:第一步:在长方形纸片ABCD的BC边上取一点E,将△ABE沿AE翻折,使点B落在点B'处,边EB'交AD于点F,第二步:将△ECD沿DE翻折,点C的对应点C′恰好落在线段EB'上.根据以上的操作,若BC=6,C'是EB'的中点,则线段AF的长为( )A.B.3C.D.4【解答】解:∵四边形ABCD是矩形,∴AB=CD,AD=BC=6,∠B=∠C=90°由折叠的性质可得:AB=AB'=CD=C'D,∠B=∠B'=90°=∠C=∠DC'E,BE=B'E,CE=C'E,∵点C'恰好为EB'的中点,∴B'E=2C'E,∴BE=2CE,∴BC=AD=3EC,∴CE=2,BE=4,∵AE2=AB2+BE2,DE2=DC2+CE2,AD2=AE2+DE2,∴AB2+16+8+DC2+4=36,∴AB=CD=2,∵∠B'=∠DC'F=90°,∠AFB'=∠DFC',AB'=C'D=CD=2,∴△AB'F≌△DC'F(AAS),∴AF=DF=AD=3,故选:B.二、填空题(本题8个小题,每小题3分,共24分)13.(3分)如图,∠CAB=∠DBA,只需补充一个条件 AC=BD ,就可以根据“ASA”得到△ABC≌△BAD.【解答】解:补充条件AC=BD.理由:在△ABC和△BAD中,,△ABC≌△BAD(SAS).故答案为:AC=BD.14.(3分)若分式的值为0,则m的值为 1 .【解答】解:由题意得,,解得m=1,故答案为:1.15.(3分)如图,在△ABC中,AB=AC=8,∠BAC=150°,点P,Q分别在边AB,BC上,则AQ+PQ的最小值为 4 .【解答】解:作点A关于直线BC的对称点E,连接EB、AE、PE,作EF⊥AB于点F,∵AB=AC=8,∠BAC=150°,∴∠ABC=∠C=×(180°﹣150°)=15°,∵BC垂直平分AE,∴EB=AB=8,∴∠EBC=∠ABC=15°,∴∠ABE=2∠ABC=30°,∵∠BFE=90°,∴EF=EB=4,∵EQ+PQ≥PE,PE≥EF,且EQ=AQ,∴AQ+PQ≥EF,∴AQ+PQ≥4,∴AQ+PQ的最小值为4,故答案为:4.16.(3分)若x m=4,x n=6,则x3m﹣n的值为 .【解答】解:x3m﹣n=x3m÷x n=43÷6==.故答案为:.17.(3分)如图,网格内每个小正方形的边长都是1个单位长度,A,B,C,D都是格点,AB与CD相交于点P,则∠A+∠D= 135° .【解答】解:如图,过点B作BF∥CD,连接EF,由勾股定理得:BE==,EF=,BF=,∴BE=EF,∵BE2+EF2=BF2,∴∠BEF=90°,∴∠EBF=45°,∴∠APD=∠EBF=45°,∴∠A+∠D=180°﹣45°=135°,故答案为:135°.18.(3分)关于x的分式方程的解是非负数,则m的取值范围是 m≥1且m≠4 .【解答】解:原方程去分母得:m﹣4=x﹣3,解得:x=m﹣1,∵x﹣3≠0,∴x≠3,∴m﹣1≠3,∴m≠4,∵关于x的分式方程的解是非负数,∴x≥0,即m﹣1≥0,解得:m≥1,又∵m≠4,∴m的取值范围是m≥1且m≠4.故答案为:m≥1且m≠4.19.(3分)等腰三角形ABC中,高BD与一腰所夹的锐角是40°,则等腰三角形ABC底角的度数为 50°或65°或25° .【解答】解:依题意有以下两种情况:(1)△ABC为锐角三角形时,此时又有两种情况:①当BD是等腰△ABC底边上的高时,如图1所示:∵BD为等腰三角形底边AC上的高,∴∠ADB=90°,∴∠ABD+∠A=90°,∵高BD与一腰所夹的锐角是40°,∴∠BAD=40°,∴∠A=90°﹣∠BAD=50°;②当BD是等腰△ABC腰上的高时,如图2所示:∵BD为等腰三角形腰AC上的高,∴∠ADB=90°,∴∠A+∠ABD=90°,∵高BD与一腰所夹的锐角是40°,∴∠ABD=40°,∴∠A=90°﹣∠ABD=50°,∵AB=AC,∴∠ABC=∠C=(180°﹣∠A)=(180°﹣50°)=65°.(2)当等腰△ABC为钝角三角形时,则顶角为钝角,此时高BD只能是腰上的高,如图3所示:∵BD为等腰三角形腰AC上的高,∴∠ADB=90°,∴∠DAB+∠ABD=90°,∵高BD与一腰所夹的锐角是40°,∴∠ABD=40°,∴∠DAB=90°﹣∠ABD=50°,∴∠BAC=180°﹣∠DAB=130°,∵AB=AC,∴∠ABC=∠C=(180°﹣∠BAC)=(180°﹣130°)=25°.综上所述:等腰三角形ABC底角的度数为50°或65°或25°.故答案为:50°或65°或25°.20.(3分)如图,在△ABC中,AB=AC,点D在AC边上,点F在AB边上,过点D作DE⊥BC,垂足是E,∠FED=∠B,4∠FDE﹣∠A=180°.下列结论:①2∠CDE=∠A;②BC=BF+CD;③△DEF是等边三角形;④过点D作DM⊥DE,交AB边于点M,若M是AF的中点,DM=3,则BC=9.其中正确的是 ①②④ .【解答】解:①在△ABC中,AB=AC,∴∠B=∠C,∴∠A=180°﹣2∠C,∵DE⊥BC,∠CDE=90°﹣∠C,∴∠CDE=2∠A,故结论①正确;②设∠B=∠C=α,则∠FED=∠B=∠C=α,∴∠A=180°﹣2α,∵4∠FDE﹣∠A=180°,∴4∠FDE﹣(180°﹣2α)=180°,∴∠FDE=90°﹣α,∴∠DFE=180°﹣(FED+∠FDE)=180°﹣(α+90°﹣α)=90°﹣α,∴∠FDE=∠DFE,∴DE=EF,∵DE⊥BC,∴∠CDE+∠C=90°,∠BEF+∠FED=90°,∵∠C=∠FED=α,∴∠CDE=∠BEF,在△CDE和△BEF中,,∴△CDE≌△BEF(AAS),∴CD=BE,CE=BF,∴BC=CE+BE=BF+CD,故结论②正确;③不妨假设△DEF是等边三角形,∴∠FED=60°,∴∠B=∠FED=60°,∴△ABC是等边三角形,根据已知条件,无法判定△ABC是等边三角形,∴假设是错误的.故结论③不正确.④∵DM⊥DE,DE⊥BC,∴DM∥BC,∠MDE=90°,∴∠AMD=∠B,∠ADM=∠C,∠MDF+∠FDE=90°,∵∠B=∠C,∴∠AMD=∠ADM,∴△AMD为等腰三角形,∵△CDE≌△BEF,∴∠DEC=∠EFB=90°,∴∠EFM=90°,即∠MFD+∠EFD=90°,∵∠FDE=∠DFE,∴∠MDF=∠MFD,∴DM=FM=3,∵点M是AF的中点,∴AM=FM=DM=3,∴△AMD为等边三角形,∴∠ADM=∠AMD=∠A=60°,AM=DM=AD=3,∴∠FMD=120°,∴∠MDF=∠MFD=(180°﹣∠FMD)=(180°﹣120°)=30°,∴∠ADF=∠ADM+∠MDF=60°+30°=90°,在Rt△ADF中,AF=AM+FM=6,AD=3,由勾股定理得:FD==,∵∠AMD=∠B=60°,∠ADM=∠C=60°,∴△ABC为等边三角形,∴BC=AB,∵∠FED=∠B=60°,DE=EF,∴△DEF为等边三角形,∴EF=FD=,∵∠EFB=90°,∠B=90°,∴∠BEF=30°,在Rt△BEF中,∠BEF=30°,∴BE=2BF,由勾股定理得:BE2﹣BF2=EF2,即(2BF)2﹣BF2=,∴BF=3,∴AB=AF+BF=6+3=9,∴BC=AB=9.故结论④正确.综上所述:正确的结论是①②④.故答案为:①②④.三、解答题(60分)21.(18分)(1)计算:(﹣1)2024+()﹣2﹣(π﹣3)0;(2)计算:(m﹣n)2﹣2m(m﹣n);(3)因式分解:a2(x﹣y)+4(y﹣x);(4)解分式方程:﹣3=.【解答】解:(1)(﹣1)2024+()﹣2﹣(π﹣3)0=1+9﹣1=9;(2)(m﹣n)2﹣2m(m﹣n)=m2﹣2mn+n2﹣2m2+2mn=n2﹣m2;(3)a2(x﹣y)+4(y﹣x)=a2(x﹣y)﹣4(x﹣y)=(x﹣y)(a2﹣4)=(x﹣y)(a+2)(a﹣2);(4)﹣3=,方程两边都乘x﹣2,得3﹣3(x﹣2)=1﹣x,3﹣3x+6=1﹣x,﹣3x+x=1﹣6﹣3,﹣2x=﹣8,x=4,检验:当x=4时,x﹣2≠0,所以分式方程的解是x=4.22.(6分)先化简:,再从﹣2,﹣1,﹣6,中选择一个适合的数x代入求值.【解答】解:=•===,∵x=﹣1,﹣2时,原分式无意义,∴x可以为﹣6或,当x=﹣6时,原式==2.23.(7分)如图,在平面直角坐标系中,△ABC的顶点A,B,C在格点上.(1)请在图中作出△ABC关于y轴对称的△A′B′C';(2)写出点B',点C'的坐标,以A',B,C′为顶点的三角是 等腰直角 三角形;(3)点P在图中格点上,若△PBC是等腰三角形,则点P的个数是 10个 .【解答】解:(1)如图,△A′B′C'即为所求.(2)由图可得,B'(﹣3,2),C'(﹣2,﹣1).由勾股定理得,A'B==,A'C'==,BC'==,∴A'B=A'C',A'B2+A'C'2=BC'2,∴∠BA'C'=90°,∴△A'BC'为等腰直角三角形.故答案为:等腰直角.(3)如图,点P1,P2,P3,P4,P5,P6,P7,P8,P9,P10均满足题意,∴点P的个数是10个.故答案为:10个.24.(9分)在△ABC中,∠BAC=∠BCA,D是平面内一点,∠DAB=∠ABC=90°,点E在AB边所在直线上,CE⊥BD,垂足是F.(1)当点E在线段AB上时,如图①,求证:AE+AD=BC;(2)当点E在线段BA延长线上时,如图②;当点E在线段AB延长线上时,如图③,请猜想并直接写出线段AE,AD,BC的数量关系;(3)如图③,若BF+CF=6,则S四边形ADFC﹣S△BEF= 18 .【解答】(1)证明:由题意得,△ABC为等腰直角三角形,则AB=BC,∵∠ABD+∠CBF=90°,∠CBF+∠FCB=90°,∴∠ABD=∠BCF,∵∠EBC=∠DBA=90°,AB=BC,∴△EBC≌△DAB(ASA),∴BE=AD,则BC=AB=AE+BE=AE+DA;(2)解:当点E在线段BA延长线上时,BC=AD﹣AE,理由:由(1)同理可得:△EBC≌△DAB(ASA),∴BE=AD,则BC=AB=BE﹣AE=AD﹣AE;当点E在线段AB延长线上时,BC=AE﹣AD,理由:由(1)同理可得:△EBC≌△DAB(ASA),∴BE=AD,则BC=AB=AE﹣BE=AE﹣AD;(3)解:如图③,设EF=a,BF=x,则FC=6﹣x,则BC2=x2+(6﹣x)2,由(1)同理可得:△EBC≌△DAB(ASA),则S△EBC=S△DAB,则S四边形ADFC﹣S△BEF=S△EBC+S△DAB+S△ABC﹣2S△BEF=2S△EBC+S△ABC﹣2S△BEF=(a+6﹣x)x﹣[(6﹣x)2+x2]﹣ax=ax+6x﹣x2+18﹣6x+x2﹣ax=18,故答案为:18.25.(10分)2024年是中国农历甲辰龙年.元旦前,某商场进货员预测一种“吉祥龙”挂件能畅销市场,就用6000元购进一批这种“吉祥龙”挂件,面市后果然供不应求,商场又用12800元购进了第二批这种“吉祥龙”挂件,所购数量是第一批购进数量的2倍,但每件的进价贵了4元.(1)该商场购进第一批、第二批“吉祥龙”挂件每件的进价分别是多少元?(2)若两批“吉祥龙”挂件按相同的标价销售,要使两批“吉祥龙”挂件全部售完后获利不低于7300(不考虑其他因素),且最后的50件“吉祥龙”挂件按八折优惠售出,那么每件“吉祥龙”挂件的标价至少是多少元?【解答】解:(1)设该商场购进第一批“吉祥龙”挂件的进价是x元/件,则第二批“吉祥龙”挂件的进价是(x+4)元,根据题意得:=×2,解得:x=60,经检验,x=60是所列方程的解,且符合题意,∴x+4=60+4=64(元/件).答:该商场购进第一批“吉祥龙”挂件的进价是60元/件,第二批“吉祥龙”挂件的进价是64元;(2)该商场购进第一批“吉祥龙”挂件的数量是6000÷60=100(件),该商场购进第二批“吉祥龙”挂件的数量是12800÷64=200(件).设每件“吉祥龙”挂件的标价是y元,根据题意得:(100+200﹣50)y+50×0.8y﹣6000﹣12800≥7300,解得:y≥90,∴y的最小值为90.答:每件“吉祥龙”挂件的标价至少是90元.26.(10分)如图,△ABC在平面直角坐标系中,顶点B(m,0),C(n,0)在x轴上,顶点A在y轴的正半轴上,BD⊥AC,垂足是D,BD交AO于点E,∠AED﹣∠BAO=45°,(m+4)2+(n﹣6)2=0.请解答下列问题:(1)求点B、点C的坐标;(2)求线段AE的长;(3)连接CE.若OE=2,在坐标轴上是否存在点F,使S△ACF=S△ACE?若存在,请直接写出点F的个数和其中一个点F的坐标;若不存在,请说明理由.【解答】解:(1)∵(m+4)2+(n﹣6)2=0,则m+4=0且n﹣6=0,解得:m=﹣4且n=6,故点B、C的坐标分别为:(﹣4,0)、(6,0);(2)∵BD是△ABC的高,∴BD⊥AC,∴∠BDC=∠BDA=90°,∴∠DAE+∠DEA=90°.∵x轴⊥y轴,∴∠AOB=∠AOC=90°,∴∠DAE+∠ACB=90°,∴∠ACB=∠DEA.∵∠ACB﹣∠BAO=45°,∴∠DEA﹣∠BAO=45°.∵∠DEA﹣∠BAO=∠ABD,∴∠ABD=45°.∵∠BDA=90°,∴∠BAD=90°﹣∠ABD=45°,∴BD=AD.在△DBC和△DAE中,,∴△DBC≌△DAE(AAS),∴AE=BC=6+4=10;(3)由(2)知,AE=10,则点A、E的坐标分别为:(0,12)、(0,2),由点A、C的坐标得,直线AC的表达式为:y=﹣2x+12,∵S△ACF=S△ACE,故取AE的中点N(0,7),过点N作直线n∥AC,取AM=AN,过点M(0,17)作直线m∥AC,则直线m、n和x坐标轴的交点即为点F,故共有4个,为点M、N以及m、n和x轴的交点,∵n∥AC,则直线n的表达式为:y=﹣2x+7,则直线n和坐标轴的交点坐标为:(0,7)、(3.5,0);同理可得直线m和坐标轴的交点坐标为:(0,17)、(8.5,0);综上,符合条件的点F有4个,坐标为:(0,7)或(3.5,0)或(0,17)或(8.5,0).。

八年级上学期期末考试数学试卷(附答案解析)

八年级上学期期末考试数学试卷(附答案解析)

八年级上学期期末考试数学试卷(附答案解析)一、选择题1.下列各式中,无论x取何值,分式都有意义的是()A. xx2+2x+4B. 2x22x+1C. x+1x2D. x2x2.已知△ABC(如图1),按图2图3所示的尺规作图痕迹,(不需借助三角形全等)就能推出四边形ABCD是平行四边形的依据是()A. 两组对边分别平行的四边形是平行四边形B. 对角线互相平分的四边形是平行四边形C. 一组对边平行且相等的四边形是平行四边形D. 两组对边分别相等的四边形是平行四边形3.某中学篮球队12名队员的年龄情况如下:年龄(单位:岁)1415161718人数15321则这个队队员年龄的众数和中位数分别是()A. 15,16B. 15,15C. 15,15.5D. 16,154.若关于x的方程x−1x−2=mx−2+2产生增根,则m的值是()A. 2B. 0C. 1D. −15.如图,在正方形ABCD内,以BC为边作等边三角形BCM,连接AM并延长交CD于N,则下列结论不正确的是()A. ∠DAN =15°B. ∠CMN =45°C. AM =MND. MN =NC6. 如图,在△ABC 中,点M 为BC 的中点,AD 为∠BAN 的平分线,且AD ⊥BD ,若AB =6,AC =9,则MD 的长为( )A. 3B. 92C. 5D. 152 7. 如图,△ABC 中,AD 垂直BC 于点D ,且AD =BC ,BC 上方有一动点P 满足S △PBC =12S △ABC ,则点P 到B 、C 两点距离之和最小时,∠PBC 的度数为( )A. 30°B. 45°C. 60°D. 90°8. 如图,AD ⊥BC ,BD =DC ,点C 在AE 的垂直平分线上,则AB ,AC ,CE 的长度关系为( )A. AB >AC =CEB. AB =AC >CEC. AB >AC >CED. AB =AC =CE 9. 若x 2=y 7=z 5,则x+y−z x 的值是( ) A. 1 B. 2C. 3D. 4 10. 如图,在△ABC 中,∠A =40°,D 点是∠ABC 和∠ACB 角平分线的交点,则∠BDC =( )A. 110°B. 100°C. 90°D. 80°11. 如果把分式2xy x+y 中的x 和y 都扩大3倍,那么分式的值( )A. 扩大3倍B. 缩小3倍C. 缩小6倍D. 不变 12. 已知x 为整数,且分式2x−2x 2−1的值为整数,满足条件的整数x 的个数有( )A. 1个B. 2个C. 3个D. 4个13. 如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,BC =16,F 是线段DE 上一点,连接AF 、CF ,DE =4DF ,若∠AFC =90°,则AC 的长度是( )A. 6B. 8C. 10D. 12二、填空题14.数学老师计算同学们一学期的平均成绩时,将平时、期中和期末的成绩按3:3:4计算,若小红平时、期中和期末的成绩分别是90分、100分、90分,则小红一学期的数学平均成绩是______分.15.如图(1)是长方形纸带,∠DEF=20°,将纸带沿EF折叠图(2)形状,则∠FGD等于______度.16.若a:b=1:3,b:c=2:5,则a:c=______.17.已知点A(a,1)与点B(5,b)关于y轴对称,则ba +ab=______.18.如图,在梯形ABCD中,AD//BC,若AB=AD=DC=3,∠A=120°,则梯形ABCD的周长为______.19.如图,依据尺规作图的痕迹,计算∠α=______°.三、解答题(20.(1)计算:1−x−2yx+y ÷x2−4xy+4y2x2−y2(2)先化简,再求值:(9x+3+x−3)÷(xx2−9),其中x=−2.21.过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=6,AC=10,EC=254,求EF的长.参考答案和解析1.【答案】A【解析】解:A、xx2+2x+4=x(x+1)2+3,(x+1)2≥0,则(x+1)2+3≥3,无论x取何值,分式都有意义,故此选项正确;B、当x=−12时,分式分母=0,分式无意义,故此选项错误;C、x=0时,分式分母=0,分式无意义,故此选项错误;D、x=0时,分式分母=0,分式无意义,故此选项错误;故选:A.2.【答案】B【解析】解:由图可知先作AC的垂直平分线,再连接AC的中点O与B点,并延长使BO=OD,可得:AO=OC,BO=OD,进而得出四边形ABCD是平行四边形,故选:B.3.【答案】C【解析】解:∵这组数据中15出现5次,次数最多,∴众数为15岁,中位数是第6、7个数据的平均数,=15.5岁,∴中位数为15+162故选:C.4.【答案】C【解析】解:分式方程去分母得:x−1=m+2x−4,根据题意得:x−2=0,即x=2,代入整式方程得:2−1=m+4−4,解得:m=1.故选C5.【答案】D【解析】解:作MG⊥BC于G.∵四边形ABCD是正方形,∴BA=BC,∠ABC=∠DAB=°∠DCB=90°∵△MBC是等边三角形,∴MB=MC=BC,∠MBC=∠BMC=60°,∵MG⊥BC,∴BG=GC,∵AB//MG//CD,∴AM=MN,∴∠ABM=30°,∵BA=BM,∴∠MAB=∠BMA=75°,∴∠DAN=90°−75°=15°,∠CMN=180°−75°−60°=45°,故A,B,C正确,故选:D.6.【答案】D【解答】解:延长BD交CA的延长线于E,∵AD为∠BAE的平分线,BD⊥AD,∴BD=DE,AB=AE=6,∴CE=AC+AE=9+6=15,又∵M为△ABC的边BC的中点,∴DM是△BCE的中位线,∴MD=12CE=12×15=7.5.故选:D.7.【答案】B【解析】解:∵S△PBC=12S△ABC,∴P在与BC平行,且到BC的距离为12AD的直线l上,∴l//BC,作点B关于直线l的对称点B′,连接B′C交l于P,如图所示:则BB′⊥l,PB=PB′,此时点P到B、C两点距离之和最小,作PM⊥BC于M,则BB′=2PM=AD,∵AD⊥BC,AD=BC,∴BB′=BC,BB′⊥BC,∴△BB′C是等腰直角三角形,∴∠B′=45°,∵PB=PB′,∴∠PBB′=∠B′=45°,∴∠PBC=90°−45°=45°;故选:B.8.【答案】D【解答】解:∵AD⊥BC,BD=DC,∴AD垂直平分BC,∴AB=AC,又∵点C在AE的垂直平分线上,∴AC=EC,∴AB=AC=CE.故选D.9.【答案】B【解答】解:设x2=y7=z5=k,则x=2k,y=7k,z=5k,把x=2k,y=7k,z=5k代入x+y−zx =2k+7k−5k2k=2,故选B.10.【答案】A【解析】解:∵D点是∠ABC和∠ACB角平分线的交点,∴∠CBD=∠ABD=12∠ABC,∠BCD=∠ACD=12∠ACB,∴∠ABC+∠ACB=180°−40°=140°,∴∠DBC+∠DCB=70°,∴∠BDC=180°−70°=110°,故选:A.11.【答案】A【解析】解:把原分式中的x换成3x,把y换成3y,那么2⋅3x⋅3y 3x+3y =6xyx+y=3×2xyx+y.故选:A.12.【答案】C【解析】解:∵原式=2(x−1)(x+1)(x−1)=2x+1,∴x+1为±1,±2时,2x+1的值为整数,∵x2−1≠0,∴x≠±1,∴x为−2,0,−3,个数有3个.故选:C.13.【答案】D【解析】解:∵D、E分别是AB、AC的中点,BC=8,∴DE=12∵DE=4DF,DE=2,∴DF=14∴EF=DE−DF=6,∵∠AFC=90°,点E是AC的中点,∴AC=2EF=12,故选:D.14.【答案】93【解析】解:根据题意得:90×3+100×3+90×4=93(分),3+3+4答:小红一学期的数学平均成绩是93分;故答案为:93.15.【答案】40【解析】解:根据折叠可知:∠AEG=180°−20°×2=140°,∵AE//BF,∴∠EGB=180°−∠AEG=40°,∴∠FGD=40°.故答案为:40.16.【答案】2:15【解析】解:∵a:b=1:3=2:6,b:c=2:5=6:15,∴a:c=2:15,故答案为:2:1517.【答案】−265【解析】解:∵点A(a,1)与点A′(5,b)关于y轴对称,∴a=−5,b=1,∴ba +ab=−15+(−5)=−265,故答案为:−265.18.【答案】15【解析】解:过点A作AE//CD,交BC于点E,∵AD//BC,∴四边形AECD是平行四边形,∠B=180°−∠BAD=180°−120°=60°,∴AE=CD,CE=AD=3,∵AB=DC,∴△ABE是等边三角形,∴BE=AB=3,∴BC=BE+CE=6,∴梯形ABCD的周长为:AB+BC+CD+AD=15.故答案为:15.首先过点A作AE//CD,交BC于点E,由AB=AD=DC=2,∠A=120°,易证得四边形AECD 是平行四边形,△ABE是等边三角形,继而求得答案.19.【答案】56【分析】本题考查的是作图−基本作图,熟知角平分线及线段垂直平分线的作法是解答此题的关键.先根据矩形的性质得出AD//BC,故可得出∠DAC的度数,由角平分线的定义求出∠EAF的度数,再由EF是线段AC的垂直平分线得出∠AEF的度数,根据三角形内角和定理得出∠AFE的度数,进而可得出结论.【解答】解:∵四边形ABCD是矩形,∴AD//BC,∴∠DAC=∠ACB=68°.∵由作法可知,AF是∠DAC的平分线,∴∠EAF=12∠DAC=34°.∵由作法可知,EF是线段AC的垂直平分线,∴∠AEF=90°,∴∠AFE=90°−34°=56°,∴∠α=56°.故答案为:56.20.【答案】解:(1)原式=1−x−2yx+y ⋅(x+y)(x−y)(x−2y)2=1−x−yx−2y=x−2yx−2y−x−yx−2y=−y2x−y;(2)原式=(9x+3+x2−9x+3)÷x(x+3)(x−3)=x2x+3⋅(x+3)(x−3)x=x(x−3),当x=−2时,原式=(−2)×(−2−3)=10.【解析】(1)根据分式的混合运算顺序和运算法则计算可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.21.【答案】解:(1)∵四边形ABCD是矩形,∴AD//BC,∴∠ACB=∠DAC,∵O是AC的中点,∴AO =CO ,在△AOF 和△COE 中,{∠ACB =∠DACAO =CO ∠AOF =∠COE,∴△AOF ≌△COE(ASA),∴OE =OF ,且AO =CO ,∴四边形AECF 是平行四边形,又∵EF ⊥AC ,∴四边形AECF 是菱形;(2)∵菱形AECF 的面积=EC ×AB =12AC ×EF ,又∵AB =6,AC =10,EC =254, ∴254×6=12×10×EF ,解得EF =152.【解析】(1)由矩形的性质可得∠ACB =∠DAC ,然后利用“ASA ”证明△AOF 和△COE 全等,根据全等三角形对应边相等可得OE =OF ,即可证四边形AECF 是菱形;(2)由菱形的性质可得:菱形AECF 的面积=EC ×AB =12AC ×EF ,进而得到EF 的长.。

八年级上册数学期末考试试卷

八年级上册数学期末考试试卷

八年级上册数学期末考试试卷马上就要八年级数学期末考试了,争取时间就是争取成功,提高效率就是提高分数。

下面是小编为大家精心整理的八年级上册数学期末考试试卷,仅供参考。

八年级上册数学期末考试题一、选择题:本大题10小题,每小题3分,共20分1.如图,图中的图形是常见的安全标记,其中是轴对称图形的是( )A. B. C. D.2.使分式有意义的x的取值范围是( )A.x≤3B.x≥3C.x≠3D.x=33.在△ABC中,∠A:∠B:∠C=3:4:5,则∠C等于( )A.45°B.60°C.75°D.90°4.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的( )A.AB=CDB.EC=BFC.∠A=∠DD.AB=BC5.下列运算正确的是( )A.(3x2)3=9x6B.a6÷a2=a3C.(a+b)2=a2+b2D.22014﹣22013=220136.如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=()A.118°B.119°C.120°D.121°7.化简的结果是( )A. B.a C. D.8.一个多边形的外角和是内角和的,这个多边形的边数为( )A.5B.6C.7D.89.已知a+ =4,则a2+ 的值是( )A.4B.16C.14D.1510.将边长分别为a+b和a﹣b的两个正方形摆放成如图所示的位置,则阴影部分的面积化简后的结果是( )A.a﹣bB.a+bC.2abD.4ab二、填空题:本大题6小题,每小题4分,共24分11.计算:(2a)3= .12.若等腰三角形的周长为26cm,一边为11cm,则腰长为.13.已知10x=m,10y=n,则102x+3y等于.14.如图,Rt△ABC中,∠ACB=90°,∠A=55°,将其折叠,使点A 落在边CB上A′处,折痕为CD,则∠A′DB的度数为.15.如图,已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD,连接DE,则∠BDE=°.16.若分式﹣ =2,则分式 = .三、解答题(一):本大题共3小题,每小题6分,共18分17.分解因式:x2﹣4y2+x﹣2y.18.计算:| ﹣2|+( )﹣2﹣( ﹣2)0.19.如图,在平面直角坐标系中,点A(4,4),B(2,﹣4).(1)若点A关于x轴、y轴的对称点分别是点C、D,请分别描出并写出点C、D的坐标;(2)在y轴上求作一点P,使PA+PB最小(不写作法,保留作图痕迹)四、解答题(二):本大题共3小题,每小题7分,共21分20.如图,AC∥BD,∠C=90°,∠ABC=∠EDB,AC=BE,求证;△ABC≌△EDB.21.已知x﹣3y=0,求•(x﹣y)的值.22.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.五、解答题(三):本大题共3小题,每小题9分,共27分23.在“母亲节”前夕,某花店用16000元购进第一批礼盒鲜花,上市后很快预售一空.根据市场需求情况,该花店又用7500元购进第二批礼盒鲜花.已知第二批所购鲜花的盒数是第一批所购鲜花的,且每盒鲜花的进价比第一批的进价少10元.问第二批鲜花每盒的进价是多少元?24.如图,四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一点,且AM平分∠BAD,DM平分∠ADC.求证:(1)AM⊥DM;(2)M为BC的中点.25.(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE,求∠AEB的度数.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.请求∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.八年级上册数学期末考试试卷参考答案一、选择题:本大题10小题,每小题3分,共20分1.如图,图中的图形是常见的安全标记,其中是轴对称图形的是( )A. B. C. D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对常见的安全标记图形进行判断.【解答】解:A、有一条对称轴,是轴对称图形,符合题意;B、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;C、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;D、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意.故选A.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.使分式有意义的x的取值范围是( )A.x≤3B.x≥3C.x≠3D.x=3【考点】分式有意义的条件.【分析】根据分母为零,分式无意义;分母不为零,分式有意义,可得x﹣3≠0,解可得答案.【解答】解:由题意得:x﹣3≠0,解得:x≠3.故选:C.【点评】此题主要考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.3.在△ABC中,∠A:∠B:∠C=3:4:5,则∠C等于( )A.45°B.60°C.75°D.90°【考点】三角形内角和定理.【分析】首先根据∠A:∠B:∠C=3:4:5,求出∠C的度数占三角形的内角和的几分之几;然后根据分数乘法的意义,用180°乘以∠C 的度数占三角形的内角和的分率,求出∠C等于多少度即可.【解答】解:180°×==75°即∠C等于75°.故选:C.【点评】此题主要考查了三角形的内角和定理,要熟练掌握,解答此题的关键是要明确:三角形的内角和是180°.4.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的( )A.AB=CDB.EC=BFC.∠A=∠DD.AB=BC【考点】全等三角形的判定.【分析】添加条件AB=CD可证明AC=BD,然后再根据AE∥FD,可得∠A=∠D,再利用SAS定理证明△EAC≌△FDB即可.【解答】解:∵AE∥FD,∴∠A=∠D,∵AB=CD,∴AC=BD,在△AEC和△DFB中,,∴△EAC≌△FDB(SAS),故选:A.【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.下列运算正确的是( )A.(3x2)3=9x6B.a6÷a2=a3C.(a+b)2=a2+b2D.22014﹣22013=22013【考点】完全平方公式;有理数的乘方;幂的乘方与积的乘方;同底数幂的除法.【分析】分别根据幂的乘方与积的乘方、同底数幂的除法、完全平方公式等结合选项进行求解,然后选择正确选项.【解答】解:A、(3x2)3=27x6,原式计算错误,故本选项错误;B、a6÷a2=a4,原式计算错误,故本选项错误;C、(a+b)2=a2+2ab+b2,原式计算错误,故本选项错误;D、22014﹣22013=2×22013﹣22013=22013,原式计算正确,故本选项正确.故选D.【点评】本题考查了幂的乘方、同底数幂的除法、完全平方公式等知识,熟记公式以及运算法则是解答本题的关键.6.如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=()A.118°B.119°C.120°D.121°【考点】三角形内角和定理.【分析】由三角形内角和定理得∠ABC+∠ACB=120°,由角平分线的性质得∠CBE+∠BCD=60°,再利用三角形的内角和定理得结果.【解答】解:∵∠A=60°,∴∠ABC+∠ACB=120°,∵BE,CD是∠B、∠C的平分线,∴∠CBE= ∠ABC,∠BCD= ,∴∠CBE+∠BCD= (∠ABC+∠BCA)=60°,∴∠BFC=180°﹣60°=120°,故选:C.【点评】本题主要考查了三角形内角和定理和角平分线的性质,综合运用三角形内角和定理和角平分线的性质是解答此题的关键.7.化简的结果是( )A. B.a C. D.【考点】分式的乘除法.【分析】将原式变形后,约分即可得到结果.【解答】解:原式= =a.故答案选B.【点评】题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.8.一个多边形的外角和是内角和的,这个多边形的边数为( )A.5B.6C.7D.8【考点】多边形内角与外角.【专题】计算题.【分析】根据多边形的外角和为360°及题意,求出这个多边形的内角和,即可确定出多边形的边数.【解答】解:∵一个多边形的外角和是内角和的,且外角和为360°,∴这个多边形的内角和为900°,即(n﹣2)•180°=900°,解得:n=7,则这个多边形的边数是7,故选C.【点评】此题考查了多边形的内角和与外角和,熟练掌握内角和公式及外角和公式是解本题的关键.9.已知a+ =4,则a2+ 的值是( )A.4B.16C.14D.15【考点】完全平方公式;分式的混合运算.【分析】将a+ =4两边平方得,整体代入解答即可.【解答】解:将a+ =4两边平方得,a2+ =16﹣2=14,故选C.【点评】此题考查完全平方公式问题,关键是把原式两边完全平方后整体代入解答.10.将边长分别为a+b和a﹣b的两个正方形摆放成如图所示的位置,则阴影部分的面积化简后的结果是( )A.a﹣bB.a+bC.2abD.4ab【考点】整式的混合运算.【分析】根据图形得出阴影部分的面积为(a+b)2﹣(a﹣b)2,再求出即可.【解答】解:阴影部分的面积为(a+b)2﹣(a﹣b)2=a2+2ab+b2﹣(a2﹣2ab+b2)=4ab,故选D.【点评】本题考查了整式的混合运算的应用,能正确根据题意列出算式是解此题的关键在,注意运算顺序.二、填空题:本大题6小题,每小题4分,共24分11.计算:(2a)3= 8a3 .【考点】幂的乘方与积的乘方.【分析】积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,计算即可.【解答】解:(2a)3=23•a3=8a3.故答案为:8a3.【点评】本题比较容易,考查积的乘方的运算性质:(2a)3=8a3,有的同学对幂的乘方运算不熟练,从而得出错误的答案6a3.12.若等腰三角形的周长为26cm,一边为11cm,则腰长为7.5cm或11cm .【考点】等腰三角形的性质;三角形三边关系.【分析】题中给出了周长和一边长,而没有指明这边是否为腰长,则应该分两种情况进行分析求解.【解答】解:①当11cm为腰长时,则腰长为11cm,底边=26﹣11﹣11=4cm,因为11+4>11,所以能构成三角形;②当11cm为底边时,则腰长=(26﹣11)÷2=7.5cm,因为7.5+7.5>11,所以能构成三角形.故答案为:7.5cm或11cm.【点评】此题主要考查等腰三角形的性质及三角形三边关系的综合运用,关键是利用三角形三边关系进行检验.13.已知10x=m,10y=n,则102x+3y等于m2n3 .【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】先根据同底数幂的乘法进行变形,再根据幂的乘方变形,最后整体代入求出即可.【解答】解:∵10x=m,10y=n,∴102x+3y=102x×103y=(10x)2×(10y)3=m2n3.故答案为:m2n3.【点评】本题考查了同底数幂的乘法,幂的乘方的应用,能灵活运用法则进行变形是解此题的关键,用了整体代入思想.14.如图,Rt△ABC中,∠ACB=90°,∠A=55°,将其折叠,使点A 落在边CB上A′处,折痕为CD,则∠A′DB的度数为20°.【考点】翻折变换(折叠问题).【分析】根据Rt△ABC中,∠ACB=90°,∠A=55°,将其折叠,使点A落在边CB上A′处,折痕为CD,可以得到∠B的度数,得到∠A与∠CA′D的关系,从而可以得到∠A′DB的度数.【解答】解:∵Rt△ABC中,∠ACB=90°,∠A=55°,将其折叠,使点A落在边CB上A′处,折痕为CD,∴∠B=90°﹣∠A=90°﹣55°=35°,∠A=∠CA′D,∵∠CA′D=∠B+∠A′DB,∴55°=35°+∠A′DB,∴∠A′DB=20°.故答案为:20°.【点评】本题考查翻折变换,解题的关键是明确题意,知道翻折后的对应角相等,利用数形结合的思想解答问题.15.如图,已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD,连接DE,则∠BDE=120 °.【考点】等边三角形的性质;等腰三角形的性质.【分析】由△ABC为等边三角形,可求出∠BDC=90°,由△DCE是等腰三角形求出∠CDE=∠CED=30°,即可求出∠B DE的度数.【解答】解:∵△ABC为等边三角形,BD为中线,∴∠BDC=90°,∠ACB=60°∴∠ACE=180°﹣∠ACB=180°﹣60°=120°,∵CE=CD,∴∠CDE=∠CED=30°,∴∠BDE=∠BDC+∠CDE=90°+30°=120°,故答案为:120.【点评】本题主要考查了等边三角形的性质及等腰三角形的性质,解题的关键是熟记等边三角形的性质及等腰三角形的性质.16.若分式﹣ =2,则分式 = .【考点】分式的化简求值.【分析】先根据题意得出x﹣y=﹣2xy,再代入代数式进行计算即可.【解答】解:∵ ﹣ =2,∴ =2,即x﹣y=﹣2xy,∴原式==== .故答案为: .【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.三、解答题(一):本大题共3小题,每小题6分,共18分17.分解因式:x2﹣4y2+x﹣2y.【考点】因式分解-分组分解法;因式分解-运用公式法.【分析】当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中x2﹣4y2符合平方差公式,x﹣2y作为一项可进行下一步分解.【解答】解:x2﹣4y2+x﹣2y,=(x2﹣4y2)+(x﹣2y),=(x+2y)(x﹣2y)+(x﹣2y),=(x﹣2y)(x+2y+1).【点评】本题考查用分组分解法进行因式分解.难点是采用两两分组还是三一分组.比如本题x2﹣4y2符合平方差公式,所以首要考虑的就是两两分组法.18.计算:| ﹣2|+( )﹣2﹣( ﹣2)0.【考点】实数的运算;零指数幂;负整数指数幂.【分析】分别进行绝对值的化简、负整数指数幂、零指数幂等运算,然后合并.【解答】解:原式=2﹣ +4﹣1=5﹣ .【点评】本题考查了实数的运算,涉及了绝对值的化简、负整数指数幂、零指数幂等知识,属于基础题.19.如图,在平面直角坐标系中,点A(4,4),B(2,﹣4).(1)若点A关于x轴、y轴的对称点分别是点C、D,请分别描出并写出点C、D的坐标;(2)在y轴上求作一点P,使PA+PB最小(不写作法,保留作图痕迹)【考点】轴对称-最短路线问题.【分析】(1)利用关于坐标轴对称点坐标关系得出C,D两点坐标即可;(2)连接BD交y轴于点P,P点即为所求.【解答】解:(1)如图所示;C点坐标为;(4,﹣4),D点坐标为:(﹣4,4);(2)连接BD交y轴于点P,P点即为所求;【点评】此题主要考查了关于坐标轴对称点的性质以及轴对称﹣最短路线问题,根据轴对称的性质得出对称点的坐标是解题关键.四、解答题(二):本大题共3小题,每小题7分,共21分20.如图,AC∥BD,∠C=90°,∠ABC=∠EDB,AC=BE,求证;△ABC≌△EDB.【考点】全等三角形的判定.【专题】证明题.【分析】首先根据平行线的性质可得∠ACB+∠CBD=180°,然后可得∠CBD=90°,再利用AAS判定△ABC≌△EDB即可.【解答】证明:∵AC∥BD,∴∠ACB+∠CBD=180°,∵∠C=90°,∴∠CBD=90°,在△ACB和△EBD中,,∴△ABC≌△EDB(AAS).【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.21.已知x﹣3y=0,求•(x﹣y)的值.【考点】分式的化简求值.【专题】计算题.【分析】首先将分式的分母分解因式,然后再约分、化简,最后将x、y的关系式代入化简后的式子中进行计算即可.【解答】解: == ;当x﹣3y=0时,x=3y;原式= .【点评】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.22.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.【考点】三角形的外角性质;三角形内角和定理.【分析】△ABD中,由三角形的外角性质知∠3=2∠2,因此∠4=2∠2,从而可在△BAC中,根据三角形内角和定理求出∠4的度数,进而可在△DAC中,由三角形内角和定理求出∠DAC的度数.【解答】解:设∠1=∠2=x,则∠3=∠4=2x.因为∠BAC=63°,所以∠2+∠4=117°,即x+2x=117°,所以x=39°;所以∠3=∠4=78°,∠DAC=180°﹣∠3﹣∠4=24°.【点评】此题主要考查了三角形的外角性质以及三角形内角和定理的综合应用.五、解答题(三):本大题共3小题,每小题9分,共27分23.在“母亲节”前夕,某花店用16000元购进第一批礼盒鲜花,上市后很快预售一空.根据市场需求情况,该花店又用7500元购进第二批礼盒鲜花.已知第二批所购鲜花的盒数是第一批所购鲜花的,且每盒鲜花的进价比第一批的进价少10元.问第二批鲜花每盒的进价是多少元?【考点】分式方程的应用.【分析】可设第二批鲜花每盒的进价是x元,根据等量关系:第二批所购鲜花的盒数是第一批所购鲜花的,列出方程求解即可.【解答】解:设第二批鲜花每盒的进价是x元,依题意有= × ,解得x=150,经检验:x=150是原方程的解.故第二批鲜花每盒的进价是150元.【点评】考查了分式方程的应用,列方程解应用题的关键是正确确定题目中的相等关系,根据相等关系确定所设的未知数,列方程.24.如图,四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一点,且AM平分∠BAD,DM平分∠ADC.求证:(1)AM⊥DM;(2)M为BC的中点.【考点】角平分线的性质.【专题】证明题.【分析】(1)根据平行线的性质得到∠BAD+∠ADC=180°,根据角平分线的定义得到∠MAD+∠ADM=90°,根据垂直的定义得到答案;(2)作NM⊥AD,根据角平分线的性质得到BM=MN,MN=CM,等量代换得到答案.【解答】解:(1)∵AB∥CD,∴∠BAD+∠ADC=180°,∵AM平分∠BAD,DM平分∠ADC,∴2∠MAD+2∠ADM=180°,∴∠MAD+∠ADM=90°,∴∠AMD=90°,即AM⊥DM;(2)作NM⊥AD交AD于N,∵∠B=90°,AB∥CD,∴BM⊥AB,CM⊥CD,∵AM平分∠BAD,DM平分∠ADC,∴BM=MN,MN=CM,∴BM=CM,即M为BC的中点.【点评】本题考查的是角平分线的性质,掌握平行线的性质和角的平分线上的点到角的两边的距离相等是解题的关键.25.(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE,求∠AEB的度数.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.请求∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)先证出∠ACD=∠BCE,那么△ACD≌△BCE,根据全等三角形证出∠ADC=∠BEC,求出∠ADC=120°,得出∠BEC=120°,从而证出∠AEB=60°;(2)证明△ACD≌△BCE,得出∠ADC=∠BEC,最后证出DM=ME=CM即可.【解答】解:(1)∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=60°﹣∠CDB=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°,∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.(2)∠AEB=90°,AE=BE+2CM.理由:∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°,∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.【点评】此题考查了全等三角形的判定与性质和等腰三角形的判定与性质以及等腰三角形的性质;证明三角形全等是解决问题的关键.。

人教版八年级上学期期末考试数学试卷(附带答案)精选全文

人教版八年级上学期期末考试数学试卷(附带答案)精选全文

精选全文完整版(可编辑修改)人教版八年级上学期期末考试数学试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.2.(4分)下列式子中是分式的是()A.B.C.D.3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y24.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.245.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣16.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±118.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣19.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.810.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时;③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:.以上结论正确的个数有()个.A.4 B.3 C.2 D.1二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是.13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=.14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为.15.(4分)已知,则代数式的值为.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于.18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是.若将N 的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).20.(8分)解方程:(1);(2).21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣1522.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是;B对应的扇形圆心角的度数是;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴同理可得:DC=DF∴AB+CD=即AB+CD=AD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.参考答案一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.【答案】C2.(4分)下列式子中是分式的是()A.B.C.D.【答案】B3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y2【答案】B4.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.24【答案】C5.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣1【答案】D6.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°【答案】D7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±11【答案】B8.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣1【答案】D9.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.8【答案】D10.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:以上结论正确的个数有()个.A.4 B.3 C.2 D.1【答案】B二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.【答案】见试题解答内容12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是9.【答案】见试题解答内容13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=8.【答案】见试题解答内容14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为﹣.【答案】见试题解答内容15.(4分)已知,则代数式的值为﹣2.【答案】﹣2.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为2【答案】见试题解答内容17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于20.【答案】见试题解答内容18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是4311.若将N的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是2729.【答案】4311;3331.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).【答案】16x2-14x-9;20.(8分)解方程:(1);(2).【答案】(1)x=4;(2)无解.21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣15【答案】(m-2)(x+y)(x-y);(x+5)(x-3).22.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.【答案】见试题解答内容23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了50名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是10;B对应的扇形圆心角的度数是108°;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?【答案】(1)50;(3)10,108°;(4)估计此次测试成绩优秀(45≤x≤50)的学生共有800人.24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴①(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴③同理可得:DC=DF∴AB+CD=④即AB+CD=AD.【答案】①EB=EF,②AE=AE③.AB=AF,④AF+FD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.【答案】(1)“红色教育”的订购单价是14元,“传统文化”经典读本的单价是10元;(2)12400元26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.【答案】(1)A(0,4),B(﹣6,0);(2)D(0,﹣4);(3)(﹣8,﹣8).27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.【答案】(1)a2;(3).。

八年级上学期期末考试数学试卷(含答案)

八年级上学期期末考试数学试卷(含答案)

八年级上学期期末考试数学试卷(含答案)(满分:120分考试时长:120分钟)一、选择题(本大题共10小题,共30分)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.已知点P(a,3+a)在第二象限,则a的取值范围是()A.a<0B.a>﹣3C.﹣3<a<0D.a<﹣33.如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b <2x的解集为()A.x>0B.0<x<1C.1<x<2D.x>24.关于一次函数y=﹣2x+b(b为常数),下列说法正确的是()A.y随x的增大而增大B.当b=4时,直线与坐标轴围成的面积是4C.图象一定过第一、三象限D.与直线y=3﹣2x相交于第四象限内一点5.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2B.a=﹣3,b=2C.a=3,b=﹣1D.a=﹣1,b=36.设三角形三边之长分别为3,8,1﹣2a,则a的取值范围为()A.3<a<6B.﹣5<a<﹣2C.﹣2<a<5D.a<﹣5或a>27.在下列条件中:①∠A=∠C﹣∠B,②∠A:∠B:∠C=2:3:5,③∠A=90°﹣∠B,④∠B﹣∠C =90°中,能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个8.如图,O是△ABC内一点,且O到三边AB、BC、CA的距离OF=OD=OE,若∠BAC=70°,则∠BOC的度数为()A.70°B.120°C.125°D.130°9.如图所示的平面直角坐标系中,点A坐标为(4,2),点B坐标为(1,﹣3),在y轴上有一点P使P A+PB 的值最小,则点P坐标为()A.(2,0)B.(﹣2,0)C.(0,2)D.(0,﹣2)10.已知,如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于点P,下列说法:①∠APE =∠C,②AQ=BQ,③BP=2PQ,④AE+BD=AB,其正确的个数有()个.A.1B.2C.3D.4二、填空题(本大题共6小题,共24分)11.函数l1:y1=﹣2x+4与l2:y2=﹣x﹣1的图象如图所示,l1交x轴于点A,现将直线l2平移使得其经过点A,则l2经过平移后的直线与y轴的交点坐标为.12.如图,已知,在△ABC中,∠C=90°,BE平分∠ABC,且BE∥AD,∠BAD=20°,则∠AEB=°.13.如图,△ABC中,DE是AB的垂直平分线,交BC于D,交AB于E,已知AE=1cm,△ACD的周长为12cm,则△ABC的周长是cm.14.若函数y=kx﹣b的图象如图所示,则关于x的不等式k(x﹣2)﹣b>0的解集为.15.如图,已知△ABC的面积为18,BP平分∠ABC,且AP⊥BP于点P,则△BPC的面积是.16.在学校,每一位同学都对应着一个学籍号.在数学中也有一些对应.现定义一种对应关系f,使得数对(x,y)和数z是对应的,此时把这种关系记作:f(x,y)=z.对于任意的数m,n(m>n),对应关系f由如表给出:(x,y)(n,n)(m,n)(n,m)f(x,y)n m﹣n m+n如:f(1,2)=2+1=3,f(2,1)=2﹣1=1,f(﹣1,﹣1)=﹣1,则使等式f(1+2x,3x)=2成立的x的值是.三、解答题(本大题共7小题,共66分)17.已知一次函数图象经过(3,5)和(﹣4,﹣9)两点(1)求此一次函数的解析式;(2)若点(m,2)在函数图象上,求m的值.18.△ABC的三个顶点的坐标分别为A(0,﹣2),B(4,﹣3),C(2,1).(1)在所给的平面直角坐标系中画出△ABC.(2)以y轴为对称轴,作△ABC的轴对称图形△A′B′C′,并写出B′的坐标.19.已知:如图,AD是∠BAC的平分线,∠B=∠EAC,ED⊥AD于D.求证:DE平分∠AEB.20.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠F AE的度数.21.某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价分别是多少?(2)设每月用水量为x吨(x>14),应交水费为y元,请写出y与x之间的函数关系式;22.如图(1),AB=7cm,AC⊥AB,BD⊥AB垂足分别为A、B,AC=5cm.点P在线段AB上以2cm/s的速度由点A向点B运动,同时点Q在射线BD上运动.它们运动的时间为t(s)(当点P运动结束时,点Q运动随之结束).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图(2),若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,点Q的运动速度为xcm/s,其它条件不变,当点P、Q运动到何处时有△ACP与△BPQ全等,求出相应的x的值.23.快车和慢车分别从A市和B市两地同时出发,匀速行驶,先相向而行,慢车到达A市后停止行驶,快车到达B市后,立即按原路原速度返回A市(调头时间忽略不计),结果与慢车同时到达A市.快、慢两车距B市的路程y1、y2(单位:km)与出发时间x(单位:h)之间的函数图象如图所示.(1)A市和B市之间的路程是km;(2)求a的值,并解释图中点M的横坐标、纵坐标的实际意义;(3)快车与慢车迎面相遇以后,再经过多长时间两车相距20km?参考答案与试题解析1-5.A CCBB 6-10.B CCDC11.(0,1)12.110 13.1414.x<4 15.9 16.﹣117.解:(1)设一次函数的解析式为y=kx+b,则有,解得:,∴一次函数的解析式为y=2x﹣1;(2)∵点(m,2)在一次函数y=2x﹣1图象上∴2m﹣1=2,∴m=.18.解:(1)如图所示,△ABC即为所求.(2)如图所示,△A′B′C′即为所求,点B′的坐标为(﹣4,﹣3).19.证明:延长AD交BC于F,∵AD是∠BAC的平分线,∴∠BAD=∠CAD,∵∠DFE=∠B+∠BAD,∠DAE=∠EAC+∠CAD,∵∠B=∠EAC,∴∠DFE=∠DAE,∴AE=FE,∵ED⊥AD,∴ED平分∠AEB.20.证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CF A=90°,∴∠CAF=45°,∴∠F AE=∠F AC+∠CAE=45°+90°=135°.21.解:(1)设每吨水的政府补贴优惠价为m元,市场调节价为n元.,解得:,答:每吨水的政府补贴优惠价2元,市场调节价为3.5元.(2)当x>14时,y=14×2+(x﹣14)×3.5=3.5x﹣21,22.解:(1)△ACP≌△BPQ,PC⊥PQ.理由如下:∵AC⊥AB,BD⊥AB,∴∠A=∠B=90°,∵AP=BQ=2,∴BP=5,∴BP=AC,在△ACP和△BPQ中,∴△ACP≌△BPQ(SAS);∴∠C=∠BPQ,∵∠C+∠APC=90°,∴∠APC+∠BPQ=90°,∴∠CPQ=90°,∴PC⊥PQ;(2)①若△ACP≌△BPQ,则AC=BP,AP=BQ,可得:5=7﹣2t,2t=xt解得:x=2,t=1;②若△ACP≌△BQP,则AC=BQ,AP=BP,可得:5=xt,2t=7﹣2t解得:x=,t=.综上所述,当△ACP与△BPQ全等时x的值为2或.23.解:(1)由图可知,A市和B市之间的路程是360km.(2)根据题意可知快车速度是慢车速度的2倍,设慢车速度为x km/h,则快车速度为2x km/h,2(x+2x)=360,解得,x=602×60=120,则a=120,点M的横坐标、纵坐标的实际意义是两车出发2小时时,在距B市120km处相遇.(3)快车速度为120 km/h,到达B市的时间为360÷120=3(h),方法一:当0≤x≤3时,y1=﹣120x+360,当3<x≤6时,y1=120x﹣360,y2=60x,当0≤x≤3时,y2﹣y1=20,即60x﹣(﹣120x+360)=20,解得,x=,﹣2=,当3<x≤6时,y2﹣y1=20,即60x﹣(120x﹣360)=20,解得,x=,﹣2=,所以,快车与慢车迎面相遇以后,再经过或h两车相距20km.方法二:设快车与慢车迎面相遇以后,再经过t h两车相距20 km,当0≤t≤3时,60t+120t=20,解得,t=;当3<t≤6时,60(t+2)﹣20=120(t+2)﹣360,解得,t=.所以,快车与慢车迎面相遇以后,再经过或h两车相距20 km.。

人教版八年级上册数学期末考试试卷及答案

人教版八年级上册数学期末考试试题一、单选题1.下列计算正确的是()A .a 2•a 3=a 6B .2ab+3ab =5a 2b 2C .a 8÷a 4=a 2D .(a 3)2=a 62.到三角形三条边距离相等的点是此三角形()A .三条角平分线的交点B .三条中线的交点C .三条高的交点D .三边中垂线的交点3.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC 的大小为()A .140°B .160°C .170°D .150°4.如图,在△ABC 中,已知点D ,E ,F 分别为BC ,AD ,AE 的中点,且S △ABC =12cm 2,则阴影部分面积S =()cm 2.A .1B .2C .3D .45.如图,在边长为a 的正方形中挖掉一个边长为b 的小正方形()a b >,把余下的部分剪成一个矩形,通过计算两个图形(阴影部分)的面积,验证了一个等式是()A .22()()a b a b a b -=+-B .222()2a b a ab b +=++C .222()2a b a ab b -=-+D .22(2)()2a b a b a ab b +-=+-6.202020214(0.25)-⨯的值为()A .4B .4-C .0.25D .0.25-7.若2x y +=,1xy =-,则()()1212x y --的值是()A .7-B .3-C .1D .98.如图,在△ABC 中,BC=10,CD 是∠ACB 的平分线.若P ,Q 分别是CD 和AC 上的动点,且△ABC 的面积为24,则PA+PQ 的最小值是()A .125B .4C .245D .59.已知,,a b c 满足22227,-21,617a b b c c a +==--=-,则a b c +-的值为()A .1B .-5C .-6D .-710.如图,△ABC 中,P 、Q 分别是BC 、AC 上的点,作PR ⊥AB ,PS ⊥AC ,垂足分别是R 、S ,若AQ=PQ ,PR=PS ,下面四个结论:①AS=AR ;②QP ∥AR ;③△BRP ≌△QSP ;④AP 垂直平分RS ,其中正确结论的序号是()A .①②B .①②③C .①②④D .①②③④二、填空题11.因式分解:225x y y -=______.12.am =6,an =3,则am﹣2n =__.13.如图,△ABC ≌△DBC ,∠A =45°,∠DCB =43°,则∠ABC =______.14.如图,ABC 的三边AB BC CA 、、的长分别为405060、、,其三条角平分线交于点O ,则::ABOBCO CAOS S S =______.15.一位工人师傅加工1500个零件后,把工作效率提高到原来的2.5倍,因此再加工1500个零件时,较前提早了18个小时完工,问这位工人师傅提高工作效率的前后每小时各加工多少个零件?设提高工作效率前每小时加工x 个零件,则根据题意可列方程为________.16.若x 4y 1+=,则xy 的最大值为_____.17.如图,已知△ABC 的面积为1,分别倍长(延长一倍)边AB ,BC ,CA 得到△A 1B 1C 1,再分别倍长边A 1B 1,B 1C 1,C 1A 1得到△A 2B 2C 2…按此规律,倍长2021次后得到的△A 2021B 2021C 2021的面积为_________.18.如图,△ABC ≌△ADE ,∠B=70°,∠C=30°,∠DAC=20°,则∠EAC 的度数为______.19.如图,在ABC ∆中,AB 的垂直平分线交AB 于E ,交BC 于D ,连结AD .若4AC cm =,ADC ∆的周长为11cm ,则BC 的长为__________cm .三、解答题20.解分式方程:21133x x+=--21.化简求值:2(2)(1)(1)a a a +-+-,其中3=2a 22.先化简,再求值:22241---÷+a a a a a请从-2,-1,0,1,2中选择一个合适的数,求此分式的值.23.如图所示,在△ABC 中,AD ⊥BC 于D ,CE ⊥AB 于E ,AD 与CE 交于点F ,且AD=CD ,(1)求证:△ABD ≌△CFD ;(2)已知BC=7,AD=5,求AF 的长.24.先阅读下列材料,再解答下列问题:材料:因式分解:(x+y )2+2(x+y )+1.解:将“x+y”看成整体,令x+y=A ,则原式=A 2+2A+1=(A+1)2.再将“A”还原,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请解答下列问题:(1)因式分解:1+2(2x-3y )+(2x-3y )2.(2)因式分解:(a+b )(a+b-4)+4;25.在汕头市“创文”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了a 天完成,乙做另一部分用了y 天完成.若乙工程队还有其它工作任务,最多只能做52天.求甲工程队至少应做多少天?26.如图,在ABC 中,AB AD DC ==,26BAD ∠=︒,求B Ð和C ∠的度数.27.已知△ABC 为等边三角形,点D 为直线BC 上一动点(点D 不与点B ,点C 重合).以AD 为边作等边三角形ADE ,连接CE .(1)如图1,当点D 在边BC 上时.①求证:△ABD ≌△ACE ;②直接判断结论BC=DC+CE 是否成立(不需证明);(2)如图2,当点D 在边BC 的延长线上时,其他条件不变,请写出BC ,DC ,CE 之间存在的数量关系,并写出证明过程.28.如图1,射线OP平分∠MON,在射线OM,ON上分别截取线段OA,OB,使OA=OB,在射线OP上任取一点D,连接AD,BD.易得:AD=BD.(1)如图2,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,求证:BC=AC+AD;(2)如图3,在四边形ABDE中,AB=10,DE=2,BD=6,C为BD边中点.若AC平分∠BAE,EC平分∠AED,∠ACE=120°,求AE的值.参考答案1.D【分析】利用合并同类项的法则,幂的乘方的法则,同底数幂的乘法的法则,同底数幂的除法的法则对各项进行运算即可.【详解】解:A、a2•a3=a5,故该选项不符合题意;B、2ab+3ab=5ab,故该选项不符合题意;C、a8÷a4=a4,故该选项不符合题意;D、(a3)2=a6,故该选项符合题意;故选:D.【点睛】本题主要考查了合并同类项,幂的乘方,同底数幂的乘法,同底数幂的除法,解答的关键对相应的运算法则的掌握.2.A【分析】根据角平分线的性质进行解答即可.【详解】解: 角平分线上任意一点,到角两边的距离相等,到三角形三条边距离相等的点是三角形三个内角的平分线的交点,故选:A.3.B【详解】解:根据∠AOD=20°可得:∠AOC=70°,根据题意可得:∠BOC=∠AOB+∠AOC=90°+70°=160°.故选B.4.C【分析】根据三角形面积公式由点D为BC的中点得到S△ABD=S△ADC=12S△ABC=6,同理得到S△EBD=S△EDC=12S△ABD=3,则S△BEC=6,然后再由点F为EC的中点得到S△BEF=12S△BEC=3.【详解】解:∵点D为BC的中点,∴S△ABD=S△ADC=12S△ABC=6,∵点E为AD的中点,∴S△EBD =S△EDC=12S△ABD=3,∴S△EBC=S△EBD+S△EDC=6,∵点F为EC的中点,∴S△BEF =12S△BEC=3,即阴影部分的面积为3cm2.故选:C.【点睛】本题考查三角形的中线有关的面积计算问题.三角形的一条中线把原三角形分成两个等底同高的三角形,因此分得的两个三角形面积相等,利用这一特点可以求解有关的面积问题.5.A【分析】左图中阴影部分的面积=a2−b2,右图中矩形面积=(a+b)(a−b),根据二者面积相等,即可解答.【详解】解:由题意可得:a2−b2=(a−b)(a+b).故选:A.【点睛】此题主要考查了乘法的平方差公式,属于基础题型.6.D【分析】直接利用积的乘方把式子变形计算即可.【详解】202020214(0.25)-⨯=202020204(0.25)(0.25)⨯⨯--=20202020[4(0.25)2)](0.5--⨯⨯=2020[4(0.25)(0.25)]⨯⨯--=2020(1)(0.25)⨯--=1(0.25)-⨯=0.25-故选:D 7.A【分析】利用多项式乘以多项式法则计算,整理后将已知等式代入计算即可求出值.【详解】解:∵x+y=2,xy=-1,∴(1-2x )(1-2y )=1-2y-2x+4xy=1-2(x+y )+4xy=1-2×2-4=-7;故选:A .【点睛】本题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.8.C【分析】过点A 作AG ⊥BC 交于G ,交CD 于P 点,过点P 作PQ ⊥AC 交于Q 点,当A 、P 、G 三点共线时,AP+PQ 的值最小,求出AG 的长即为所求.【详解】解:过点A 作AG ⊥BC 交于G ,交CD 于P 点,过点P 作PQ ⊥AC 交于Q 点,∵CD 是∠ACB 的平分线,∴PG=PQ ,∴PA+PQ=AP+PG≥AG ,∴当A 、P 、G 三点共线时,AP+PQ 的值最小,∵BC=10,△ABC 的面积为24,∴AG=245,∴AP+PQ 的最小值为245,故选:C .9.A【详解】解:∵22227,-21,617a b b c c a +==--=-,∴(a 2+2b )+(b 2-2c )+(c 2-6a )=7+(-1)+(-17),∴a 2+2b+b 2-2c+c 2-6a=-11∴(a 2-6a+9)+(b 2+2b+1)+(c 2-2c+1)=0,∴(a-3)2+(b+1)2+(c-1)2=0∴a-3=0,b+1=0,c-1=0,∴a+b-c=3-1-1=1.故选:A .10.C【分析】连接AP ,RS ,证明Rt APR ≌Rt APS ,即可判断①,根据等边对等角可得QAP QPA ∠=∠,根据角平分线的性质可得BAP CAP ∠=∠,等量代换可得QPA BAP ∠=∠,进而即可判定QP ∥AR ,即可判断②,假设③成立,可得到BC AC =,与已知矛盾,进而可判断③,根据垂直平分线的判定定理即可判断④.【详解】连接AP ,RS ,如图,PR ⊥AB ,PS ⊥AC ,PR=PS ,AP ∴是BAC ∠的角平分线,BAP CAP∴∠=∠在Rt APR 与Rt APSPS PR PA PA=⎧⎨=⎩∴Rt APR ≌Rt APSAS AR∴=故①正确;AQ PQ= QAP QPA ∴∠=∠QPA BAP ∴∠=∠AR QP∴∥故②正确;假设△BRP ≌△QSP ;则SQ RB =,PBR PQS∠=∠ AR QP∥PQS BAC∠∠∴=BC AC∴=而题中没有说明BC AC =,故③不正确;,AR AS PR PS== ∴AP 是RS 是垂直平分线,故④正确故正确的有①②④故选C11.()()55y x x -+【详解】先提取公因式y ,再利用平方差公式,可得()()22555x y y y x x -=-+.故答案是()()55y x x -+.12.23【分析】直接利用同底数幂的除法运算法则结合幂的乘方运算法则进而将原式变形得出答案.【详解】∵am =6,an =3,∴am﹣2n=am÷(an)2=6÷32=23.故答案为:2 3.13.92°【分析】根据全等三角形的性质和三角形的内角和定理即可得到结论.【详解】解:∵△ABC≌△DBC,∴∠ACB=∠DCB=43°,∵∠A=45°,∴∠ABC=180°﹣∠A﹣∠ACB=92°,故答案为:92°.14.4:5:6【分析】首先过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,由OA,OB,OC是△ABC的三条角平分线,根据角平分线的性质,可得OD=OE=OF,又由△ABC 的三边AB、BC、CA长分别为40、50、60,即可求得S△ABO:S△BCO:S△CAO的值.【详解】解:过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,∵OA,OB,OC是△ABC的三条角平分线,∴OD=OE=OF,∵△ABC的三边AB、BC、CA长分别为40、50、60,∴S△ABO :S△BCO:S△CAO=(12AB•OD):(12BC•OF):(12AC•OE)=AB:BC:AC=40:50:60=4:5:6.故答案为:4:5:6.15.1500x−18=15002.5x【分析】关键描述语为:“较前提早了18个小时完工”;本题的等量关系为:原来加工1500个零件所用时间-18=现在加工1500个零件所用时间,把相应数值代入即可求解.【详解】解:原来加工1500个零件所用时间为:1500x,现在加工1500个零件所用时间为:15002.5x ,∴根据题意可列方程为1500x −18=15002.5x 故答案为:1500x −18=15002.5x .16.116【分析】利用完全平方公式列出关于xy 的不等式.求不等式的解,根据不等式的解,即可求得xy 的最大值.【详解】解:22(4)(4)160x y x y xy -=+-≥.41x y += ,1160xy ∴-≥,116xy ∴≤.故答案为:116.17.20217【分析】根据等底等高的三角形的面积相等可得三角形的中线把三角形分成两个面积相等的三角形,然后求出第一次倍长后△A 1B 1C 1的面积是△ABC 的面积的7倍,依此规律可得结论.【详解】解:连接AB 1、BC 1、CA 1,根据等底等高的三角形面积相等,△A 1BC 、△A 1B 1C 、△AB 1C 、△AB 1C 1、△ABC 1、△A 1BC 1、△ABC 的面积都相等,所以,1117A B C ABC S S = ,同理222111277A B C A B C ABC S S S == ,依此类推,△A 2021B 2021C 2021的面积为=72021S △ABC ,∵△ABC 的面积为1,∴△A 2021B 2021C 2021的面积=72021.故答案为:72021.【点睛】本题考查了三角形的面积,根据等底等高的三角形的面积相等求出一次倍长后所得的三角形的面积等于原三角形的面积的7倍是解题的关键.18.60°【分析】根据三角形内角和定理求出∠BAC ,根据全等三角形的性质计算即可.【详解】解:∵∠B=70°,∠C=30°,∴∠BAC=180°-70°-30°=80°,∵△ABC ≌△ADE ,∴∠DAE=∠BAC=80°,∴∠EAC=∠DAE-∠DAC=60°,故答案为60°.19.7【分析】由AB 的垂直平分线交AB 于E ,交BC 于D ,根据线段垂直平分线的性质,可得AD=BD ,又由△ADC 的周长为11cm ,即可求得AC +BC=11cm ,然后由AC=4cm ,即可求得BC 的长.【详解】解:∵AB 的垂直平分线交AB 于E ,交BC 于D ,∴AD=BD ,∵△ADC 的周长为11cm ,∴AC +CD +AD=AC +CD +BD=AC +BC=11cm ,∵AC=4cm ,∴BC=7cm .故答案为:7.20.x=4【分析】两边都乘以x-3化为整式方程求解,然后验根即可.【详解】解:两边都乘以x-3,得2-1=x-3,解得x=4,检验:当x=4时,x-3≠0,∴x=4是原方程的解.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x 的值后不要忘记检验.21.45a +,11【分析】先利用完全平方公式和平方差公式进行化简,再代值运算即可.【详解】解:2(2)(1)(1)a a a +-+-22441a a a =++-+45a =+把3=2a 代入得:345112⨯+=【点睛】本题主要考查了整式的化简求值,熟悉掌握完全平方公式和平方差公式是解题的关键.22.12a +,13【分析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的a 的值代入计算可得.【详解】解:22241---÷+a a a a a2(1)1(2)(2)a a a a a a -+=-⨯+-112a a +=-+12a =+,∵a≠0且a≠±2,a≠-1,∴a=1,则原式=11123=+.【点睛】本题主要考查了分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.23.(1)证明见解析;(2)3.【分析】(1)利用ASA ,可证△ABD ≌△CFD ;(2)由△ABD ≌△CFD ,得BD=DF ,所以BD=BC ﹣CD=2,所以AF=AD ﹣DF=5﹣2.【详解】(1)证明:∵AD ⊥BC ,CE ⊥AB ,∴∠ADB=∠CDF=∠CEB=90°,∴∠BAD+∠B=∠FCD+∠B=90°,∴∠BAD=∠ECD ,在△ABD 和CFD 中,ADB CDF BAD DCF AD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△CFD (AAS ),(2)∵△ABD ≌△CFD ,∴BD=DF ,∵BC=7,AD=DC=5,∴BD=BC ﹣CD=2,∴AF=AD ﹣DF=5﹣2=3.24.(1)(1+2x-3y )2;(2)(a+b-2)2.【分析】(1)将(2x-3y )看作一个整体,利用完全平方公式进行因式分解.(2)令A=a+b ,代入后因式分解,再代入即可将原式因式分解.【详解】解:(1)原式=(1+2x-3y )2.(2)令A=a+b ,则原式变为A (A-4)+4=A 2-4A+4=(A-2)2,故:(a+b )(a+b-4)+4=(a+b-2)2.故答案为(1)(1+2x-3y )2;(2)(a+b-2)2.25.(1)乙工程队单独做需要80天完成(2)甲工程队至少应做42天.【分析】(1)设乙工程队单独完成这项工作需要x 天,由题意列出分式方程,求出x 的值即可;(2)首先根据题意列出a 和y 的关系式,进而求出a 的取值范围,结合a 和y 都是正整数,即可求出a 的值.【详解】(1)设乙工程队单独完成这项工作需要x 天,由题意得:3011361120120x ⎛⎫++⨯= ⎪⎝⎭解得:x=80,经检验x=80是原方程的解.答:乙工程队单独做需要80天完成.(2)因为甲工程队做其中一部分用了a 天,乙工程队做另一部分用了y 天,依题意得:112080a y +=,∴2803y a =-.∵52y ≤,∴280523a -≤,解得:42a ≥.答:甲工程队至少应做42天.26.∠B =77°,∠C =38.5︒【分析】根据等腰三角形的性质及三角形内角和定理可求出∠B 和∠ADB 的度数,利用三角形外角性质即可求出∠C 的度数.【详解】解:∵AB =AD ,26BAD ∠=︒∴∠B =∠ADB =12×(180°﹣26°)=77°,∵AD =DC ,∴∠C=∠DAC ,∴∠C =12∠ADB =12×77°=38.5︒.27.(1)①见解析;②成立;(2)BC+CD=CE【分析】(1)①根据等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC ,AD=DE=AE ,进而就可以得出△ABD ≌△ACE ;②由△ABD ≌△ACE 就可以得出BC=DC+CE ;(2)由等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC ,AD=DE=AE ,进而就可以得出△ABD ≌△ACE ,就可以得出BC+CD=CE .【详解】解:(1)①证明:∵△ABC 是等边三角形∴AB=AC ∠BAC=60°∵△ADE 是等边三角形∴AD=AE ∠DAE=60°∴∠BAC -∠DAC=∠DAE -∠DAC ∴∠BAD=∠CAE ∴△ABD ≌△ACE②成立∵△ABD≌△ACE,∴BD=CE.∵BC=BD+CD,∴BC=CE+CD.(2)BC+CD=CE.∵△ABC是等边三角形∴AB=AC∠BAC=60°∵△ADE是等边三角形∴AD=AE∠DAE=60°∴∠BAC+∠DAC=∠DAE+∠DAC∴∠BAD=∠CAE∴△ABD≌△ACE∴BD=CE∵BC=BD-CD∴BC=CE-CD.28.(1)见解析;(2)15.【分析】(1)证△ECD≌△ACD(SAS),得EC=AC,DE=AD,∠CED=∠A=60°,再证BE=DE,则BE=AD,即可得出结论;(2)在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG,证△ACB≌△ACF(SAS),得CB=CF=3,AF=AB=10,∠BCA=∠FCA.同理可证△CGE≌△CDE (SAS),得CG=CD=3,GE=DE=2,∠DCE=∠GCE,再证△CFG是等边三角形,得FG=CG=3,即可求解.【详解】(1)证明:在CB上截取CE=AE,连接DE,如图所示:∵CD平分∠ACB,∴∠BCD=∠ACD,又∵CD=CD,∴△ECD≌△ACD(SAS),∴EC=AC,DE=AD,∠CED=∠A=60°,∵∠ACB=90°,∠A=60°,∴∠B=30°,又∵∠CED=∠EDB+∠B,∴∠EDB=60°-30°=30°,∴∠EDB=∠B,∴BE=DE,∴BE=AD,∵BC=EC+BE,∴BC=AC+AD;(2)解:在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG,如图所示:∵C是BD边的中点,BD=6,∴CB=CD=12BD=3,∵AC平分∠BAE,∴∠BAC=∠FAC,又∵AC=AC,∴△ACB≌△ACF(SAS),∴CB=CF=3,AF=AB=10,∠BCA=∠FCA.同理可证:△CGE≌△CDE(SAS),∴CG=CD=3,GE=DE=2,∠DCE=∠GCE,∵CB=CD,∴CG=CF,∵∠ACE=120°,∴∠BCA+∠DCE=180°-120°=60°,∴∠FCA+∠GCE=60°,∴∠FCG=180°-60°-60°=60°,∴△FGC是等边三角形,∴FG=FC=3,∴AE=AF+GE+FG=10+2+3=15.。

八年级上学期期末数学试卷 (含解析)

八年级(上)期末数学试卷一、选择题(共8小题).1.(3分)下列四个图案中,不是轴对称图案的是()A.B.C.D.2.(3分)已知点P(a+1,2a﹣3)关于x轴的对称点在第一象限,则a的取值范围是()A.a>B.a>﹣1C.﹣1<a<D.a<3.(3分)计算a2•a3,结果正确的是()A.a5B.a6C.a8D.a94.(3分)若a,b,c为△ABC的三边长,且满足|a﹣5|+(b﹣3)2=0,则c的值可以为()A.7B.8C.9D.105.(3分)如果多项式4a2+ma+25是完全平方式,那么m的值是()A.10B.20C.﹣20D.±206.(3分)化简(1﹣)÷(1﹣)的结果为()A.B.C.D.7.(3分)已知,如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于点P,下列说法:①∠APE=∠C,②AQ=BQ,③BP=2PQ,④AE+BD=AB,其正确的个数有()个.A.1B.2C.3D.48.(3分)如图,七边形ABCDEFG中,AB、ED的延长线交于点O,着∠1、∠2、∠3、∠4对应的邻补角和等于215°,则∠BOD的度数为()A.30°B.35°C.40°D.45°二、填空题(共8小题).9.(3分)细胞的直径只有1微米,即0.000 001米,用科学记数法表示0.000 001为.10.(3分)如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是(填上你认为适当的一个条件即可).11.(3分)若分式的值为0,则x=.12.(3分)分解因式:xy4﹣6xy3+9xy2=.13.(3分)已知A,B两地相距160km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4h到达,这辆汽车原来的速度是km/h.14.(3分)如图,AB=12m,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动分钟后△CAP与△PQB全等.15.(3分)已知:如图,在△MPN中,H是高MQ和NR的交点,且MQ=NQ,已知PQ =5,NQ=9,则MH长为.16.(3分)如图,∠AOB=30°,点M、N分别是射线OB、OA上的动点,点P为∠AOB 内一点,且OP=8,则△PMN的周长的最小值=.三、解答题(共72分)17.(10分)(1)计算:a﹣2b2•(a2b﹣2)﹣3÷(a﹣4)2;(2)解方程:=﹣1.18.(6分)解不等式组:,并写出它的所有整数解.19.(6分)先化简,再求值:(1﹣)÷﹣,其中x2+2x﹣8=0.20.(6分)如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.(1)求证:△ACD≌△CBE;(2)若AD=12,DE=7,求BE的长.21.(6分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为A(﹣4,5),C(﹣1,3).(1)请在如图所示的网格内作出x轴、y轴;(2)请作出△ABC关于y轴对称的△A1B1C1;(3)写出点B1的坐标并求出△A1B1C1的面积.22.(8分)如图①,是一个长为2m、宽为2n的长方形,用剪刀沿图中的虚线(对称轴)剪开,把它分成四个形状和大小都相同的小长方形,然后按图②那样拼成一个正方形(中间是空的).(1)图②中画有阴影的小正方形的边长等于多少?(2)观察图②,写出代数式(m+n)2,(m﹣n)2与mn之间的等量关系;(3)根据(2)中的等量关系解决下面的问题:若a+b=7,ab=5,求(a﹣b)2的值.23.(8分)2014年12月28日“青烟威荣”城际铁路正式开通,从烟台到北京的高铁里程比普快里程缩短了81千米,运行时间减少了9小时,已知烟台到北京的普快列车里程约为1026千米,高铁平均时速为普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王老师要去距离烟台大约630千米的某市参加14:00召开的会议,如果他买到当日8:40从烟台至城市的高铁票,而且从该市火车站到会议地点最多需要1.5小时,试问在高铁列车准点到达的情况下他能在开会之前到达吗?24.(10分)如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°.①求证:AD=BE;②求∠AEB的度数.(2)如图2,若∠ACB=∠DCE=90°,CF为△DCE中DE边上的高,试猜想AE,CF,BE之间的关系,并证明你的结论.25.(12分)如图1,在平面直角坐标系中,A(﹣3,0)、B(0,7)、C(7,0),∠ABC+∠ADC=180°,BC⊥CD.(1)求证:∠ABO=∠CAD;(2)求四边形ABCD的面积;(3)如图2,E为∠BCO的邻补角的平分线上的一点,且∠BEO=45°,OE交BC于点F,求BF的长.参考答案一、选择题(共8小题).1.(3分)下列四个图案中,不是轴对称图案的是()A.B.C.D.解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.2.(3分)已知点P(a+1,2a﹣3)关于x轴的对称点在第一象限,则a的取值范围是()A.a>B.a>﹣1C.﹣1<a<D.a<解:∵点P(a+1,2a﹣3)关于x轴的对称点在第一象限,∴点P在四象限,∴,解得:﹣1<a,故选:C.3.(3分)计算a2•a3,结果正确的是()A.a5B.a6C.a8D.a9解:a2•a3=a5,故选:A.4.(3分)若a,b,c为△ABC的三边长,且满足|a﹣5|+(b﹣3)2=0,则c的值可以为()A.7B.8C.9D.10解:由题意得,a﹣5=0,b﹣3=0,解得a=5,b=3,∵5﹣3=2,5+3=8,∴2<c<8,∴c的值可以为7.故选:A.5.(3分)如果多项式4a2+ma+25是完全平方式,那么m的值是()A.10B.20C.﹣20D.±20解:∵4a2+ma+25是完全平方式,∴4a2+ma+25=(2a±5)2=4a2±20a+25,∴m=±20.故选:D.6.(3分)化简(1﹣)÷(1﹣)的结果为()A.B.C.D.解:原式=÷=•=,故选:A.7.(3分)已知,如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于点P,下列说法:①∠APE=∠C,②AQ=BQ,③BP=2PQ,④AE+BD=AB,其正确的个数有()个.A.1B.2C.3D.4【解答】证明:∵△ABC是等边三角形,∴AB=AC,∠BAE=∠C=60°,在△ABE和△CAD中,,∴△ABE≌△CAD(SAS),∴∠1=∠2,∴∠BPQ=∠2+∠3=∠1+∠3=∠BAC=60°,∴∠APE=∠C=60°,故①正确∵BQ⊥AD,∴∠PBQ=90°﹣∠BPQ=90°﹣60°=30°,∴BP=2PQ.故③正确,∵AC=BC.AE=DC,∴BD=CE,∴AE+BD=AE+EC=AC=AB,故④正确,无法判断BQ=AQ,故②错误,故选:C.8.(3分)如图,七边形ABCDEFG中,AB、ED的延长线交于点O,着∠1、∠2、∠3、∠4对应的邻补角和等于215°,则∠BOD的度数为()A.30°B.35°C.40°D.45°解:∵∠1、∠2、∠3、∠4的外角的角度和为215°,∴∠1+∠2+∠3+∠4+215°=4×180°,∴∠1+∠2+∠3+∠4=505°,∵五边形OAGFE内角和=(5﹣2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD=540°,∴∠BOD=540°﹣505°=35°,故选:B.二、填空题(每小题3分,共24分)9.(3分)细胞的直径只有1微米,即0.000 001米,用科学记数法表示0.000 001为1×10﹣6.解:0.00 000 1=1×10﹣6,故答案为:1×10﹣6.10.(3分)如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是∠B=∠C(填上你认为适当的一个条件即可).解:∵∠1=∠2,∴∠AEB=∠AEC,又AE公共,∴当∠B=∠C时,△ABE≌△ACE(AAS);或BE=CE时,△ABE≌△ACE(SAS);或∠BAE=∠CAE时,△ABE≌△ACE(ASA).11.(3分)若分式的值为0,则x=﹣1.解:根据题意得x2﹣1=0,且x﹣1≠0,解得:x=﹣1.故答案是:﹣1.12.(3分)分解因式:xy4﹣6xy3+9xy2=xy2(y﹣3)2.解:原式=xy2(y2﹣6y+9)=xy2(y﹣3)2,故答案为:xy2(y﹣3)213.(3分)已知A,B两地相距160km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4h到达,这辆汽车原来的速度是80km/h.解:设这辆汽车原来的速度是xkm/h,由题意列方程得:,解得:x=80经检验,x=80是原方程的解,所以这辆汽车原来的速度是80km/h.故答案为:80.14.(3分)如图,AB=12m,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动4分钟后△CAP与△PQB全等.解:∵CA⊥AB于A,DB⊥AB于B,∴∠A=∠B=90°,设运动x分钟后△CAP与△PQB全等;则BP=xm,BQ=2xm,则AP=(12﹣x)m,分两种情况:①若BP=AC,则x=4,AP=12﹣4=8,BQ=8,AP=BQ,∴△CAP≌△PBQ;②若BP=AP,则12﹣x=x,解得:x=6,BQ=12≠AC,此时△CAP与△PQB不全等;综上所述:运动4分钟后△CAP与△PQB全等;故答案为:4.15.(3分)已知:如图,在△MPN中,H是高MQ和NR的交点,且MQ=NQ,已知PQ =5,NQ=9,则MH长为4.解:∵MQ⊥PN,NR⊥PM,∴∠NQH=∠NRP=∠HRM=90°,∵∠RHM=∠QHN,∴∠PMH=∠HNQ,在△MQP和△NRP中,,∴△MQP≌△NQH(ASA),∴PA=QH=5,∵NQ=MQ=9,∴MH=MQ﹣HQ=9﹣5=4,故答案为4.16.(3分)如图,∠AOB=30°,点M、N分别是射线OB、OA上的动点,点P为∠AOB 内一点,且OP=8,则△PMN的周长的最小值=8.解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OP、OC、OD、PM、PN.∵点P关于OA的对称点为C,关于OB的对称点为D,∴PM=CM,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OD=OP=8cm,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等边三角形,∴CD=OC=OD=8.∴△PMN的周长的最小值=PM+MN+PN=CM+MN+DN≥CD=8.故答案为:8.三、解答题(共72分)17.(10分)(1)计算:a﹣2b2•(a2b﹣2)﹣3÷(a﹣4)2;(2)解方程:=﹣1.解:(1)原式=a﹣2b2•a﹣6b6÷a﹣8=a﹣8b8÷a﹣8=b8;(2)两边都乘以(x+1)(x﹣1),得:3(x﹣1)=x(x+1)﹣(x+1)(x﹣1),解得:x=2,检验:x=2时,(x+1)(x﹣1)=3≠0,∴分式方程的解为x=2.18.(6分)解不等式组:,并写出它的所有整数解.解:解不等式>﹣1,得:x>﹣2,解不等式2x+1≥5(x﹣1),得:x≤2,所以不等式组的解集为﹣2<x≤2,则不等式组的整数解为﹣1、0、1、2.19.(6分)先化简,再求值:(1﹣)÷﹣,其中x2+2x﹣8=0.解:原式=•﹣=﹣=,∵x2+2x﹣8=0,∴x2+2x=8,∴原式==.20.(6分)如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.(1)求证:△ACD≌△CBE;(2)若AD=12,DE=7,求BE的长.解:(1)∵∠ACB=90°,BE⊥CE,∴∠ECB+∠ACD=90°∠ECB+∠CBE=90°,∴∠ACD=∠CBE,∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°,∵AC=BC,∴△ACD≌△CBE;(2)∵△ACD≌△CBE,∴AD=CE,CD=BE,∵AD=12,DE=7,∴BE=CD=CE﹣DE=12﹣7=5.21.(6分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为A(﹣4,5),C(﹣1,3).(1)请在如图所示的网格内作出x轴、y轴;(2)请作出△ABC关于y轴对称的△A1B1C1;(3)写出点B1的坐标并求出△A1B1C1的面积.解:(1)如图所示:(2)如图所示:(3)B1(2,1),S△A1B1C1=3×4﹣×4×2﹣×1×2﹣×3×2,=12﹣4﹣1﹣3,=4.22.(8分)如图①,是一个长为2m、宽为2n的长方形,用剪刀沿图中的虚线(对称轴)剪开,把它分成四个形状和大小都相同的小长方形,然后按图②那样拼成一个正方形(中间是空的).(1)图②中画有阴影的小正方形的边长等于多少?(2)观察图②,写出代数式(m+n)2,(m﹣n)2与mn之间的等量关系;(3)根据(2)中的等量关系解决下面的问题:若a+b=7,ab=5,求(a﹣b)2的值.解:(1)图②中画有阴影的小正方形的边长(m﹣n);(2)(m+n)2=(m﹣n)2+4mn;(3)由(2)得:(a+b)2=(a﹣b)2+4ab;∵a+b=7,ab=5,∴(a﹣b)2=(a+b)2﹣4ab=49﹣20=29;答:(a﹣b)2的值为29.23.(8分)2014年12月28日“青烟威荣”城际铁路正式开通,从烟台到北京的高铁里程比普快里程缩短了81千米,运行时间减少了9小时,已知烟台到北京的普快列车里程约为1026千米,高铁平均时速为普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王老师要去距离烟台大约630千米的某市参加14:00召开的会议,如果他买到当日8:40从烟台至城市的高铁票,而且从该市火车站到会议地点最多需要1.5小时,试问在高铁列车准点到达的情况下他能在开会之前到达吗?解:(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,由题意得,﹣=9,解得:x=72,经检验,x=72是原分式方程的解,且符合题意,则2.5x=180,答:高铁列车的平均时速为180千米/小时;(2)630÷180=3.5,则坐车共需要3.5+1.5=5(小时),王老师到达会议地点的时间为13点40.故他能在开会之前到达.24.(10分)如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°.①求证:AD=BE;②求∠AEB的度数.(2)如图2,若∠ACB=∠DCE=90°,CF为△DCE中DE边上的高,试猜想AE,CF,BE之间的关系,并证明你的结论.【解答】(1)①证明:∵∠CAB=∠CBA=∠CDE=∠CED=50°,∴∠ACB=∠DCE=180°﹣2×50°=80°,∵∠ACB=∠ACD+∠DCB,∠DCE=∠DCB+∠BCE,∴∠ACD=∠BCE,∵△ACB,△DCE都是等腰三角形,∴AC=BC,DC=EC,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE.②解:∵△ACD≌△BCE,∴∠ADC=∠BEC,∵点A、D、E在同一直线上,且∠CDE=50°,∴∠ADC=180°﹣∠CDE=130°,∴∠BEC=130°,∵∠BEC=∠CED+∠AEB,∠CED=50°,∴∠AEB=∠BEC﹣∠CED=80°.(2)结论:AE=2CF+BE.理由:∵△ACB,△DCE都是等腰直角三角形,∴∠CDE=∠CED=45°,∵CF⊥DE,∴∠CFD=90°,DF=EF=CF,∵AD=BE,∴AE=AD+DE=BE+2CF.25.(12分)如图1,在平面直角坐标系中,A(﹣3,0)、B(0,7)、C(7,0),∠ABC+∠ADC=180°,BC⊥CD.(1)求证:∠ABO=∠CAD;(2)求四边形ABCD的面积;(3)如图2,E为∠BCO的邻补角的平分线上的一点,且∠BEO=45°,OE交BC于点F,求BF的长.解:(1)在四边形ABCD中,∵∠ABC+∠ADC=180°,∴∠BAD+∠BCD=180°,∵BC⊥CD,∴∠BCD=90°,∴∠BAD=90°,∴∠BAC+∠CAD=90°,∵∠BAC+∠ABO=90°,∴∠ABO=∠CAD;(2)过点A作AF⊥BC于点F,作AE⊥CD的延长线于点E,作DG⊥x轴于点G,∵B(0,7),C(7,0),∴OB=OC,∴∠BCO=45°,∵BC⊥CD,∴∠BCO=∠DCO=45°,∵AF⊥BC,AE⊥CD,∴AF=AE,∠FAE=90°,∴∠BAF=∠DAE,在△ABF和△ADE中,,∴△ABF≌△ADE(ASA),∴AB=AD,同理,△ABO≌△DAG,∴DG=AO,BO=AG,∵A(﹣3,0)B(0,7),∴D(4,﹣3),S四ABCD=AC•(BO+DG)=50;(3)过点E作EH⊥BC于点H,作EG⊥x轴于点G,∵E点在∠BCO的邻补角的平分线上,∴EH=EG,∵∠BCO=∠BEO=45°,∴∠EBC=∠EOC,在△EBH和△EOG中,,∴△EBH≌△EOG(AAS),∴EB=EO,∵∠BEO=45°,∴∠EBO=∠EOB=67.5°,又∠OBC=45°,∴∠BOE=∠BFO=67.5°,∴BF=BO=7.。

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试题一、单选题1.点M (﹣2,1)关于x 轴的对称点N 的坐标是()A .(2,1)B .(﹣2,1)C .(﹣2,﹣1)D .(2,﹣1)2.使分式321x x --有意义的x 的取值范围是()A .x >12B .x <12C .x≠3D .x≠123.一个三角形的两边长分别为3cm 和8cm ,则此三角形第三边长可能是()A .3cmB .5cmC .7cmD .11cm4.如图,已知ABC DCB ∠=∠,添加以下条件,不能判定ABC DCB ∆≅∆的是()A .AB DC =B .BE CE =C .AC DB=D .A D∠=∠5.如果2(2)9x m x +-+是个完全平方式,那么m 的值是()A .8B .-4C .±8D .8或-46.若分式211x x -+的值为0,则x 的值为().A .0B .1C .﹣1D .±17.下列运算正确的是()A .x 2+x 2=2x 4B .a 2•a 3=a 5C .(﹣2x 2)4=16x 6D .(x+3y )(x ﹣3y )=x 2﹣3y 28.如图,已知D 为△ABC 边AB 的中点,E 在AC 上,将△ABC 沿着DE 折叠,使A 点落在BC 上的F 处.若∠B=65°,则∠BDF 等于()A .65°B .50°C .60°D .57.5°9.若(x+a )(x 2﹣x ﹣b )的乘积中不含x 的二次项和一次项,则常数a 、b 的值为()A.a=1,b=﹣1B.a=﹣1,b=1C.a=1,b=1D.a=﹣1,b=﹣1 10.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于12MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,有下列说法:①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.其中说法正确的个数是()A.1B.2C.3D.4二、填空题11.当x≠__时,分式11xx-+有意义.12.分解因式:3x2﹣12xy+12y2=_____.13.数据0.0000000001,用科学记数法表示为____.14.关于x的分式方程3111mx x+=--的解为正数,则m的取值范围是________.15.若一个正多边形的每一个外角都是30°,则这个正多边形的内角和等于____度.16.已知m+2n+2=0,则2m•4n的值为_____.17.如图,△ABC的两条高BD、CE相交于点O且OB=OC.则下列结论:①△BEC≌△CDB;②△ABC是等腰三角形;③AE=AD;④点O在∠BAC的平分线上,其中正确的有_____.(填序号)18.如图,已知每个小方格的边长为1,A、B两点都在小方格的格点(顶点)上,请在图中找一个格点C,使△ABC是等腰三角形,这样的格点C有________个。

八年级上册数学期末试卷及答案

八年级(上)期末考试数学试题一、选择题: 1 _ 1•在0,-, n , 9这四个数中,是无理数的是( )31 A . 0 B .—— C. n D. .932•下列乘法中,不能运用平方差公式进行运算的是()A . (x+a)(x-a)B . (a+b)(-a-b)C . (-x-b)(x-b)3.在下列运算中,计算正确的是( )4. 如图, ABC 也DEF ,点A 与D,点B 与E 分别 是对应顶点,BC=5cm BF=7cm 贝y EC 的 长为()A. 1cmB. 2 cmC. 3cmD. 4cm5、点P ( 3, 2)关于x 轴的对称点P '的坐标是()A . (3, -2 )B . (-3 , 2)C . (-3 , -2 )D . (3, 2)6. 某同学网购一种图书,每册定价 20元,另加书价的5%作为快递运费。

若购书 x 册,则需付款y (元)与x 的函数解析式为()A . y=20x+1B . y=21xC . y=19xD . y=20x-1 7. 把多项式m-4m 分解因式的结果是()2 2 2A.m(m-4)B.m(m+2)(m-2)C.m(m-2)D.m (m-4)8如图,在△ ABC 与厶DEF 中,给出以下六个条件:(1) AB = DE , (2) BC = EF , ( 3) AC = DF , ( 4)/ A =Z D , (5)Z B = Z E , (6)Z C =Z F ,以其中三个作为已知条件,不能..判断厶ABC 与厶DEF 全 等的是( ) A . (1) ( 5) (2)B . (1) (2) (3)A. B. C. D.D . (b+m)(m-b)C . (2) (3) ( 4)D . (4) (6) (1)15.如图,/ ABC=Z DCB 请补充一个条件: ,使△ ABC^A DCB.18 •如图,直线h // |2 , AB 丄|1,垂足为O , 20.如图(见下),方格纸中△ ABC 的3个顶点分别在小正方形的顶点 (格点)上,这样的三角形叫格点三角 形,图中与厶ABC 全等的格点三角形共有 ________________ 个(不含△ ABC ).BC 与12相交与点E ,若/ 1=43°,则/ 2= 度.13.若等腰三角形的顶角为 80°,则它腰上的高与底边的夹角为14 .如下图,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学上学期期末考试试卷一、选择题(本题共12小题,每小题4分,在每小题给出的四个选项中,只有一项符合题目要求) 1.判断下列几组数据中,可以作为直角三角形的三条边的是 ( ) (A )6,15,17 (B ) 7,12,15 (C ) 13,15,20 (D) 7,24,25 2、将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是A 、1、2、3B 、2、3、4C 、3、4、5D 、4、5、63. 一根旗杆在离地面6米处断裂,旗杆顶部落在离旗杆底部10米处,旗杆折断之前的高度是( )()A B C D ....8142346234米米米米+4.在RtΔABC 中,∠C=90°,b =6,c =10,则a 的值为( )(A )8 (B )6 (C )10 (D )5. 平方根等于它本身的数是 ( ) (A ) 0 (B ) 1,0 (C ) 0, 1 ,-1 (D) 0, -1 6、9的算术平方根是A 、81B 、3±C 、3-D 、3 7. 下列各式中,运算正确的是( )A B ..93883=±=()C D ....-=--=-3308082338.下列各式中计算正确的是 ( )A .3=±B 3=-C 3±D 3=9、若式子5x -在实数范围内有意义,则x 的取值范围是 A 、x >5B 、x ≥5C 、x ≠5D 、x ≥010.下列说法中错误的是 ( ) A 四个角相等的四边形是矩形 B 对角线互相垂直的矩形是正方形 C 对角线相等的菱形是正方形 D 四条边相等的四边形是正方形 11、在口ABCD 中,∠A=︒100,则∠B+∠D 的度数是A 、80ºB 、100ºC 、120ºD 、160º12.能判定一个四边形是菱形的条件是( )(A )对角线相等且互相垂直 (B )对角线相等且互相平分AD(C )对角线互相垂直 (D )对角线互相垂直平分13、一菱形的面积为24cm 2,其中一条对角线长为6cm ,则另一条对角线长为 A 、10cm B 、8cm C 、5cm D 、4cm14.等腰梯形ABCD 中,底AD=5,BC=8,腰AB=6, 且AB//DE, 则ΔDEC 的周长是( ) A .19 B .15 C .12 D .3 15.能够单独密铺的正多边形是( )(A )正五边形 (B )正六边形 (C )正七边形 (D )正八边形16. 一正多边形的每个外角都是300, 则这个多边形是( )A 、 正方形B 、 正六边形C 、 正八边形D 正十二边形. 17.根据下列表述,能确定位置的是…………( ).A .某电影院2排B .南京市大桥南路C .北偏东30°D .东经118°,北纬40°18、位于平面直角坐标系上第四象限的点是A 、(3,-4)B 、(3,2)C 、(-4, 3)D 、(-5,-2)19.排列做操队形时,甲、乙、丙位置如图所示,甲对乙说,如果我的位置用(0,0)来表示, 你的位置用(2,1)表示,那么丙的位置是( ) (A )(5,4) (B )(4,5)(C )(3,4) (D )(4、3)20. 点P 位于y 轴右侧,距y 轴3个单位长度;位于x 轴下方,距x轴4个单位长度,点P 的坐标为( ) A. (-3,4) B. (3,-4) C. (-4,3)D. (4,-3)21..点P 关于x 轴的对称点1P 的坐标是(4,-8),则P 点关于原点的对称点2P 的坐标是 ( ) A 、 (-4,-8) B 、 (4,8) C 、 (-4,8) D 、 (4,-8)22.矩形的周长为50,设它的长为x ,宽为y ,则y 与x 的函数关系为( )(A )y=-x +25 (B )y=x + 25 (C )y=-x +50 (D )y=x +50甲23. 汽车由天津驶往相距120千米的北京,其平均速度是30千米/时,下图中能表示汽车距北京的距离s (千米)与行驶时间t (小时)之间函数关系的是( )24.某市自来水公司欲调整价格:现行居民用水1.8元/m 3,调整后月用水量少于30m 3,价格为2.3元/m 3;超过部分2.5元/m 3,则调整后用水量x 与应缴水费y (元)的函数图象是 ( )25.一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度n (厘米)与燃烧时间t(时)的函数关系的图象是 ( )A B C D26.下列一次函数中,y 的值随着x 值的增大而减小的是( )(A )x y 31-= (B )x y 31=D .C . B . A .(C )14+=x y (D )14-=x y 27.一次函数b kx y +=的图象如右图所示,则k 、b 的值为( )(A ) k >0, b >0 (B ) k >0, b <0 (C ) k <0, b >0 (D ) k <0, b <028、一次函数y= 2x -3的图象不经过的象限是A 、第一象限B 、第二象限C 、第三象限D 、第四象限 29.一次函数23y x =-+一定通过下列两点( )(A)原点和点(1,1) (B)(1,1)和(2,3) (C)(0,3)和(1,1) (D)(0,3)和(2,3)30.4辆板车和5辆卡车一次能运27吨货,10辆板车和3车卡车一次能运货20吨,设每辆板车每次可运x 吨货,每辆卡车每次能运y 吨货,则可列方程组( )(A )⎩⎨⎧=-=+203102754y x y x(B )⎩⎨⎧=+=-203102754y x y x(C )⎩⎨⎧=+=+203102754y x y x(D )⎩⎨⎧=-=-y x y x 32010527431.下列不是中心对称图形的是( )(A )平行四边形 (B )菱形 (C )矩形 (D )等腰梯形 32.下列图形中,既是轴对称图形,又是中心对称图形的是( )CD33. 3.以下五家银行行标中,既是中心对称图形又是轴对称图形的有( )(A )1个 (B )2个 (C )3个 (D )4个34. .将图形按顺时针方向旋转900后的图形是( )(A)(B)(C)(D)35.下列图片中,哪些是由图片①分别经过平移和旋转得到的()① ②③④(A)③和④(B)③和②(C)②和④(D)④和③36、下列图案是中心对称图形的有A、1个B、2个C、3个D、4个37.小明期未语、数、英三科的平均分为92分,她记得语文是88分,英语是95分,但她把数学成绩忘记了,你知道小明数学多少分吗()(A) 93分(B) 95分(C) 92.5分(D)94分38、在一组数据3,4,4,6,8中,下列说法错误的是A、它的众数是4B、它的平均数是5C、它的中位数是5D、它的众数等于中位数二、填空题:(本题共6个小题,每小题4分,共24分。

只要求填写最后结果)39.有两棵树,一棵树高8米,另一棵树高2米,两村相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了________米.40.一组数据:1、2、4、3、2、4、2、5、6、1,它们的平均数为,众数为,中位数为;41.八年级(五)班的43名同学在6月5日(世界环境日)调查了各自家庭丢弃废塑料袋的情况,统计结果如下:中位数是 42. 某校规定:学生的平时作业,期中练习,期末考试三次成绩分别按40%、20%,40%的比例计入学期总评成绩。

小亮的平时作业,期中练习,期末考试的数学成绩依次为90分、92分、85分,小亮这学期的数学总评成绩是________________。

43.元旦运动会广播体操比赛中,六位评委对某班的打分如下:9.6,9.5,9.6,9.4,9.2,9.3。

规定去掉一个最高分和一个最低分后取平均分得分。

那么该班的最后得分是 。

44.点P (4,-3)关于x 轴对称的点的坐标是 。

45. 函数的图象132+-=x y 不经过 象46.如图,直线L 是一次函数b kx y +=的图象,则_______,==k b ,当______x 时,0>y ;47. 某一次函数的图像过点(-1,2),且因变量y 的值随自变量x 的值的增大而减小,请写出一个符合条件的函数关系式_________________。

48.拖拉机的油箱有油100升,每工作1小时耗油8升,则油箱的剩余油量y (升)与工作时间x (时)间的函数关系式为 。

49.拖拉机开始工作时,邮箱中有油24升,如果每小时耗油4升,那么邮箱中的剩余油量y(升)和工作时间t (时)之间的函数关系式是 。

50. 点A (2,m )在直线y=-2x+3上,则m=__________.51.已知正比例函数y=kx 的图象经过点(-1,-3),则该正比例函数的解析式为 。

52.已知平行四边形的周长是58cm ,长边比短边长5cm ,则短边是 。

53.如图,一张矩形的纸片,要折出一个正方形,只要把一个角沿折痕AE 翻折上去,使AB 和 AD 边上的AF 重合,则四边形ABEF 就是一个正方形,判断的根据是 。

54.如图,已知菱形ABCD ,AC 与BD 交于O ,AO =3cm ,BO =4cm ,则菱形ABCD 的面积C为_________2cm .55.如图,矩形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AD 和BC 于点E 、F , AB=2,BC=3,则图中阴影部分的面积为 .56. 长方形纸片ABCD 的长AB =10cm ,宽BC =6cm ,将它按如图方式折叠(以AE 为折痕,点B 落在CD 边点F 处),则△CEF 的周长是___________,面积是___________。

57.81的平方根是__________. 58.4的平方根是 。

59、-27的立方根等于 ▲ .60.-8的立方根是 。

61.254= ,±69.1= ,364-= ,16的平方根是 ; 62、请任写出一组这样的两个数:它们是不相等的无理数,但它们的积却为有理数: ▲ .63. 若|x +y +1|与3+-y x 互为相反数,则x y=__________.64.写出二元一次方程53=+y x 的一组解是⎩⎨⎧==________y x ;65、甲、乙两人参加植树活动,两人共植树20棵,已知甲植树的棵数是乙的1.5倍. 如果设甲植树 x 棵,乙植树y 棵,那么可以列方程组为 ▲ .66. 某厂去年及今年的利润、总产值、总支出情况如表中所示,今年总产值比去年增加了20%,总支出比去年减少了10%,今年的总产值、总支出各是多少万元?若设今年总产值x 万元,总支出y 万元,根据所给信息,可得关于x、y的二元一次方程组________________。

相关文档
最新文档