《相似图形》中考试题选

合集下载

九年级数学上学期第三章《图形的相似》综合测试题(含答案)

九年级数学上学期第三章《图形的相似》综合测试题(含答案)

九年级数学上学期第三章《图形的相似》综合测试题(含答案)一、选择题(本大题共8小题,每小题4分,共32分) 1.已知5a=6b (a ≠0),则下列变形正确的是 ( )A .b 6=5aB .b 5=6a C .ab =56D .a -b b=152.如图1,已知AB ∥CD ∥EF ,BD ∶DF=1∶2,那么下列结论中正确的是 ( )图1A .AC ∶AE=1∶3B .CE ∶EA=1∶3C .CD ∶EF=1∶2 D .AB ∶EF=1∶2 3.C 是线段AB 的黄金分割点,且AB=6cm,则BC 的长为 ( ) A .(3√5-3)cm B .(9-3√5)cmC .(3√5-3)cm 或(9-3√5)cmD .(9-3√5)cm 或(6√5-6)cm4.如图2,在四边形ABCD 中,AD ∥BC ,对角线AC ,BD 相交于点O ,AD=1,BC=4,则△AOD 与△BOC 的面积之比为( )A.12 B.14 C.18D.116图2 图35.如图3,已知△ABC 与△BDE 都是等边三角形,点D 在边AC 上(不与点A ,C 重合),DE 与AB 相交于点F ,那么与△BFD 相似的三角形是 ( )A .△BFEB .△BDCC .△BDAD .△AFD6.已知△ABC 与△A 1B 1C 1是关于原点为中心的位似图形,且点A 的坐标为(2,1),△ABC 与△A 1B 1C 1的位似比为12,则点A 的对应点A 1的坐标是 ( )A .(4,2)B .(-4,-2)C .(4,2)或(-4,-2)D .(6,3)7.如图4,在△ABC 中,点D 在BC 边上,连接AD ,点G 在线段AD 上,GE ∥BD ,且交AB 于点E ,GF∥AC,且交CD于点F,则下列结论一定正确的是()A.ABAE =AGADB.DFCF=DGADC.FGAC=EGBDD.AEBE=CFDF图4 图58.如图5,在△ABC中,中线BE,CD相交于点O,连接DE,有下列结论:①DEBC =12;②S△DOES△COB=12;③AD AB =OEOB;④S△DOES△ADE=13.其中正确的有()A.1个B.2个C.3个D.4个二、填空题(本大题共6小题,每小题4分,共24分)9.若△ABC∽△DEF,相似比为3∶2,则对应周长的比值是.10.在比例尺为1∶40000的地图上,某条道路的长为7cm,则该道路的实际长度是_______km.11.若a,b,c,d是成比例线段,其中a=2cm,b=6cm,c=5cm,则线段d= cm.12.如图6,在△ABC中,MN∥BC分别交AB,AC于点M,N.若AM=1,MB=2,BC=3,则MN的长为.图613.在△ABC中,AB=6,AC=5,点D在边AB上,且AD=2,点E在边AC上,当AE= 时,以A,D,E为顶点的三角形与△ABC相似.14.如图7,铁路道口的栏杆短臂长1m,长臂长16m.当短臂端点下降0.5m时,长臂端点升高m.(杆的宽度忽略不计)图7三、解答题(本大题共5小题,共44分)15.(6分)如图8所示,AD,BE分别是钝角三角形ABC的边BC,AC上的高.求证:ADBE =AC BC.图816.(6分)如图9,平行四边形ABCD中,E是CD的延长线上一点,BE与AD交于点F,DE=12CD.(1)求证:△ABF∽△CEB;(2)若△DEF的面积为2,求平行四边形ABCD的面积.图917.(6分)如图10,在10×10的正方形网格中,点A,B,C,D均在格点上,以点A为位似中心画四边形AB'C'D',使它与四边形ABCD位似,且位似比为2.(1)在图中画出四边形AB'C'D';(2)试说明△AC'D'是等腰直角三角形.图1018.(12分)为测量操场上旗杆的高度,设计的测量方案如图11所示,标杆高度CD=3m,标杆与旗杆的水平距离BD=15m,人的眼睛距地面的高度EF=1.6m,人与标杆CD的水平距离DF=2m,E,C,A三点共线,求旗杆AB的高度.图1119.(14分)如图12,∠ABD=∠BCD=90°,DB平分∠ADC,过点B作BM∥CD交AD于点M,连接CM 交DB于点N.(1)求证:BD2=AD·CD;(2)若CD=6,AD=8,求MN的长.图12参考答案1.D [解析] 选项A,b 6=5a ⇒ab=30,故此选项错误;选项B,b 5=6a ⇒ab=30,故此选项错误;选项C,ab =56⇒6a=5b ,故此选项错误;选项D,a -b b=15⇒5(a-b )=b ,即5a=6b ,故此选项正确.故选D .2.A [解析]∵AB ∥CD ∥EF ,BD ∶DF=1∶2,∴AC ∶AE=1∶3,故A 选项正确;CE ∶EA=2∶3,故B 选项错误;CD ∶EF 的值无法确定,故C 选项错误;AB ∶EF 的值无法确定,故D 选项错误.故选A .3.C [解析]∵C 是线段AB 的黄金分割点,且AB=6cm,∴BC=√5-12AB=(3√5-3)cm 或BC=3−√52AB=(9-3√5)cm .故选C .4.D [解析] 在四边形ABCD 中,AD ∥BC ,所以△AOD ∽△COB.又由AD=1,BC=4,根据相似三角形的面积比等于相似比的平方,即可求得△AOD 与△BOC 的面积之比.5.C [解析]∵△ABC 与△BDE 都是等边三角形,∴∠A=∠BDF=60°.又∵∠ABD=∠DBF ,∴△BFD ∽△BDA ,∴与△BFD 相似的三角形是△BDA.6.A [解析]∵△ABC 与△A 1B 1C 1是关于原点为中心的位似图形,A (2,1),△ABC 与△A 1B 1C 1的位似比为12,∴点A 的对应点A 1的坐标是(2×2,1×2),即(4,2). 7.D8.C [解析] 由BE ,CD 均为△ABC 的中线可知,DE 为△ABC 的中位线,所以DE=12BC ,DE ∥BC ,所以DE BC =12,故①正确;由DE ∥BC 可得△DOE ∽△COB ,所以S △DOE S △COB=DE BC2=14,故②错误;由DE ∥BC 可得△ADE ∽△ABC ,△DOE ∽△COB ,所以AD AB =DE BC ,DE BC =OEOB ,所以AD AB =OEOB ,故③正确; 因为DE ∥BC ,所以△ADE ∽△ABC ,所以S △ADE S △ABC=DE BC2=14,设△DOE 的高为h ,DE=a ,则BC=2a ,△BOC 的高为2h ,所以△ABC 的高为6h ,所以△ADE 的高为3h ,所以S △DOES△ADE =12a ℎ12·a ·3ℎ=13,故④正确.故选C .9.3∶2 [解析] 根据相似三角形的周长比等于相似比求解.10.2.8 [解析] 设这条道路的实际长度为x cm,则140000=7x ,解得x=280000,280000cm =2.8km .11.15 [解析]∵a ,b ,c ,d 是成比例线段,∴a b=c d.∵a=2cm,b=6cm,c=5cm,∴26=5d,解得d=15(cm).12.1 [解析]∵MN ∥BC ,∴△AMN ∽△ABC ,∴AM AB =MNBC ,即11+2=MN 3,∴MN=1.13.125或53 [解析] 当AE AD =ABAC 时,∵∠A=∠A ,∴△AED ∽△ABC ,此时AE=AB ·AD AC=6×25=125;当AD AE =ABAC 时,∵∠A=∠A ,∴△ADE ∽△ABC ,此时AE=AC ·AD AB =5×26=53.故答案为125或53. 14.815.证明:∵AD ,BE 是钝角三角形ABC 的高,∴∠ADC=∠BEC=90°.又∵∠DCA=∠BCE ,∴△DAC ∽△EBC , ∴AD BE =ACBC .16.解:(1)证明:∵四边形ABCD 是平行四边形,∴∠A=∠C ,AB ∥CD ,∴∠ABF=∠CEB ,∴△ABF ∽△CEB.(2)∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB ∥CD ,AB=CD , ∴△DEF ∽△CEB ,△DEF ∽△ABF. ∵DE=12CD ,∴EC=3DE ,AB=2DE ,∴S △DEFS△CEB=DE EC2=19,S △DEF S △ABF=DE AB2=14.∵S △DEF =2,∴S △CEB =18,S △ABF =8, ∴S 四边形BCDF =S △CEB -S △DEF =16,∴S 平行四边形ABCD =S 四边形BCDF +S △ABF =16+8=24.17.解:(1)如图,四边形AB'C'D'即为所求作图形.(2)根据网格的特点,利用勾股定理可以求出AD'=C'D'=2√10,AC'=4√5.利用勾股定理的逆定理可以得出∠AD'C'=90°, 故△AC'D'是等腰直角三角形.18.解:如图,过点E 作EH ⊥AB 于点H ,交CD 于点G ,则EF=DG=BH=1.6m,GH=BD=15m,EG=DF=2m,∴CG=CD-DG=3-1.6=1.4(m). ∵CG ∥AH , ∴△ECG ∽△EAH , ∴CG AH =EGEH ,即1.4AH =22+15,解得AH=11.9(m),∴AB=AH+BH=11.9+1.6=13.5(m).答:旗杆AB 的高度为13.5m . 19.解:(1)证明:∵DB 平分∠ADC ,∴∠ADB=∠BDC.又∵∠ABD=∠BCD=90°, ∴△ABD∽△BCD,∴ADBD =BD CD,∴BD2=AD·CD.(2)∵BM∥CD,∴∠MBD=∠BDC, ∴∠ADB=∠MBD,∴BM=MD.∵∠ABD=90°,∴∠MAB+∠ADB=90°,∠MBA+∠MBD=90°,∴∠MAB=∠MBA,∴BM=AM,∴AM=BM=MD=4.∵BD2=AD·CD,且CD=6,AD=8, ∴BD2=48,∴BC2=BD2-CD2=12,∴MC2=BM2+BC2=28,∴MC=2√7.∵BM∥CD,∴△MNB∽△CND,∴BMCD =MNCN=23,∴MN=4√75.。

中考数学《图形的相似》按考点试题

中考数学《图形的相似》按考点试题

第二十四章 图形的相似考点一:相似图形的概念例1:下列两个图形:①两个等腰三角形;②两个直角三角形;③两个正方形;④两个矩形;⑤两个菱形;⑥两个正五边形.其中一定是相似图形的有哪些?考点二:线段的比和比例线段的概念例2:在一幅地图上,量得甲、乙两地的距离是4厘米,乙、丙两地距离是3.6厘米,已知乙、丙两地实际距离是36千米,求甲、乙两地的实际距离.例3:判断下列各组线段是否成比例(1)4cm 、6cm 、8cm 、2cm (2)1.5cm 、4.5cm 、2.5cm 、7.5cm(3)1.1cm 、2.2cm 、3.3cm 、6.6cm (4)2cm 、4cm 、4cm 、8cm .考点三:比例的基本性质例4(1)已知2132x y y x -=+,求x y的值。

(2)已知::2:3:4a b c =求2324a b c a b c +--+的值。

(3)已知345x y z ==,求代数式236324x y z x y z-+-+的值。

例5:已知实数a b c 、、满足b c c a a b k a b c+++===,判断函数3y kx =-的图像一定经过哪些象限?考点四:黄金分割 例6:线段AB 的长度为10厘米,点C 是线段AB 的黄金分割点,则AC 的长为多少? 考点五:相似三角形的概念例7:如图,点D 、E 是ABC ∆的边BC 上的两点,且AD=AE, ADE ∠=70°,ADBCEA ∆∆,求BAC ∠的度数。

考点六:相似三角形的判定方法一例8:在Rt ∆ABC 中ABC ∠=90°,BD ⊥AC 交AC 于点D.(1)求证:ABCADB BDC ∆∆∆ (2)求证:2BD AD CD =⋅;2AB AD CA =⋅;2CB CD CA =⋅考点七:相似三角形的判定方法二例9:如图,∆ABC是等边三角形,且B、C在线段DE上,问:(1)当DB、BC、 CE满足什么条件时,∆ABD相似于∆ECA?∠的度数。

中考数学复习《相似》专题训练--附参考答案

中考数学复习《相似》专题训练--附参考答案

中考数学复习《相似》专题训练--附参考答案一、选择题1.如图,已知AB//CD//EF,BC:CE=3:4,AF=21那么DF的长为()A.9B.12C.15D.182.如图,已知D是△ABC的边AC上一点,根据下列条件,不能判定△CAB∽△CBD的是()A.∠A=∠CBD B.∠CBA=∠CDBC.BC2=AC⋅CD D.AB⋅CD=BD⋅BC3.如图,在平面直角坐标系中,△ABC与△DEF是以坐标原点O为位似中心的位似图形,若A(﹣2,0),D(3,0),且AC=2√2,则线段DF的长度为().A.2√2B.3√2C.4√2D.6√24.已知AB=4,CD=6,BD=10,AB⊥BD,CD⊥BD在线段BD上有一点P,使得△PAB和△PCD相似,则满足条件的点P的有个.()A.1B.2C.3D.无数5.如图,△ABC与△DEF位似,点O为位似中心.已知OA=1,OD=3△ABC的周长为3,则△DEF的周长是()A.4 B.6 C.9 D.276.如图,为了估计某一条河的宽度,在河的对岸选定一个目标点P,在近岸取点Q和S,使点P,Q,S在一条直线上,且直线PS与河垂直,在过点S且与PS垂直的直线a上选择适当的点T,PT与过点Q且与PS 垂直的直线b的交点为R,如果QS = 60m,ST =120m,QR=80m,则这条河的宽度PQ为()A.40m B.120m C.60m D.180m7.如图,在Rt△ABC中∠ACB=90°,AC=BC,CD⊥AB点E为AC边上的中点,连接BE交CD于点F.若AC=4√2,则BF的长为().A.163B.4 C.2√103D.4√1038.如图,在△OAB中∠BOA=45°,点C为边AB上一点,且BC=2AC.如果函数y=9x(x>0)的图象经过点B和点C,那么点C的坐标是()A.(3,3)B.(3,1.5)C.(4.5,2)D.(9,1)二、填空题9.已知两个相似三角形的相似比为4:9,那么这两个三角形的周长之比为.10.如图,在△ABC中,D为AB上一点,且∠ACD=∠B,若AD=2,BD= 5,则AC=211.如图,点D、E分别在△ABC的边AB,AC上,DE∥BC,点G在边BC上,AG交DE于点H,点O是线段AG的中点,若AD:DB=3:1,则AO:OH= .12.如图,P是平行四边形ABCD边BC上的一点,M、N分别是PA、PD的中点,若△PMN的面积为3cm2,则平行四边形ABCD的面积是cm2.13.如图,四边形ABCD是菱形,E为对角线BD的延长线上一点,且BD=8,DE=2∠BAE=45°则AB 的长为.三、解答题14.如图,AD、BE是的高,连接.(1)求证:∽;(2)若点D是的中点,CE=3,BE=4,求的长.15.已知:如图,在菱形中,点,分别在边,上,的延长线交的延长线于点,的延长线交的延长线于点. (1)求证:; (2)如果,求证:.16.如图,在矩形ABCD 中,点G 在边BC 上(不与点B 、C 重合),连接AG ,作DF ⊥AG 于点F ,BE ⊥AG 于点E.(1)若AG =AD ,求证:AB =DF ;(2)设BG BC =k ,连接BF 、DE ,设∠EDF =α,∠EBF =β,求tana tanβ的值.17.如图1,已知点O 在四边形ABCD 的边AB 上,且OA =OB =OC =OD =2,OC 平分∠BOD ,与BD 交于点G ,AC 分别与BD 、OD 交于点E 、F .(1)求证:OC ∥AD ;(2)如图2,若DE =DF ,求AE AF 的值;(3)当四边形ABCD 的周长取最大值时,求DE DF 的值.18.如图1, ABD 内接于,AD 是直径, BAD 的平分线交BD 于H ,交 于点C ,连接O ODC 并延长,交AB 的延长线于点E.(1)求证: AE=AD ;(2)若 32BEAB = ,求 AHHC 的值(3)如图2,连接CB 并延长,交DA 的延长线于点F ,若 ,6AH HC AF == 求 BEC 的面积.参考答案1.B2.D3.B4.B5.C6.B7.D8.D9.4:910.311.2:112.2413.4√1014.(1)证明:∵、是的高∴∵∴∽;(2)解:∵点D是的中点∴在中∵∴∴∵∽∴∴∴∴.15.(1)证明:∵四边形ABCD是菱形∴∵∴∴∵∴∴∵∴;(2)证明:∵∴ .∵∴∠B=∠EAG,∠BCE=∠G∴△AGE∽△BCE∴∴∵∴∴.16.(1)证明:∵四边形ABCD是矩形∴AD//BC∴∠DAG=∠BGA∵DF⊥AG ∴∠DFA=∠BEG=90°∵∠ABC=90°∴∠DFA=∠ABC在△ADF和△GAB中{∠DAG=∠BGA ∠DFA=∠ABC AD=AG∴△ADF≌△GAB∴AB=DF(2)解:由已知得:∵∠DFA=∠BEG=90°∴在Rt△DEF中tanα=EFDF;在Rt△BEF中∴tanαtanβ=EFDFEFBE=BEDF∵∠DAG=∠BGA∴△DFA∽△BEG∴BEDF =BGAD∵四边形ABCD是矩形∴AD=BC∵BGBC=k∴BEDF =BGAD=BGBC=k∴tanαtanβ=BEDF=k17.(1)证明:∵AO=OD ∴∠OAD=∠ADO∵OC平分∠BOD∴∠DOC=∠COB又∵∠DOC+∠COB∠=∠OAD+∠ADO ∴∠ADO=∠DOC∴CO∥AD;(2)解:∵OA=OB=OC∴∠ADB=90°∴△AOD和△ABD是等腰直角三角形∴AD= √2AO∴ADAO=√2∵DE=DF∴∠DFE=∠AED∵∠DFE=∠AFO∴∠AFO=∠AED∵∠AOF=∠ADE=90°∴△ADE∽△AOF∴AEAF =ADAO= √2;(3)解:如图2∵OD=OB,∠BOC=∠DOC,∴△BOC≌△DOC(SAS),∴BC=CD 设BC=CD=x,CG=m,则OG=2﹣m∵OB2﹣OG2=BC2﹣CG2∴4﹣(2﹣m)2=x2﹣m2,解得:m =14x2,∴OG=2 −14x2∵OD=OB,∠DOG=∠BOG,∴G为BD的中点又∵O为AB的中点,∴AD=2OG=4 −12x2∴四边形ABCD的周长为2BC+AD+AB=2x+4 −12x2+ 4 =−12x2+ 2x+8 =−12(x−2)2+ 10∵−12< 0,∴x=2时,四边形ABCD的周长有最大值为10.∴BC=2∴△BCO为等边三角形,∴∠BOC=60°,∵OC∥AD,∴∠DAC=∠COB=60°∴∠ADF =∠DOC =60°,∠DAE =30°,∴∠AFD =90°,∴DE DA =√33 ,DF =12 DA ∴DE DF =2√33 .18.(1)证明:∵AD 是 的直径90ACD ACE ∴∠=∠=︒∵AC 平分DAC EAC ∴∠=∠在△ACD 和△ACE 中∵∠ACD=∠ACE ,AC=AC ,∠DAC=∠EAC∴△ACD ≌△ACE (ASA )AE AD ∴=(2)解:如图,连接OC 交BD 于G 32BE AB = 设 3,2BE x AB x == 则 5AD AE AB BE x ==+= ,OC= AD= 52x DAC EAC ∠=∠BC CD ∴=∴OC 垂直平分BD又∵O 为AD 的中点∴OG 为△ABD 的中位线 ∴OC ∥AB ,OG= 1AB 2x = ,CG= 53OC OG=22x x x --= ABH CGH ∴~24332AH AB x HC CG x ∴===O BAD ∠12第 11 页 共 11 页 (3)解:如图,连接OC 交BD 于G由(2)可知:OC ∥AB ,OG= AB ∴∠BHA=∠GCH在△BHA 和△GHC 中 ∵∠BHA=∠GCH ,AH=CH ,∠BHA=∠GHC ()BHA GHC ASA ∴≅∴CG AB =设 OG m = ,则 2,3CG AB m OA OC m ==== 又 //OC AB∴FAB FOC ~FA AB FO OC∴= 62633m m m∴=+ 1m ∴= 2,6,4AB AD BE ∴=== ∵AD 是 的直径90ABD EBD ∴∠=∠=︒22226242BD AD AB =--=114428222EBD S EB BD ∴=⋅=⨯⨯= 又 ,ACD ACE ≅ EC CD ∴= 11824222BEC EBD S S ∴==⨯=12O。

九年级数学相似试卷免费【含答案】

九年级数学相似试卷免费【含答案】

九年级数学相似试卷免费【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个比例不是相似图形的相似比?A. 2:1B. 3:2C. 5:4D. 1:32. 若两个三角形的对应边长比为2:3,则它们的面积比为:A. 2:3B. 4:9C. 3:2D. 9:43. 在相似三角形中,下列哪个比例是正确的?A. 对应角相等B. 对应边成比例C. 对应角相等且对应边成比例D. 所有的角都相等4. 下列哪个图形不是相似图形?A. 两个正方形B. 两个矩形C. 两个圆D. 两个三角形5. 若两个相似三角形的面积分别为36cm²和81cm²,则它们的相似比为:A. 1:3B. 3:1C. 2:3D. 3:2二、判断题(每题1分,共5分)1. 相似图形的对应角相等。

()2. 相似图形的面积比等于相似比的平方。

()3. 所有的等边三角形都是相似的。

()4. 相似图形的周长比等于相似比。

()5. 两个三角形的对应角相等,则它们一定相似。

()三、填空题(每题1分,共5分)1. 相似图形的对应边成______。

2. 若两个三角形的相似比为2:3,则它们的面积比为______。

3. 相似三角形的______相等。

4. 若两个相似三角形的周长分别为12cm和18cm,则它们的相似比为______。

5. 相似图形的面积比等于______的平方。

四、简答题(每题2分,共10分)1. 简述相似图形的定义。

2. 两个三角形相似的条件是什么?3. 相似三角形的性质有哪些?4. 如何计算相似三角形的面积比?5. 相似图形的周长比与相似比有什么关系?五、应用题(每题2分,共10分)1. 已知两个相似三角形的相似比为3:4,其中一个三角形的面积为54cm²,求另一个三角形的面积。

2. 两个相似图形的周长分别为24cm和36cm,求它们的相似比。

3. 两个相似三角形的面积分别为100cm²和225cm²,求它们的相似比。

914第四章:相似图形试题

914第四章:相似图形试题

第一部分:基础复习八年级数学(下)第四章:相似图形一中考要求:1.在丰富的现实情境中,经历对图形相似问题的观察操作思考交流类比归纳等过程,进一步发展学生的探索精神合作意识以及从图形相似的角度提出问题分析问题解决问题的能力,增强应用数学的意识.2.结合现实情境了解线段的比,成比例线段;通过建筑艺术等方面的实例了解黄金分割,并通过图形相似的具体应用,进一步体会数学与自然及人类社会的密切联系,加深对数学的人文价值的理解和认识.3.通过典型实例,了解现实生活中的相似图形.4.了解相似多边形,经历探索相似多边形性质的过程,知道相似多边形的对应角相等,对应边成比例,周长的比等于相似比,面积的比等于相似比的平方;探索并掌握两个三角形相似的条件.5.了解图形的位似,能够利用作位似图形等方法将一个图形放大或缩小;利用图形的相似解决一些实际问题.二中考卷研究(一)中考对知识点的考查:课标中考涉及的知识点如下表:(二)中考热点:1.将图形的折叠问题照镜问题转化为轴对称图形问题及将轴对称问题运用于综合题中是年的热点题型之一.2.将图形的平移和旋转干体的实际问题结合在一起综合考查是年的热点题型.3.运用相似三角形或相似多边形的性质解决实际问题是年的热点题型.三中考命题趋势及复习对策图形的相似这部分内容在中考中大致有两部分,一得利用比例的基本性质进行比例变形,通常以填空选择题为主,在复习中,首先要掌握好比例的基本性质,重视图形的作用,擅于结合图形进行分析运用;二是相似多边形中主要以相似三角形的考查为主,其中包括选择题,填空题,简单的解答题,证明题,这类题一般都是证明相似,比例或等积式,计算线段长或面积,写函数关系式等,一般为8~11分,要想学好这部分内容不但要学会它的判定方法和性质,而且还要熟悉基本图形,能从复杂的图形中分解出基本图形.★★★(I)考点突破★★★考点1:比例基本性质及运用一考点讲解:1.线段比的含义:如果选用同一长度单位得两条线段ab的长度分别为mn,那么就说这两条线段的比是a:b=m:n,或写成a m=b n,和数的一样,两条线段的比ab中,a叫做比的前项b叫做比的后项.注意:(1)针对两条线段,(2)两条线段的长度单位相同,但与所采用的单位无关;(3)其比值为一个不带单位的正数.2.线段成比例及有关概念的意义:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段,已知四条线段abcd,如果a c=b d或a:b=c:d,那么abcd叫做成比例的项,线段ad叫做比例外项,线段bd 叫做比例内项,线段d叫做abc的第四比例项,当比例内项相同时,即争a bb c或a:b=b:c,那么线段b叫做线段a和c的比例中项.3.比例的性质要注意灵活地运用比例线段的多种不同的变化形式,即由a c=b d推出b d=a c等,但无论怎样变化,它们都保持ad=bc的基本性质不变.4.黄金分割:在线段AB上有一点C,若AC:AB=BC:AC,则C点就是AB的黄金分割点.二经典考题剖析:【考题1-1】(温州模拟,4分)雨后初晴,一学生在运动场上玩耍,从他前面2m远一块小积水处,他看到旗杆顶端的倒影,如果旗杆底端到积水处的距离为40m,该生的眼部高度是1.5m,那么旗杆的高度是___________m.【考题1-2】(常州模拟,3分)已知三个数1,2, 3 ,请你再添上一个(只填一个)数,使它们能构成一个比例式,则这个数是_____________.【考题1-3】( 南京,3分)在比例尺为1:8000的南京市城区地图上,太平南路的长度约为25 cm ,它的实际长度约为( ) A .320cm B .320m C .2000cm D .2000m 三针对性训练:( 分钟) (答案: )1.AB 两地的实际距离为2500m ,在一张平面图上的距离是5cm ,这张平面地图的比例尺为__________. 2.已知 x y =3,那么x-yy 的值是____________-3.点C 把线段 AB 分成两条线段AC 和BC (AC >BC ),如果点C 是线段AB 的黄金分割点,那么_ ______与_______的比叫做黄金比. 4.已知点C 是线段AB 的黄金分割点,带AC AB ≈0.6 18,那么CBAC的近似值是_______5.两直角边的长分别为3和4的直角三角形的斜边与斜边上的高的比为( )A .5:3B .5:4C .5:12D .25:12 6.如果a= 2,b= 9,c= 6,d= 3, 那么( ) A .abcd 成比例 B .acbd 成比例 C adbc 成比例 Dacdb 成比例7.已知 x :y=3:2,则下列各式中不正确的是( ) A x+y y = 52 B x-y y = 12 C x x+y = 35 D x y-x =318.如果点C 为线段 AB 的黄金分割点,且AC >BC ,则下列各式不正确的是( )A .AB :AC =AC :BC B .ACAB CACAB D .AC ≈0.61 8AB9.创新实验学校设计的矩形花坛的平面图,这个花坛的长为10m ,宽为6m .⑴ 在比例尺为1:50的平面图上,这个矩形花坛的长和宽各是多少cm ?⑵ 在平面图上,这个花坛的长和宽的比是多少? ⑶ 花坛的长和宽的比为多少? ⑷ 你发现这两个比有什么关系? 10 以长为2的定线段AB 为边作正方形ABCD ,取 AB 的中点P ,连结PD ,在BA 的延长线上取点F ,使PF=PD ,以AF 为边作正方形AMEF ,点M 在AD 上(如图l -4-1).(1)求AMMD 的长; (2)你能说明点M 是线段AD 的黄金分割点吗?考点2:相似三角形的性质和判定一考点讲解: 1.相似三角形定义:对应角相等,对应边成比例的两个三角形叫做相似三角形,相似三角形的对应边的比叫做相似比. 2.相似三角形的性质:①相似三角形的对应角相等,对应边成比例.②相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.③相似三角形周长的比等于相似比.④相似三角形面积的比等于相似比的平方.3.相似三角形的判定:①两角对应相等的两个三角形相似.②两边对应成比例,且夹角相等的两个三角形相似.③三边对应成比例的两个三角形相似.④如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.注:①直角三角形被斜边上的高分成的两个三角形和原三角形相似.②在运用三角形相似的性质和判定时,要找对对应角对应边,相等的角所对的边是对应边.4.在这部分的学习过程中就注意以下问题:①要多观察图形,通过具体问题掌握图形相似的有关知识.②在学习“探索三角形相似的条件”时要与“探索三角形全等的条件”进行比较,通过类比提高解决问题的能力,注意尽可能多地挖掘题目中的隐含条件. 二经典考题剖析:【考题2-1】(郸县,3分)下列命题中,正确的是( ) A .所有的等腰三角形都相似 B .所有的直角三角形都相似 C .所有的等边三角形都相似 D .所有的矩形都相似【考题2-2】(海口,3分)如图l -4-2,DE 两点分别在△CAB 上,且 DE 与BC 不平行,请填上一个你认为适合的条件_________,使得△ADE ∽△ABC .【考题2-3】(南山)如图l -4-3,D 是△ABC 的边AB 上的点,请你添加一个条件,使△ACD 与△ABC 相似.你添加的条件是___________三针对性训练:( 45分钟) (答案:251 )1对于下列命题:(1)所有等腰三角形都相似;(2)有一个底角相等的两个等腰三角形相似;(3)有一个角相等的两个等腰三角形相似;(4)顶角相等的两个等腰三角形相似.其中真命题的个数是( )A .l 个B .2个C .3个D .4个 2.△ABC 中,D 是AB 上的一点,再在 AC 上取一点 E ,使得△ADE 与△ABC 相似,则满足这样条件的E 点共有( )A .0个B .1个C .2个D .无数个3.若三角形三边之比为3:5:7,与它相似的三角形的最长边为21㎝,则其余两边之和为()A.24cm B.21cm C.19cm D.9cm4.厨房角柜的台面是三角形,如图l-4-4,如果把各边中点的连线所围成的三角形铺成黑色大理石.(图中阴影部分)其余部分铺成白色大理石,那么黑色大理石的面积与白色大理石面积的比是()A.14B.41C.13D.345.如图1-4-5,AD⊥BC于D,CE⊥AB 于E,交AD于F,图中相似三角形的对数是()A.3 B.4 C.5 D.66.若△ABC与△A′B′C′相似,△ABC的周长为15,△△A′B′C′的周长为45,则△ABC和△A′B′C′的面积比为__________.7.如图1-4-6,AD是△ABC的中线,∠ADC=45°,把△ADC沿AD对折,点C落在C′的位置,则BC′和BC之间的数量关系是___________.8.梯形ABCD中,AB∥DC,CD=8,AB=12,S梯形ABCD=90,两腰的延长线相交于点M,则SΔMCD=___9.在△ABC中,AB=3,AC=4,BC=5,现将它折叠,使B点与C点重合,如图14-7,则折痕DE的长是多少?10 如图l-4-8,在yABCD中,过点B作BE⊥CD,垂足为E,连结AE,F为AE上一点,且∠BFE=∠C.⑴求证:△ABF∽△EAD;⑵若AB=4,∠BA=30°,求AE的长;⑶在⑴⑵的条件下,若AD=3,求BF的长.考点3:相似多边及位似图形一考点讲解:1.定义:对应角相等,对应边成比例的两个多边形叫做相似多边形.2.相似多边形的性质:(1)相似多边形的周长的比等于相似比;(2)相似多边形的对应对角线的比等于相似比;(3)相似多边形的面积的比等于相似比的平方;(4)相似多边形的对应对角线相似,相似比等于相似多边形的相似比.3.位似图形的定义:如果两个图形不仅是相似图形.而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又叫做位似比.4.在学习这部分内容时应注意以下问题:(1)要多观察图形,通过具体问题掌握图形相似的有关知识;(2)在学习“探索多边形相似条件”时要与“探索多边形全等的条件”进行比较,通过类比提高解决问题的能力,注意尽可能多地挖掘题目中的隐含的条件。

北师大版八年级数学下册第四单元相似图形测试题1[1]

北师大版八年级数学下册第四单元相似图形测试题1[1]

一、 选择题1、若32=y x ,则3x ﹣2y=( )A 、3B 、2C 、1D 、02、若点C 是线段AB 的黄金分割点,且AB=2,则AC=( ) A 、15- B 、53- C 、215- D 、15-或53-3、下列图形中相似的多边形是( )A 、所有的矩形B 、所有的菱形C 、所有的等腰梯形D 、所有的正方形4、△ABC 的三边长分别是102、、2,△A ′B ′C ′的两边长分别为1和5,若△ABC ∽△A ′B ′C ′,则△A ′B ′C ′的第三边长为( )A 、22B 、2C 、2D 、225、甲、乙两地相距3.5km ,画在地图上的距离为7cm ,则这张地图的比例尺为( ) A 、2:1 B 、1:50000 C 、1:2 D 、50000:16下列各组中的四条线段成比例的是( )A.a =2,b =3,c =2,d =3B.a =4,b =6,c =5,d =10C.a =2,b =5,c =23,d =15D.a =2,b =3,c =4,d =1 7.已知线段a 、b 、c 、d 满足ab =cd ,把它改写成比例式,错误的是( )A.a ∶d =c ∶bB.a ∶b =c ∶dC.d ∶a =b ∶cD.a ∶c =d ∶b 8.若ac =bd ,则下列各式一定成立的是( )A.dc b a = B.c cb d d a +=+ C.cd ba =22D.da cd ab = 9.已知点M 将线段AB 黄金分割(AM >BM ),则下列各式中不正确的是( )A.AM ∶B M =AB ∶AMB.AM =215-AB C.BM =215-AB D.AM ≈0.618AB 二、 填空题1、正方形的对角线与边长的比为2、若52=-y y x ,则y x =3、已知线段AB ,延长AB 到C ,使BC=3AB ,则BC/AC=4、电视节目主持人主持节目时,站在舞台的黄金分割点处最自然得体,舞台AB 长为20m ,试计算主持人应走到离A 点至少 m 点再走 m ,也处在比较得体的位置。

初三数学图形的相似试题

初三数学图形的相似试题1.若,则= .【答案】.【解析】先用b表示出a,然后代入比例式进行计算即可得解;∵,∴.∴.【考点】比例的性质.2.如图,测得BD="120" m,DC="60" m,EC="50" m,则河宽AB为().A.120 m B.100 m C.75 m D.25 m【答案】B.【解析】根据题意易知:△ABD∽△ECD∴∴m.故选B.【考点】相似三角形的判定与性质.3.如图,在正方形ABCD中,E是BC上的一点,连结AE,作BF⊥AE,垂足为H,交CD于F,作CG∥AE,交BF于G.求证:(1)CG=BH,(2)FC2=BF·GF,(3)=.【答案】见解析【解析】证明:(1)∵BF⊥AE,CG∥AE,∴CG⊥BF.∵在正方形ABCD中,∠ABH+∠CBG=90°,∠CBG+∠BCG=90°,∠BAH+∠ABH=90°,∴∠BAH=∠CBG,∠ABH=∠BCG,AB=BC,∴△ABH≌△BCG,∴CG=BH;(2)∵∠BFC=∠CFG,∠BCF=∠CGF=90°,∴△CFG∽△BFC,∴=,即FC2=BF·GF;(3)由(2)可知,△BCG∽△BFC∴=,∴BC2=BG·BF,∵AB=BC,∴AB2=BG·BF,∴==即=.4.已知:如图9,在△ABC中,已知点D在BC上,联结AD,使得,DC=3且﹦1﹕2.(1)求AC的值;(2)若将△ADC沿着直线AD翻折,使点C落点E处,AE交边BC于点F,且AB∥DE,求的值.【答案】(1);(2).【解析】(1)根据等高的三角形的面积的比等于底边的比求出BD=2CD,然后求出BC,再根据两组角对应相等两三角形相似求出△ABC和△DAC相似,然后根据相似三角形对应边成比例可得AC:CD="BC:AC" ,代入数据计算即可得解;(2)根据翻折的性质可得∠E=∠C,DE=CD,再根据两直线平行,内错角相等可得∠B=∠EDF,然后求出∠EDF=∠CAD,再根据两组角对应相等两三角形相似求出△EFD和△ADC相似,根据相似三角形面积的比等于相似比的平方求解即可.试题解析:(1)∵﹦1﹕2∴CD:BD=1:2∵DC="3" ∴BD="6"在△ACD和△BCA中,∠CAD=∠B,∠C=∠C∴△ACD∽△BCA∴即∴.(2)∵翻折∴∠C=∠E,∠1=∠2,DE="DC=3"∵AB∥DE∴∠3=∠B∵∠1=∠B∴∠1=∠3∴△ACD∽△DEF∴.【考点】1.相似三角形的判定与性质;2.翻折变换(折叠问题).5.若x:y=6:5,则下列等式中不正确的是()A.B.C.D.【答案】D.【解析】∵x:y=6:5,∴设x=6k,y=5k,A.,故本选项错误;B.,故本选项错误;C.,故本选项错误;D.,故本选项正确.故选D.【考点】比例的性质.6.如图,直角三角形ABC中,∠ACB=90°,AB=10,BC=6,在线段AB上取一点D,作DF⊥AB交AC于点F.现将△ADF沿DF折叠,使点A落在线段DB上,对应点记为;AD的中点E的对应点记为.若∽,则AD=__________.【答案】.【解析】利用勾股定理列式求出AC,设AD=2x,得到AE=DE=DE1=A1E1=x,然后求出BE1,再利用相似三角形对应边成比例列式求出DF,然后利用勾股定理列式求出E1F,然后根据相似三角形对应边成比例列式求解得到x的值,从而可得AD的值.试题解析:∵∠ACB=90°,AB=10,BC=6,∴AC=,设AD=,∵点E为AD的中点,将△ADF沿DF折叠,点A对应点记为A1,点E的对应点为E1,∴AE=DE=DE1=A1E1=,∵DF⊥AB,∠ACB=90°,∠A=∠A,∴△ABC∽△AFD,∴=,即,解得DF=,在Rt△DE1F中,=,又∵BE1=AB﹣AE1=10﹣3x,△E1FA1∽△E1BF,∴,∴,即,解得,∴AD的长为.故答案为:.【考点】1.相似三角形的性质;2.坐标与图形性质;3.翻折变换(折叠问题).7.如图所示,图中的小方格都是边长为1的正方形,△ABC与△A'B'C'是以点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O;(2)直接写出△ABC与△A′B′C′的位似比;(3)以位似中心O为坐标原点,以格线所在直线为坐标轴建立平面直角坐标系,画出△A′B′C′关于点O中心对称的△A″B″C″,并直接写出△A″B″C″各顶点的坐标.【答案】(1)作图见解析;(2)2:1 ;(3)(6,0),(3,-2),(4,-4),作图见解析.【解析】(1)对应点连线的交点即为位似中心点;(2)根据网格中的距离即可写出△ABC与△A′B'C'的位似比;(3)作出△A'B'C'关于点 O中心对称的△A″B″C″,根据平面直角坐标系中的位置写出△A″B″C″各顶点的坐标.试题解析:(1)图中点O为所求:(2)△ABC与△A'B'C'的位似比等于2:1 .(3)△A''B''C''为所求,A''(6,0);B''(3,-2); C''(4,-4).【考点】1.作图(位似和中心对称变换);2.平面直角坐标系和点的坐标.8.如图1,在Rt△ABC中,∠ACB=900,点P以每秒1cm的速度从点A出发,沿折线AC-CB运动,到点B停止。

初三相似图形练习题

初三相似图形练习题相似图形是初中数学中的重要概念,它在几何形状的比较与应用中起到了至关重要的作用。

通过相似图形的训练,学生可以进一步掌握比例的概念,并能够应用到实际问题中。

下面我们来做一些初三相似图形的练习题。

1. 若两个三角形的对应边成比例,且夹角相等,可以得出什么结论?解析:根据相似三角形的定义,如果两个三角形的对应边成比例,且夹角相等,那么这两个三角形一定是相似的。

2. 已知两个三角形的两个角相等,可以得出什么结论?解析:如果两个三角形的两个角相等,但其他角未知,我们无法判断这两个三角形是否相似。

相等的两个角只是相似的充分条件,但不是必要条件。

3. 图中的两个直角三角形ABC和DEF,已知∠B=∠E,且∠A=∠D,可以得出什么结论?解析:根据题目中的条件,∠B=∠E且∠A=∠D。

如果我们能够证明∠C=∠F,那么就可以得出这两个直角三角形相似。

根据直角三角形的性质,∠C=90°-∠A,∠F=90°-∠D,由于∠A=∠D,所以∠C=∠F,因此两个三角形相似。

4. 在以下题目中,哪些是相似的?请简要说明理由。

a) 两个等边三角形b) 一个正方形和一个长方形c) 一个长方形和一个平行四边形d) 一个矩形和一个平行四边形解析:相似的几何形状满足比例关系,即对应边的长度成比例。

根据题目给出的图形,我们来判断哪些是相似的。

a) 两个等边三角形是相似的,因为等边三角形的三条边长度都相等,满足比例关系。

b) 一个正方形和一个长方形不是相似的,因为它们的边长比例不一致。

c) 一个长方形和一个平行四边形可能是相似的,也可能不是相似的。

这取决于具体的长度比例关系,如果长方形的边长和平行四边形的对应边成比例,那么它们是相似的。

d) 一个矩形和一个平行四边形可能是相似的,也可能不是相似的。

与题目c)相同的理由,取决于具体的长度比例关系。

5. 在图中,ABCD和EFGH都是平行四边形。

若AB=8cm,AD=10cm,EF=12cm,计算GH的长度。

2021年中考数学复习《图形相似》专题训练题含答案

《图形相似》提升训练.一.选择题(共14小题)1.如图,将矩形ABCD沿AE折叠,点D的对应点落在BC上点F处,过点F作FG∥CD,连接EF,DG,下列结论中正确的有()①∠ADG=∠AFG;②四边形DEFG是菱形;③DG2=AE•EG;④若AB=4,AD=5,则CE=1.A.①②③④B.①②③C.①③④D.①②2.如图,在△ABC中,D为AB边上一点,E为CD中点,AC=,∠ABC=30°,∠A=∠BED=45°,则BD的长为()A.B. +1﹣C.﹣D.﹣13.如图,在Rt△ABC中,∠ABC=90°,AB=6,AC=10,∠BAC和∠ACB的平分线相交于点E,过点E作EF∥BC交AC于点F,那么EF的长为()A.B.C.D.4.(易错题)已知:如图,∠ADE=∠ACD=∠ABC,图中相似三角形共有()A.1对 B.2对 C.3对 D.4对5.如图,平面直角坐标系中O是原点,平行四边形ABCO的顶点A、C的坐标分别(8,0)、(3,4),点D,E把线段OB三等分,延长CD、CE分别交OA、AB 于点F,G,连接FG.则下列结论:①F是OA的中点;②△OFD与△BEG相似;③四边形DEGF的面积是;④OD=.正确的个数是()A.4个 B.3个 C.2个 D.1个6.如图,点P是边长为的正方形ABCD的对角线BD上的动点,过点P分别作PE⊥BC于点E,PF⊥DC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF交AH于点G,当点P在BD上运动时(不包括B、D两点),以下结论中:①MF=MC;②AH⊥EF;③AP2=PM•PH;④EF的最小值是.其中正确结论是()A.①③B.②③C.②③④D.②④7.如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B,C重合),CN⊥DM,CN与AB交于点N,连接OM,ON,MN.下列五个结论:①△CNB≌△DMC;②△CON≌△DOM;③△OMN∽△OAD;④AN2+CM2=MN2;⑤若AB=2,则S△OMN的最小值是,其中正确结论的个数是()A.2 B.3 C.4 D.58.如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM等于()A.3:2:1 B.5:3:1 C.25:12:5 D.51:24:109.如图,矩形纸片ABCD中,G、F分别为AD、BC的中点,将纸片折叠,使D 点落在GF上,得到△HAE,再过H点折叠纸片,使B点落在直线AB上,折痕为PQ.连接AF、EF,已知HE=HF,下列结论:①△MEH为等边三角形;②AE⊥EF;③△PHE∽△HAE;④=,其中正确的结论是()A.①②③B.①②④C.①③④D.①②③④10.如图,在Rt△ABC中,∠C=90°,P是BC边上不同于B,C的一动点,过点P 作PQ⊥AB,垂足为Q,连接AP.若AC=3,BC=4,则△AQP的面积的最大值是()A.B.C.D.11.如图,在梯形ABCD中,AD∥BC,对角线AC与BD相交于点O,如果S△ACD:S△ABC=1:2,那么S△AOD:S△BOC是()A.1:3 B.1:4 C.1:5 D.1:612.在△ABC与△A′B′C′中,有下列条件:(1),(2);(3)∠A=∠A′;(4)∠C=∠C′,如果从中任取两个条件组成一组,那么能判断△ABC∽△A′B′C′的共有()A.1组 B.2组 C.3组 D.4组13.如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论中结论正确的有()①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若=,则S△EDH =13S△CFH.A.1个 B.2个 C.3个 D.4个14.如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC 分别交于点G,F,H为CG的中点,连结DE、EH、DH、FH.下列结论:①EG=DF;②△EHF≌△DHC;③∠AEH+∠ADH=180°;④若=,则=.其中结论正确的有()A.1个 B.2个 C.3个 D.4个二.填空题(共5小题)15.大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”,如图,P为AB的黄金分割点(AP>PB),如果AB的长度为10cm,那么PB的长度为cm.16.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连结BD、DP,BD与CF相交于点H,给出下列结论:①△DFP~△BPH;②==;③PD2=PH•CD;④=,其中正确的是(写出所有正确结论的序号).17.如图,在△ABC中,点D、E分别是边AB、AC的中点,DF过EC的中点G并与BC的延长线交于点F,BE与DF交于点O.若△ADE的面积为4,则四边形BOGC的面积=.18.如图,在菱形ABCD中,∠B=60°,BC=6,E为BC中点,F是AB上一点,G 为AD上一点,且BF=2,∠FEG=60°,EG交AC于点H,下列结论正确的是.(填序号即可)①△BEF∽△CHE②AG=1③EH==3S△AGH④S△BEF19.已知菱形A1B1C1D1的边长为2,∠A1B1C1=60°,对角线A1C1、B1D1相交于点O,以点O为坐标原点,分别以OB1,OA1所在直线为x轴、y轴建立如图所示的直角坐标系,以B1D1为对角线作菱形B1C2D1A2∽菱形A1B1C1D1,再以A2C2为对角线作菱形A2B2C2D2∽菱形B1C2D1A2,再以B2D2为对角线作菱形B2C3D2A3∽菱形A2B2C2D2,…,按此规律继续作下去,在y轴的正半轴上得到点A1,A2,A3,…,A n,则点A2022的坐标为三.解答题(共7小题)20.如图,在△ABC中,点D在边BC上,联结AD,∠ADB=∠CDE,DE交边AC 于点E,DE交BA延长线于点F,且AD2=DE•DF.(1)求证:△BFD∽△CAD;(2)求证:BF•DE=AB•AD.21.已知四边形ABCD中,AB=AD,对角线AC平分∠DAB,过点C作CE⊥AB于点E,点F为AB上一点,且EF=EB,连结DF.(1)求证:CD=CF;(2)连结DF,交AC于点G,求证:△DGC∽△ADC;(3)若点H为线段DG上一点,连结AH,若∠ADC=2∠HAG,AD=3,DC=2,求的值.22.如图①,OP为一墙面,它与地面OQ垂直,有一根木棒AB如图放置,点C是它的中点,现在将木棒的A点在OP上由A点向下滑动,点B由O点向OQ方向滑动,直到AB横放在地面为止.(1)在AB滑动过程中,点C经过的路径可以用下列哪个图象来描述()(2)若木棒长度为2m,如图②射线OM与地面夹角∠MOQ=60°,当AB滑动过程中,与OM并于点D,分别求出当AD=、AD=1、AD=时,OD的值.(3)如图③,是一个城市下水道,下水道入口宽40cm,下水道水平段高度为40cm,现在要想把整根木棒AB通入下水道水平段进行工作,那么这根木棒最长可以是(cm)(直接写出结果,结果四舍五入取整数).23.如图,△ABC和△BEC均为等腰直角三角形,且∠ACB=∠BEC=90°,点P为线段BE延长线上一点,连接CP,以CP为直角边向下作等腰直角△CPD,线段BE与CD相交于点F.(1)求证:=;(2)连接BD,请你判断AC与BD有什么位置关系?并说明理由.24.如图(1),P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做△ABC的费马点.(1)如果点P为锐角△ABC的费马点,且∠ABC=60°.①求证:△ABP∽△BCP;②若PA=3,PC=4,则PB=.(2)已知锐角△ABC,分别以AB、AC为边向外作正△ABE和正△ACD,CE和BD 相交于P点.如图(2)①求∠CPD的度数;②求证:P点为△ABC的费马点.25.如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(﹣1,2),B(﹣3,4),C(﹣2,6).(1)画出△ABC绕点A顺时针旋转90°后得到的△A1B1C1;(2)以原点O为位似中心,在图中画出将△A1B1C1三条边放大为原来的2倍后的△A2B2C2,并写出A2、B2、C2的坐标.26.在四边形ABCD中,点E为AB边上的一点,点F为对角线BD上的一点,且EF⊥AB.(1)若四边形ABCD为正方形.①如图1,请直接写出AE与DF的数量关系;②将△EBF绕点B逆时针旋转到图2所示的位置,连接AE,DF,猜想AE与DF 的数量关系并说明理由.(2)若四边形ABCD为矩形,BC=mAB,其他条件都不变.①如图3,猜想AE与DF的数量关系并说明理由;②将△EBF绕点B顺时针旋转α(0°<α<90°)得到△E′BF′,连接AE′,DF′,请在图4中画出草图,并直接写出AE′和DF′的数量关系.参考答案与试题解析一.选择题(共14小题)1.如图,将矩形ABCD沿AE折叠,点D的对应点落在BC上点F处,过点F作FG∥CD,连接EF,DG,下列结论中正确的有()①∠ADG=∠AFG;②四边形DEFG是菱形;③DG2=AE•EG;④若AB=4,AD=5,则CE=1.A.①②③④B.①②③C.①③④D.①②【解答】解:①由折叠可得,AD=AF,DG=FG,在△ADG和△AFG中,,∴△ADG≌△AFG(SSS),∴∠ADG=∠AFG,故①正确;②∵GF∥DC,∴∠EGF=∠DEG,由翻折的性质可知:GD=GF,DE=EF,∠DGE=∠EGF,∴∠DGE=∠DEG,∴GD=DE,∴DG=GF=DE=EF,∴四边形DEFG为菱形,故②正确;③如图所示,连接DF交AE于O,∵四边形DEFG为菱形,∴GE⊥DF,OG=OE=GE,∵∠DOE=∠ADE=90°,∠OED=∠DEA,∴△DOE∽△ADE,∴=,即DE2=EO•AE,∵EO=GE,DE=DG,∴DG2=AE•EG,故③正确;④由折叠可得,AF=AD=5,∴Rt△ABF中,BF==3,∴CF=5﹣3=2,设CE=x,则DE=EF=4﹣x,∵Rt△CEF中,CE2+CF2=EF2,∴x2+22=(4﹣x)2,解得x=,∴CE=,故④错误;故选:B.2.如图,在△ABC中,D为AB边上一点,E为CD中点,AC=,∠ABC=30°,∠A=∠BED=45°,则BD的长为()A.B. +1﹣C.﹣D.﹣1【解答】解:如图,过C作CF⊥AB于F,过点B作BG⊥CD于G,在Rt△BEG 中,∠BED=45°,则GE=GB.在Rt△AFC中,∠A=45°,AC=,则AF=CF==1,在Rt△BFC中,∠ABC=30°,CF=1,则BC=2CF=2,BF=CF=,设DF=x,CE=DE=y,则BD=﹣x,∴△CDF∽△BDG,∴==,∴==,∴DG=,BG=,∵GE=GB,∴y+=,∴2y2+x(﹣x)=﹣x,在Rt△CDF中,∵CF2+DF2=CD2,∴1+x2=4y2,∴+x(﹣x)=﹣x,整理得:x2﹣(2+2)x+2﹣1=0,解得x=1+﹣或1+﹣(舍弃),∴BD=﹣x=﹣1.故选:D.3.如图,在Rt△ABC中,∠ABC=90°,AB=6,AC=10,∠BAC和∠ACB的平分线相交于点E,过点E作EF∥BC交AC于点F,那么EF的长为()A.B.C.D.【解答】解:如图,延长FE交AB于点D,作EG⊥BC于点G,作EH⊥AC于点H,∵EF∥BC、∠ABC=90°,∴FD⊥AB,∵EG⊥BC,∴四边形BDEG是矩形,∵AE平分∠BAC、CE平分∠ACB,∴ED=EH=EG,∠DAE=∠HAE,∴四边形BDEG是正方形,在△DAE和△HAE中,,∴△DAE≌△HAE(SAS),∴AD=AH,同理△CGE≌△CHE,∴CG=CH,∵BC===8,设BD=BG=x,则AD=AH=6﹣x、CG=CH=8﹣x,∴6﹣x+8﹣x=10,解得:x=2,∴BD=DE=2,AD=4,∵DF∥BC,∴△ADF∽△ABC,∴=,即=,解得:DF=,则EF=DF﹣DE=﹣2=.故选:C.4.(易错题)已知:如图,∠ADE=∠ACD=∠ABC,图中相似三角形共有()A.1对 B.2对 C.3对 D.4对【解答】解:∵∠ADE=∠ACD=∠ABC∴DE∥BC∴△ADE∽△ABC,∵DE∥BC∴∠EDC=∠DCB,∵∠ACD=∠ABC,∴△EDC∽△DCB,同理:∠ACD=∠ABC,∠A=∠A,∴△ABC∽△ACD,∵△ADE∽△ABC,△ABC∽△ACD,∴△ADE∽△ACD∴共4对故选:D.5.如图,平面直角坐标系中O是原点,平行四边形ABCO的顶点A、C的坐标分别(8,0)、(3,4),点D,E把线段OB三等分,延长CD、CE分别交OA、AB 于点F,G,连接FG.则下列结论:①F是OA的中点;②△OFD与△BEG相似;③四边形DEGF的面积是;④OD=.正确的个数是()A.4个 B.3个 C.2个 D.1个【解答】解:①∵四边形OABC是平行四边形,∴BC∥OA,BC=OA,∴△CDB∽△FDO,∴=,∵D、E为OB的三等分点,∴==2,∴=2,∴BC=2OF,∴OA=2OF,∴F是OA的中点;所以①结论正确;②如图2,延长BC交y轴于H,由C(3,4)知:OH=4,CH=3,∴OC=5,∴AB=OC=5,∵A(8,0),∴OA=8,∴OA≠AB,∴∠AOB≠∠EBG,∴△OFD∽△BEG不成立,所以②结论不正确;③由①知:F为OA的中点,同理得;G是AB的中点,∴FG是△OAB的中位线,∴FG=OB,FG∥OB,∵OB=3DE,∴FG=DE,∴=,过C作CQ⊥AB于Q,如图3.S▱OABC=OA•OH=AB•CQ,∴4×8=5CQ,∴CQ=,S△OCF=OF•OH=×4×4=8,S△CGB=BG•CQ=××=8,S△AFG=×4×2=4,∴S△CFG=S▱OABC﹣S△OFC﹣S△CBG﹣S△AFG=8×4﹣8﹣8﹣4=12,∵DE∥FG,∴△CDE∽△CFG,∴=()2=,∴=,∴S四边形DEGF =S△CFG=;所以③结论正确;④在Rt△OHB中,由勾股定理得:OB2=BH2+OH2,∴OB==,∴OD=,所以④结论不正确;本题结论正确的有:①③.故选:C.6.如图,点P是边长为的正方形ABCD的对角线BD上的动点,过点P分别作PE⊥BC于点E,PF⊥DC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF交AH于点G,当点P在BD上运动时(不包括B、D两点),以下结论中:①MF=MC;②AH⊥EF;③AP2=PM•PH;④EF的最小值是.其中正确结论是()A.①③B.②③C.②③④D.②④【解答】解:①错误.因为当点P与BD中点重合时,CM=0,显然FM≠CM;②正确.连接PC交EF于O.根据对称性可知∠DAP=∠DCP,∵四边形PECF是矩形,∴OF=OC,∴∠OCF=∠OFC,∴∠OFC=∠DAP,∵∠DAP+∠AMD=90°,∴∠GFM+∠AMD=90°,∴∠FGM=90°,∴AH⊥EF.③正确.∵AD∥BH,∴∠DAP=∠H,∵∠DAP=∠PCM,∴∠PCM=∠H,∵∠CPM=∠HPC,∴△CPM∽△HPC,∴=,∴PC2=PM•PH,根据对称性可知:PA=PC,∴PA2=PM•PH.④正错误.∵四边形PECF是矩形,∴EF=PC,∴当CP⊥BD时,PC的值最小,此时A、P、C共线,∵AC=2,∴PC的最小值为1,∴EF的最小值为1;故选:B.7.如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B,C重合),CN⊥DM,CN与AB交于点N,连接OM,ON,MN.下列五个结论:①△CNB≌△DMC;②△CON≌△DOM;③△OMN∽△OAD;④AN2+CM2=MN2;⑤若AB=2,则S△OMN的最小值是,其中正确结论的个数是()A.2 B.3 C.4 D.5【解答】解:∵正方形ABCD中,CD=BC,∠BCD=90°,∴∠BCN+∠DCN=90°,又∵CN⊥DM,∴∠CDM+∠DCN=90°,∴∠BCN=∠CDM,又∵∠CBN=∠DCM=90°,∴△CNB≌△DMC(ASA),故①正确;根据△CNB≌△DMC,可得CM=BN,又∵∠OC M=∠OBN=45°,OC=OB,∴△OCM≌△OBN(SAS),∴OM=ON,∠COM=∠BON,∴∠DOC+∠COM=∠COB+∠BPN,即∠DOM=∠CON,又∵DO=CO,∴△CON≌△DOM(SAS),故②正确;∵∠BON+∠BOM=∠COM+∠BOM=90°,∴∠MON=90°,即△MON是等腰直角三角形,又∵△AOD是等腰直角三角形,∴△OMN∽△OAD,故③正确;∵AB=BC,CM=BN,∴BM=AN,又∵Rt△BMN中,BM2+BN2=MN2,∴AN2+CM2=MN2,故④正确;∵△OCM≌△OBN,∴四边形BMON的面积=△BOC的面积=1,即四边形BMON的面积是定值1,∴当△MNB的面积最大时,△MNO的面积最小,设BN=x=CM,则BM=2﹣x,∴△MNB的面积=x(2﹣x)=﹣x2+x,∴当x=1时,△MNB的面积有最大值,的最小值是1﹣=,故⑤正确;此时S△OMN综上所述,正确结论的个数是5个,故选:D.8.如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM等于()A.3:2:1 B.5:3:1 C.25:12:5 D.51:24:10【解答】解:连接EM,CE:CD=CM:CA=1:3∴EM平行于AD∴△BHD∽△BME,△CEM∽△CDA∴HD:ME=BD:BE=3:5,ME:AD=CM:AC=1:3∴AH=(3﹣)ME,∴AH:ME=12:5∴HG:GM=AH:EM=12:5设GM=5k,GH=12k,∵BH:HM=3:2=BH:17k∴BH=K,∴BH:HG:GM=k:12k:5k=51:24:10故选:D.9.如图,矩形纸片ABCD中,G、F分别为AD、BC的中点,将纸片折叠,使D 点落在GF上,得到△HAE,再过H点折叠纸片,使B点落在直线AB上,折痕为PQ.连接AF、EF,已知HE=HF,下列结论:①△MEH为等边三角形;②AE⊥EF;③△PHE∽△HAE;④=,其中正确的结论是()A.①②③B.①②④C.①③④D.①②③④【解答】解:∵矩形纸片ABCD中,G、F分别为AD、BC的中点,∴GF⊥AD,由折叠可得,AH=AD=2AG,∠AHE=∠D=90°,∴∠AHG=30°,∠EHM=90°﹣30°=60°,∴∠HAG=60°=∠AED=∠MEH,∴△EHM中,∠EMH=60°=∠EHM=∠MEH,∴△MEH为等边三角形,故①正确;∵∠EHM=60°,HE=HF,∴∠HEF=30°,∴∠FEM=60°+30°=90°,即AE⊥EF,故②正确;∵∠PEH=∠MHE=60°=∠HEA,∠EPH=∠EHA=90°,∴△PHE∽△HAE,故③正确;设AD=2=AH,则AG=1,∴Rt△AGH中,GH=AG=,Rt△AEH中,EH===HF,∴GF==AB,∴==,故④正确,综上所述,正确的结论是①②③④,故选:D.10.如图,在Rt△ABC中,∠C=90°,P是BC边上不同于B,C的一动点,过点P 作PQ⊥AB,垂足为Q,连接AP.若AC=3,BC=4,则△AQP的面积的最大值是()A.B.C.D.【解答】解:设BP=x(0<x<4),由勾股定理得AB=5,∵∠PQB=∠C=90°,∠B=∠B,∴△PBQ∽△ABC,∴==,即==∴PQ=x,QB=xS △APQ =PQ ×AQ=+x= ∴当x=时,△APQ 的面积最大,最大值是.故选:C .11.如图,在梯形ABCD 中,AD ∥BC ,对角线AC 与BD 相交于点O ,如果S △ACD :S △ABC =1:2,那么S △AOD :S △BOC 是( )A .1:3B .1:4C .1:5D .1:6【解答】解:∵在梯形ABCD 中,AD ∥BC ,而且S △ACD :S △ABC =1:2,∴AD :BC=1:2;∵AD ∥BC ,∴△AOD ~△BOC ,∵AD :BC=1:2,∴S △AOD :S △BOC =1:4.故选:B .12.在△ABC 与△A′B′C′中,有下列条件:(1),(2);(3)∠A=∠A′;(4)∠C=∠C′,如果从中任取两个条件组成一组,那么能判断△ABC ∽△A′B′C′的共有( )A .1组B .2组C .3组D .4组【解答】解:共有3组,其组合分别是(1)和(2)三边对应成比例的两个三角形相似;(2)和(4)两边对应成比例且夹角相等的两个三角形相似;(3)和(4)两角对应相等的两个三角形相似.故选:C.13.如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论中结论正确的有()①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;=13S△CFH.④若=,则S△EDHA.1个 B.2个 C.3个 D.4个【解答】解:①∵四边形ABCD为正方形,EF∥AD,∴EF=AD=CD,∠ACD=45°,∠GFC=90°,∴△CFG为等腰直角三角形,∴GF=FC,∵EG=EF﹣GF,DF=CD﹣FC,∴EG=DF,故①正确;②∵△CFG为等腰直角三角形,H为CG的中点,∴FH=CH,∠GFH=∠GFC=45°=∠HCD,在△EHF和△DHC中,,∴△EHF ≌△DHC (SAS ),∴∠HEF=∠HDC ,∴∠AEH +∠ADH=∠AEF +∠HEF +∠ADF ﹣∠HDC=∠AEF +∠ADF=180°,故②正确;③由②知:△EHF ≌△DHC ,故③正确; ④∵=,∴AE=2BE ,∵△CFG 为等腰直角三角形,H 为CG 的中点,∴FH=GH ,∠FHG=90°,∵∠EGH=∠FHG +∠HFG=90°+∠HFG=∠HFD ,在△EGH 和△DFH 中,,∴△EGH ≌△DFH (SAS ),∴∠EHG=∠DHF ,EH=DH ,∠DHE=∠EHG +∠DHG=∠DHF +∠DHG=∠FHG=90°, ∴△EHD 为等腰直角三角形,过H 点作HM 垂直于CD 于M 点,如图所示:设HM=x ,则CF=2x ,∴DF=2FC=4x ,∴DM=5x ,DH=x ,CD=6x ,则S △CFH =×HM ×CF=•x•2x=x 2,S △EDH =×DH 2=×=13x 2, ∴则S △EDH =13S △CFH ,故④正确;其中结论正确的有:①②③④,4个;故选:D .14.如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC 分别交于点G,F,H为CG的中点,连结DE、EH、DH、FH.下列结论:①EG=DF;②△EHF≌△DHC;③∠AEH+∠ADH=180°;④若=,则=.其中结论正确的有()A.1个 B.2个 C.3个 D.4个【解答】解:①∵四边形ABCD为正方形,EF∥AD,∴EF=AD=CD,∠ACD=45°,∠GFC=90°,∴△CFG为等腰直角三角形,∴GF=FC,∵EG=EF﹣GF,DF=CD﹣FC,∴EG=DF,故①正确;②∵△CFG为等腰直角三角形,H为CG的中点,∴FH=CH,∠GFH=∠GFC=45°=∠HCD,在△EHF和△DHC中,,∴△EHF≌△DHC(SAS),故②正确;③∵△EHF≌△DHC(已证),∴∠HEF=∠HDC,∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF﹣∠HDC=∠AEF+∠ADF=180°,故③正确;④∵=,∴AE=2BE,∵△CFG为等腰直角三角形,H为CG的中点,∴FH=GH,∠FHG=90°,∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD,在△EGH和△DFH中,,∴△EGH≌△DFH(SAS),∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,∴△EHD为等腰直角三角形,如图,过H点作HM⊥CD于M,设HM=x,则DM=5x,DH=x,CD=6x,则S△DHC =×HM×CD=3x2,S△EDH=×DH2=13x2,∴3S△EDH =13S△DHC,故④正确;故选:D.二.填空题(共5小题)15.大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”,如图,P为AB的黄金分割点(AP>PB),如果AB的长度为10cm,那么PB的长度为(15﹣5)cm.【解答】解:∵P为AB的黄金分割点(AP>PB),∴AP=AB=×10=5﹣5,∴PB=AB﹣PA=10﹣(5﹣5)=(15﹣5)cm.故答案为(15﹣5).16.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连结BD、DP,BD与CF相交于点H,给出下列结论:①△DFP~△BPH;②==;③PD2=PH•CD;④=,其中正确的是①②③(写出所有正确结论的序号).【解答】解:∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH,故①正确;∵∠DCF=90°﹣60°=30°,∴tan∠DCF==,∵△DFP∽△BPH,∴==,∵BP=CP=CD,∴==,故②正确;∵PC=DC,∠DCP=30°,∴∠CDP=75°,又∵∠DHP=∠DCH+∠CDH=75°,∴∠DHP=∠CDP,而∠DPH=∠CPD,∴△DPH∽△CPD,∴,即PD2=PH•CP,又∵CP=CD,∴PD2=PH•CD,故③正确;如图,过P作PM⊥CD,PN⊥BC,设正方形ABCD的边长是4,△BPC为正三角形,则正方形ABCD的面积为16,∴∠PBC=∠PCB=60°,PB=PC=BC=CD=4,∴∠PCD=30°∴PN=PB•sin60°=4×=2,PM=PC•sin30°=2,=S四边形PBCD﹣S△BCD=S△PBC+S△PDC﹣S△BCD∵S△BPD=×4×2+×2×4﹣×4×4=4+4﹣8=4﹣4,∴=,故④错误;故答案为:①②③.17.如图,在△ABC中,点D、E分别是边AB、AC的中点,DF过EC的中点G 并与BC的延长线交于点F,BE与DF交于点O.若△ADE的面积为4,则四边形BOGC的面积=7.【解答】解:∵点D、E分别是边AB、AC的中点,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴==,∵△ADE的面积为4,=16,∴S△ABC∵DE∥BC,∴△ODE∽△OFB,∠EDG=∠F,∠DEG=∠GCF,∴=,又EG=CG,∴△DEG≌△FCG(AAS),∴DE=CF,∴BF=3DE,∵DE∥BC,∴△ODE∽△OFB,∴==,∵AD=BD,=S△ADE=4,∴S△BDE∵AE=CE=2EG,∴S △DEG =S △ADE =×4=2, ∵=,∴S △ODE =S △BDE =×4=1,∴S △OEG =S △DEG ﹣S △ODE =×4=1,∵S 四边形DBCE =S △ABC ﹣S △ADE =3×4=12,∴S 四边形OBCG =S 四边形DBCE ﹣S △BDE ﹣S △OEG =7.故答案为:7.18.如图,在菱形ABCD 中,∠B=60°,BC=6,E 为BC 中点,F 是AB 上一点,G 为AD 上一点,且BF=2,∠FEG=60°,EG 交AC 于点H ,下列结论正确的是①②③.(填序号即可)①△BEF ∽△CHE②AG=1③EH=④S △BEF =3S △AGH【解答】解:∵菱形ABCD 中,∠B=60°,∠FEG=60°,∴∠B=∠ECH=60°,∠BEF=CHE=120°﹣∠CEH ,∴△BEF ∽△CHE ,故①正确;∴=,又∵BC=6,E为BC中点,BF=2,∴,即CH=4.5,又∵AC=BC=6,∴AH=1.5,∵AG∥CE,∴△AGH∽△CEH,∴,∴AG=CE=1,故②正确;如图,过F作FP⊥BC于P,则∠BFP=30°∴BP=BF=1,PE=3﹣1=2,PF=,∴Rt△EFP中,EF==,又∵,∴EH=EF=,故③正确;∵AG=CE,BF=CE,△△BEF∽△CHE,△AGH∽△CEH,∴S△CEH=9S△AGH,S△CEH=S△BEF,∴9S△AGH =S△BEF,∴S△BEF =4S△AGH,故④错误;故答案为:①②③.19.已知菱形A1B1C1D1的边长为2,∠A1B1C1=60°,对角线A1C1、B1D1相交于点O,以点O为坐标原点,分别以OB1,OA1所在直线为x轴、y轴建立如图所示的直角坐标系,以B1D1为对角线作菱形B1C2D1A2∽菱形A1B1C1D1,再以A2C2为对角线作菱形A2B2C2D2∽菱形B1C2D1A2,再以B2D2为对角线作菱形B2C3D2A3∽菱形A2B2C2D2,…,按此规律继续作下去,在y轴的正半轴上得到点A1,A2,A3,…,A n,则点A2022的坐标为(0,32021)【解答】解:∵菱形A1B1C1D1的边长为2,∠A1B1C1=60°,∴OA1=A1B1•sin30°=2×=1,OB1=A1B1•cos30°=2×=,∴A1(0,1).∵1C2D1A2∽菱形A1B1C1D1,∴OA2===3,∴A2(0,3).同理可得A3(0,9)…∴A2022(0,32021).故答案为:(0,32021).三.解答题(共7小题)20.如图,在△ABC中,点D在边BC上,联结AD,∠ADB=∠CDE,DE交边AC 于点E,DE交BA延长线于点F,且AD2=DE•DF.(1)求证:△BFD∽△CAD;(2)求证:BF•DE=AB•AD.【解答】证明:(1)∵AD2=DE•DF,∴,∵∠ADF=∠EDA,∴△ADF∽△EDA,∴∠F=∠DAE,又∵∠ADB=∠CDE,∴∠ADB+∠ADF=∠CDE+∠ADF,即∠BDF=∠CDA,∴△BFD∽△CAD;(2)∵△BFD∽△CAD,∴,∵,∴,∵△BFD∽△CAD,∴∠B=∠C,∴AB=AC,∴,∴BF•DE=AB•AD.21.已知四边形ABCD中,AB=AD,对角线AC平分∠DAB,过点C作CE⊥AB于点E,点F为AB上一点,且EF=EB,连结DF.(1)求证:CD=CF;(2)连结DF,交AC于点G,求证:△DGC∽△ADC;(3)若点H为线段DG上一点,连结AH,若∠ADC=2∠HAG,AD=3,DC=2,求的值.【解答】(1)证明:∵AC平分∠DAB,∴∠DAC=∠BAC,在△ADC和△ABC中∴△ADC≌△ABC,∴CD=CB,∵CE⊥AB,EF=EB,∴CF=CB,∴CD=CF;(2)解:∵△ADC≌△ABC,∴∠ADC=∠B,∵CF=CB,∴∠CFB=∠B,∴∠ADC=∠CFB,∴∠ADC+∠AFC=180°,∵四边形AFCD的内角和等于360°,∴∠DCF+∠DAF=180°,∵CD=CF,∴∠CDG=∠CFD,∵∠DCF+∠CDF+∠CFD=180°,∴∠DAF=∠CDF+∠CFD=2∠CDG,∵∠DAB=2∠DAC,∴∠CDG=∠DAC,∵∠DCG=∠ACD,∴△DGC∽△ADC;(3)解:∵△DGC∽△ADC,∴∠DGC=∠ADC,=,∵∠ADC=2∠HAG,AD=3,DC=2,∴∠HAG=∠DGC,=,∴∠HAG=∠AHG,=,∴HG=AG,∵∠GDC=∠DAC=∠FAG,∠DGC=∠AGF,∴△DGC∞△AGF,∴==,∴=.22.如图①,OP为一墙面,它与地面OQ垂直,有一根木棒AB如图放置,点C 是它的中点,现在将木棒的A点在OP上由A点向下滑动,点B由O点向OQ方向滑动,直到AB横放在地面为止.(1)在AB滑动过程中,点C经过的路径可以用下列哪个图象来描述()(2)若木棒长度为2m,如图②射线OM与地面夹角∠MOQ=60°,当AB滑动过程中,与OM并于点D,分别求出当AD=、AD=1、AD=时,OD的值.(3)如图③,是一个城市下水道,下水道入口宽40cm,下水道水平段高度为40cm,现在要想把整根木棒AB通入下水道水平段进行工作,那么这根木棒最长可以是113(cm)(直接写出结果,结果四舍五入取整数).【解答】解:(1)∵点C是AB的中点,∴OC=AB,∴点C的运动轨迹是以O为圆心,AB长为半径的圆弧,经过的路程的圆周.故选甲.(2)过D作DH⊥OP于H,设DH=a,在Rt△OHD中,∵∠AOD=90°﹣600=300,∴OD=2a,OH=a,∵DH⊥OA,OQ⊥OA,∴DH∥QO,∴=,当AD=时,BD=,∴=,∴AH=a,在Rt△AHD中,∵AH2+DH2=AD2,∴a2+a2=,解得a=,OD=,当AD=1时,BD=1,∴=,∴AH=a,在Rt△AHD中,∵AH2+DH2=AD2,∴3a2+a2=1,解得a=,OD=1,当AD=时,BD=,∴=,∴AH=2a,在Rt△AHD中,∵AH2+DH2=AD2,∴12a2+a2=,解得a=,OD=.(3)由题意当等腰直角三角形的直角边为80cm时,斜边为≈113cm,所以这根木棒最长可以是113cm.故答案为113cm.23.如图,△ABC和△BEC均为等腰直角三角形,且∠ACB=∠BEC=90°,点P为线段BE延长线上一点,连接CP,以CP为直角边向下作等腰直角△CPD,线段BE与CD相交于点F.(1)求证:=;(2)连接BD,请你判断AC与BD有什么位置关系?并说明理由.【解答】(1)证明:∵,△ABC和△BEC均为等腰直角三角形,且∠ACB=∠BEC=90°,∴∠ECB=∠PCD=45°,∠CEB=∠CPD=90°,∴△BCE∽△DCP,∴=;(2)AC∥BD,理由:∵∠PCE+∠ECD=∠BCD+∠ECD=45°,∴∠PCE=∠BCD,∵=,∴△PCE∽△DCB,∴∠CBD=∠CEP=90°,∵∠ACB=90°,∴∠ACB=∠CBD,∴AC∥BD.24.如图(1),P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做△ABC的费马点.(1)如果点P为锐角△ABC的费马点,且∠ABC=60°.①求证:△ABP∽△BCP;②若PA=3,PC=4,则PB=2.(2)已知锐角△ABC,分别以AB、AC为边向外作正△ABE和正△ACD,CE和BD 相交于P点.如图(2)①求∠CPD的度数;②求证:P点为△ABC的费马点.【解答】(1)证明:①∵∠PAB+∠PBA=180°﹣∠APB=60°,∠PBC+∠PBA=∠ABC=60°,∴∠PAB=∠PBC,又∵∠APB=∠BPC=120°,∴△ABP∽△BCP,②解:∵△ABP∽△BCP,∴=,∴PB2=PA•PC=12,∴PB=2;故答案为:2;(2)解:①∵△ABE与△ACD都为等边三角形,∴∠BAE=∠CAD=60°,AE=AB,AC=AD,∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,在△ACE和△ABD中,,∴△ACE≌△ABD(SAS),∴∠1=∠2,∵∠3=∠4,∴∠CPD=∠6=∠5=60°;②证明:∵△ADF∽△CFP,∴AF•PF=DF•CF,∵∠AFP=∠CFD,∴△AFP∽△CDF.∴∠APF=∠ACD=60°,∴∠APC=∠CPD+∠APF=120°,∴∠BPC=120°,∴∠APB=360°﹣∠BPC﹣∠APC=120°,∴P点为△ABC的费马点.25.如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(﹣1,2),B(﹣3,4),C(﹣2,6).(1)画出△ABC绕点A顺时针旋转90°后得到的△A1B1C1;(2)以原点O为位似中心,在图中画出将△A1B1C1三条边放大为原来的2倍后的△A2B2C2,并写出A2、B2、C2的坐标.【解答】解:(1)如图,△A1B1C1为所求;(2)如图,△A2B2C2为所作,点A2、B2、C2的坐标分别为(﹣2,4),B(2,8),C(6,6).26.在四边形ABCD中,点E为AB边上的一点,点F为对角线BD上的一点,且EF⊥AB.(1)若四边形ABCD为正方形.①如图1,请直接写出AE与DF的数量关系DF=AE;②将△EBF绕点B逆时针旋转到图2所示的位置,连接AE,DF,猜想AE与DF 的数量关系并说明理由.(2)若四边形ABCD为矩形,BC=mAB,其他条件都不变.①如图3,猜想AE与DF的数量关系并说明理由;②将△EBF绕点B顺时针旋转α(0°<α<90°)得到△E′BF′,连接AE′,DF′,请在图4中画出草图,并直接写出AE′和DF′的数量关系.【解答】解:(1)①∵四边形ABCD为正方形,∴△ABD为等腰直角三角形,∴BD=AB,∵EF⊥AB,∴△BEF为等腰直角三角形,BF=BE,∴BD﹣BF=AB﹣BE,即DF=AE,故答案为:DF=AE;②DF=AE.理由如下:∵△EBF绕点B逆时针旋转到图2所示的位置,∴∠ABE=∠DBF,∵=,=,∴=,∴△ABE∽△DBF,∴==,即AE与DF的数量关系是:DF=AE;(2)①AE与DF的数量关系是:DF=AE;理由:在图3中,作FM⊥AD,垂足为M.∵∠A=∠AEF=∠AMF=90°,∴四边形AEFM是矩形,∴FM=AE,∵AD=BC=mAB,∴Rt△ABD中,BD==AB,∵MF∥AB,∴△DMF∽△ABD,∴==,∴DF=MF=AE;②AE′和DF′的数量关系:DF'=AE'.如图3,∵四边形ABCD为矩形,∴AD=BC=mAB,∴B D==AB,∵EF⊥AB,∴EF∥AD,∴△BEF∽△BAD,∴=,∴==,如图4,∵△EBF绕点B顺时针旋转α(0°<α<90°)得到△E'BF',∴∠ABE′=∠DBF′,BE′=BE,BF′=BF,∴==,∴△ABE′∽△DBF′,∴==,即DF′=AE′.。

中考数学《图形的相似》专项练习题及答案

中考数学《图形的相似》专项练习题及答案一、单选题1.一块含30°角的直角三角板(如图),它的斜边AB=8cm,里面空心△DEF的各边与△ABC的对应边平行,且各对应边的距离都是1cm,那么△DEF的周长是()A.5cm B.6cm C.(6-√3)cm D.(3+√3)cm2.如图,DE△BC,EF△AB,现得到下列结论:AEEC=BFFC,ADBF=ABBC,EFAB=DEBC,CECF=EABF其中正确的比例式的个数有()A.4个B.3个C.2个D.1个3.如图,△ABC与△ADE成位似图形,位似中心为点A,若AD:AB=1:3,则△ADE与△ABC面积之比为()A.1:2B.1:3C.1:9D.1:164.如图,△ABC中,三边互不相等,点P是AB上一点,有过点P的直线将△ABC切出一个小三角形与△ABC相似,这样的直线一共有()A.5条B.4条C.3条D.2条5.如图,已知△ABC和△EDC是以点C为位似中心的位似图形,且△ABC和△EDC的位似比为1:2,△ABC面积为2,则△EDC的面积是()A.2B.8C.16D.326.如图,△ADE△△ABC,若AD=2,BD=4,则△ADE与△ABC的相似比是()A.1:2B.1:3C.2:3D.3:27.如图,以A为位似中心,将△ADE放大2倍后,得位似图形△ABC,若s1表示△ADE的面积,s2表示四边形DBCE的面积,则s1:s2=()A.1︰2B.1︰3C.1︰4D.2︰38.如图,按如下方法,将△ABC的三边缩小到原来的12,任取一点O,连AO、BO、CO,并取它们的中点D、E、F得△DEF,则下列说法正确的是()①△ABC与△DEF是相似图形;②△ABC与△DEF的周长比为2:1;③△ABC与△DEF的面积比为4:1.A.①、②B.②、③C.①、③D.①、②、③9.如图,已知AB是半圆O的直径,弦AD,CB相交于点P,若∠DPB=45°,则S△CDP:S△ABP 的值()A.25B.23C.13D.1210.如图,AD△BE△CF,直线l1、l2这与三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为()A.4B.5C.6D.811.一个三角形的三边长分别为3,4,5,另一个与它相似的三角形中有一条边长为6.则这个三角形的周长不可能是()A.725B.18C.48D.2412.如图,小正方形的边长为均为1,下列各图(图中小正方形的边长均为1)阴影部分所示的三角形中,与△ABC相似的三角形是()A.B.C.D.二、填空题13.勾股定理是一个基本的几何定理,有数百种证明方法.“青朱出入图”是我国古代数学家证明勾股定理的几何证明法.刘徽描述此图“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,加就其余不动也,合成弦方之幂,开方除之,即弦也”.若图中BF=4,DF=2,则AE=.14.如图,矩形ABCD中,AB=3,BC=4,E是BC上一点,BE=1,AE与BD交于点F.则DF的长为.15.如图,点D在△ABC的边BC的延长线上,AD为△ABC的外角的平分线,AB=2BC,AC=3,CD=4,则AB的长为.16.如图,在△ABC中,△BAC=90°,AD△BC于D,BD=3,CD=12,则AD的长为17.在某一时刻,测得一根高为1m的竹竿的影长为2m,同时测得一栋高楼的影长为40m,这栋高楼的高度是m.18.如图,已知路灯离地面的高度AB为4.8m,身高为1.6m的小明站在D处的影长为2m,那么此时小明离电杆AB的距离BD为m.三、综合题19.如图,已知△BAC=90°,AD△BC于D,E是AC的中点,ED的延长线交AB的延长线于点F.求证:(1)△DFB△△AFD;(2)AB:AC=DF:AF.20.一次小组合作探究课上,小明将两个正方形按如图1所示的位置摆放(点E、A、D在同一条直线上).(1)发现BE与DG数量关系是,BE与DG的位置关系是.(2)将正方形AEFG绕点A按逆时针方向旋转(如图2),(1)中的结论还成立吗?若能,请给出证明;若不能,请说明理由.(3)把图1中的正方形分别改写成矩形AEFG和矩形ABCD,且AEAG=ABAD=23,AE=2,AB=4,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请直接写出这个定值.21.如图,已知点D在△ABC的外部,AD△BC,点E在边AB上,AB•AD=BC•AE.(1)求证:△BAC=△AED;(2)在边AC取一点F,如果△AFE=△D,求证:ADBC=AFAC.22.如图,在▱ABCD中,对角线AC,BD相交于点O,过点O作BD的垂线与边AD,BC分别交于点E,F,连接BE交AC于点K,连接DF。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《相似图形》中考试题选
1、如图,在等腰梯形ABCD 中,AD ∥BC,AD=3㎝,BC=7㎝,∠B=60°,P 为下底BC 上一点(不与B 、C 重合),连结AP,过P 点作PE 交DC 于E,使得∠APE=∠B.(1)求证:△ABP ∽△PCE ;(2)求等腰梯形的腰AB 的长;(3)在底边BC 上是否存在一点P,使得DE ∶EC=5∶3?如果存在,求出BP 的长,如果不存在,请说明理由.
2、如图,已知△ABC 中,∠ACB=90°,AC=BC,点E 、F 在AB 上,∠ECF=45°.(1)求证:△ACF ∽△BEC ;(2)设△ABC 的面积为S ,求证:AF ·BE=2S.
3、如图,在ABCD 中,过点B 作BE ⊥CD,垂足为E,连结AE,F 为AE 上一点,且∠BFE=∠C.(1)求证:△ABF ∽△EAD ;(2)若AB=4,∠BAE=30°,求AE 的长;(3)在(1)(2)的条件下,若AD=3,求BF 的长.
60°
A E 第1题图
P D C
B 45°
A E 第2题图
F
B
C
A C
E
F D 第3题图 B
4、如图,在Rt△ABC中,∠ACB=90°,AD平分∠CAB交于点D,过点C作CE⊥AD 于E,CE的延长线交AB于点F,过点E作EG∥BC交AB于G,AE·AD=16,AB=4 5 .(1)求证:CE=EF;(2)求EG的长.
5、将正方形ABCD折叠,使顶点A与CD边上的点M重合,折线交AD于E,交BC于F,边AB 折叠后与BC交于点G,(1)如果M为CD的中点,求证:DE∶DM∶EM=3∶4∶5.(2)如果M为CD上任一点,设AB=2a,问△CMG的周长是否与点M的位置有关?若有关,请把△CMG的周长用含DM的长x(即DM=x)的代数式表示;若无关,请说明理由.
6、某生活小区的居民筹集资金1600元,计划在一块上、下底分别为10米,20米的梯形空地上种植花木如图①,(1)他们在△AMD和△BMC地带上种植太阳花,单价为8元/㎡,当△AMD地带种满花后(图中阴影部分)共花了160元,请计算种满△BMC地带所需费用.(2)若其余地带要种的有玫瑰和茉莉两种花木可供选择,单价分别为12元/㎡和10元/㎡,应选择哪种花木,刚好用完所筹集的资金.(3)若梯形ABCD为等腰梯形,面积不变(如图②)请你设计一种花坛图案,即在
梯形内找到一点P,使得△APB≌△DPC,且S
△APD =S
△BPC
,并说明你的理由.
A
B
E
D
F G
第4题图
C
A D
C
M
第6题图①
B
A D
C
第6题图②
B
A
F
E
M C
D
G
B
第5题图
7、如图,正方形ABCD 的边长为2,AE=EB,MN=1,线段MN 的两端在BC 、CD 上,若△AED 与以M 、N 、C 为顶点的三角形相似,求CM 的长.
8、如图,已知△ABC 中,AB=5,BC=3,AC=4,PQ ∥AB,P 点在AC 上(与A 、C 不重合),Q 在BC 上.(1)当△PQC 的面积与四边形PABQ 的面积相等时,求CP 的长.(2)当△PQC 的周长与四边形PABQ 的周长相等时,求CP 的长.(3)试问:在AB 上是否存在一点M,使得△PQM 为等腰直角三角形,若不存在,请简要说明理由;若存在,
请求出PQ 的长.
9、操作:如图,在正方形ABCD 中,P 为CD 上一动点(与C 、D 不重合),使三角尺的直角顶点与点P 重合,并且一条直角边始终经过点B,另一条直角边与正方形的某一边所在直线交于点E,探究:(1)观察操作结果,哪一个三角形与△BPC 相似?并说明你的结论.(2)当点P 位于CD 的中点时,你找到的三角形与△BCP 的周长比是多少?
A P Q B
第8题图 C
A P Q B
第8题图 C M A D
C B 第9题图
B C
D M 第7题图 N E
A
11、如图,在矩形ABCD 中,AB=12㎝,BC=6㎝,点P 沿AB 边从点A 开始向点B 以2㎝/s 的速度移动;点Q 沿DA 边从点D 开始向点A 以1㎝/s 的速度移动.如果P 、Q 同时出发,用t (s )表示移动的时间(0≤t ≤6),那么(1)当t 为何值时,△QAP 为等腰直角三角形;(2)求四边形QAPC 的面积,提出一个与计算结果有关的结论;(3)当t 为何值时,以点Q 、A 、P 为顶点的三角形与△ABC 相似?
12、如图,已知点E 是四边形ABCD 的对角线BD 上一点,且∠BAC=∠BDC=∠DAE.(1)求证:BE ·AD=CD ·AE ;(2)根据图形特点,猜想BC
DE 可能等于哪两条线段的
比(只需写出图形中已有线段的一组比即可),并证明你的结论.
13、如图,在Rt△ABC 中,∠ACB=90°,CD ⊥AB,M 是CD 上的点,DH ⊥BM 于H,DH 的延长线交AC 的延长线于E.求证:(1)△AED ∽△CBM ;(2)AE ·CM=AC ·CD.
A Q P
第11题图 D C B
A
D
C
第12题图 E B A B C E 第13题图 D
M H
K
14、如图,等腰三角形ABC 中,AB=AC,D 为CB 延长线上一点,E 为BC 延长线上点,且满足AB 2=DB ·CE.
(1)求证:△ADB ∽△EAC ;(2)若∠BAC=40°,求∠DAE 的度数.
15、如图,P 为正方形ABCD 的边BC 上的点,BP=3PC,Q 是CD 中点,(1)求证:△ADQ ∽△QCP ;(2)在现在的条件下,请再写出一个正确结论.
16、如图,在△ABC 中,∠BAC=90°D 为BC 的中点,AE ⊥AD,AE 交CB 的延长线于点E.(1)求证:△EAB ∽△ECA ;(2)△ABE 和△ADC 是否一定相似?如果相似,加以说明,如果不相似,那么增加一个怎样的条件, △ABE 和△ADC 一定相似.
A
B C
E 第14题图 D A B P
D
Q 第15题图 C A B D E 第16题图
C
1、如图,在△ABC 中,AB=AC,AD ⊥BC,DE ⊥AC,M 为DE 的中点,AM 与BE 相交于N,AD 与BE 相交于F.求证:(1)DE CE =AD CD
;(2)△BCE ∽△ADM ;(3)AM 与BE 互相垂直.
2、如图,△ABC 中,D 为AC 上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE ⊥BD 于E,连结AE.(1)写出图中所有相等的线段,并加以说明;(2)图中有无相似三角形,若有,请写出一对,若没有,请说明理由;(3)求△BEC 与△BEA 的面积之比.
A
D
B F
E N
M
C 第10题图 B E
A
C
D
第22题图。

相关文档
最新文档