(新课标)高中数学《第一章 常用逻辑用语》质量评估 新人教A版选修1-1

合集下载

人教新课标版(A)高二选修1-1 第一章常用逻辑用语综合例题

人教新课标版(A)高二选修1-1 第一章常用逻辑用语综合例题

人教新课标版(A )高二选修1-1 第一章 常用逻辑用语综合例题例1. 把下列各命题作为原命题,分别写出它们的逆命题、否命题和逆否命题。

(1)若β=α,则β=αsin sin ;(2)若对角相等,则梯形为等腰梯形; (3)已知a 、b 、c 、d 都是实数,若b a =,d c =,则d b c a +=+。

分析:先明确原命题的条件p 与结论q ,把原命题写成“若p ,则q ”形式,再去构造其他三种命题,对具有大前提的原命题,在写出其他三种命题时,应保留这个大前提。

解:(1)逆命题:若β=αsin sin ,则β=α;否命题:若β≠α,则β≠αsin sin ;逆否命题:若β≠αsin sin ,则β≠α。

(2)逆命题:若梯形为等腰梯形,则它的对角线相等;否命题:若梯形的对角线不相等,则梯形不是等腰梯形;逆否命题:若梯形不是等腰梯形,则对角线不相等。

(3)逆命题:已知a 、b 、c 、d 是实数,若b a ≠或d c ≠,则b a =,d c =;否命题:已知a 、b 、c 、d 是实数,若b a ≠或d c ≠,则d b c a +≠+;逆否命题:已知a 、b 、c 、d 是实数,若d b c a +≠+,则b a ≠或d c ≠。

例2. “已知a ,b ,c ,d 是实数,若c a >,d b >,则d c b a +>+”,写出上述命题的逆命题,否命题与逆否命题,并分别判断它们的真假。

分析:按照定义写出各命题,再分析。

解法1:逆命题;已知a ,b ,c ,d 是实数,若d c b a +>+,则a ,b 都分别大于c 、d ; 否命题:已知a ,b ,c ,d 是实数,若a ,b 不都分别大于c ,d ,则d c b a +≤+; 逆否命题:已知a ,b ,c ,d 是实数,若d c b a +≤+,则a ,b 不都分别大于c ,d 。

逆命题为假命题,例如3215+>+,但25>,31<,根据逆命题与否命题的等价性知否命题为假命题。

高中数学选修1-1(人教A版)第一章常用逻辑用语1.2知识点总结含同步练习及答案

高中数学选修1-1(人教A版)第一章常用逻辑用语1.2知识点总结含同步练习及答案
高中数学选修1-1(人教A版)知识点总结含同步练习题及答案
第一章 常用逻辑用语 1.2 充分条件与必要条件
一、学习任务 理解必要条件、充分条件与充要条件的意义,会判断必要条件、充分条件与充要条件. 二、知识清单
充分条件与必要条件
三、知识讲解
1.充分条件与必要条件 描述: 充分条件与必要条件 一般地,“若 p ,则 q ”为真命题,是指由 p 通过推理可以得出 q ,同时也称由 p 可以推 出 q ,记作 p ⇒ q ,并且说 p 是 q 的充分条件(sufficient condition), q 是 p 的必要 条件(necessary condition). 充要条件 一般地,如果既有 p ⇒ q ,又有 q ⇒ p ,就记作 p ⇔ q .此时, p 是 q 的充分必要条 件(sufficient and necessary condition),简称充要条件.如果 p 是 q 的充要条件,那么 q 也是 p 的充要条件,概括地说,如果 p ⇔ q ,那么 p 与 q 互为充要条件. 例题: 判断下列各题中 p 是 q 的什么条件. (1)在 △ABC 中,p : A > B,q : BC > AC ; (2)p : x > 1 ,q : x 2 > 1 ; (3)p : (a − 2)(a − 3) = 0,q : a = 3 ; (4)p : a < b ,q : 解:(1)由三角形中大角对大边可知,若 A > B ,则 BC > AC ;反之,若 BC > AC ,则 A > B.因此 p 是 q 的充要条件. (2)由 x > 1 可以推出 x 2 > 1;由 x2 > 1 得 x < −1 或 x > 1,不一定有 x > 1 .因此 p 是 q 的充分不必要条件. (3)由 (a − 2)(a − 3) = 0 可以推出 a = 2 或 a = 3,不一定有 a = 3;由 a = 3 可以得出 (a − 2)(a − 3) = 0 .因此 p 是 q 的必要不充分条件.

高中数学 第一章 常用逻辑用语 1.2 充分条件与必要条件习题课学案(含解析)新人教A版选修1-1-

高中数学 第一章 常用逻辑用语 1.2 充分条件与必要条件习题课学案(含解析)新人教A版选修1-1-

1.2 充分条件与必要条件习题课自主预习·探新知情景引入某居民的卧室里安有一盏灯,在卧室门口和床头各有一个开关,任意一个开关都能够独立控制这盏灯,这就是电器上常用的“双刀”开关.A开关闭合时B灯一定亮吗?B灯亮时A 开关一定闭合吗?新知导学1.x<13是x<5的__必要不充分__条件.2.x>2是x2-3x+2>0的__充分不必要__条件.3.设与命题p对应的集合为A={x|p(x)},与命题q对应的集合为B={x|q(x)},若A⊆B,则p是q的__充分__条件,q是p的__必要__条件.若A=B,则p是q的__充要__条件.若A B,则p是q的__充分不必要__条件.q是p的__必要不充分__条件.若A B,则p不是q的__充分__条件,q不是p的__必要__条件.4.p是q的充要条件是说,有了p成立,就__一定有__q成立.p不成立时,__一定有__q 不成立.预习自测1.(2020·湖南湘潭市高二期末)“x>2”是“x>1”的( A )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件[解析]结合题意可知x>2可以推出x>1,但x>1并不能保证x>2,故为充分不必要条件,故选A.2.“x<0”是“ln(x+1)<0”的( B )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件[解析]ln(x+1)<0⇔0<x+1<1⇔-1<x<0,而(-1,0)是(-∞,0)的真子集,所以“x<0”是“ln(x+1)<0”的必要不充分条件.3.设p:x<3,q:-1<x<3,则p是q成立的( C )A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件[解析]若-1<x<3成立,则x<3成立;反之,若x<3成立,则-1<x<3未必成立,如x =-2,所以p是q的必要不充分条件.4.“lg x>lg y”是“x>y”的__充分不必要__条件.[解析]由lg x>lg y⇒x>y>0⇒x>y,充分条件成立.又由x>y成立,当y=0时,lg x>lg y不成立,必要条件不成立.5.(2020·山东昌平高二检测)已知条件p:A={x|x2-(a+1)x+a≤0},条件q:B={x|x2-3x+2≤0},当a为何值时,(1)p是q的充分不必要条件;(2)p是q的必要不充分条件;(3)p是q的充要条件.[解析]A={x|x2-(a+1)x+a≤0}={x|(x-1)(x-a)≤0},B={x|x2-3x+2≤0}={x|1≤x≤2},(1)因为p是q的充分不必要条件,所以A B,而当a=1时,A={1},显然成立,当a>1,A=[1,a],需1<a<2,综上可知1≤a<2时,p是q的充分不必要条件.(2)因为p是q的必要不充分条件,所以B A,故A=[1,a],且a>2,所以a>2时,p是q的必要不充分条件.(3)因为p是q的充要条件,所以A=B,故a=2.互动探究·攻重难互动探究解疑命题方向❶利用图示法进行充分、必要条件判断典例1 已知p、q都是r的必要条件,s是r的充分条件,q是s的充分条件.那么:(1)s是q的__充要__条件?(2)r是q的__充要__条件?(3)p是q的__必要__条件?[解析]根据题意得关系图,如图所示.(1)由图知:∵q⇒s,s⇒r⇒q,∴s是q的充要条件.(2)∵r⇒q,q⇒s⇒r,∴r是q的充要条件.(3)∵q⇒s⇒r⇒p,∴p是q的必要条件.『规律方法』对于多个有联系的命题(或两个命题的关系是间接的),常常作出它们的有关关系图表,根据定义,用“⇒”“⇐”“⇔”建立它们之间的“关系链”,直观求解,称作图示法.┃┃跟踪练习1__■已知p是r的充分条件而不是必要条件,q是r的充分条件,s是r的必要条件,q是s 的必要条件,现有下列命题:①s是q的充要条件;②p是q的充分条件而不是必要条件;③r是q的必要条件而不是充分条件;④r是s的充分条件而不是必要条件.则正确命题的序号是( B )A .①④B .①②C .②③④D .②④[解析] 由题意知,故①②正确;③④错误. 命题方向❷利用集合法进行充分、必要条件的判断典例2 设p 、q 是两个命题,p :log 12(|x |-3)>0,q :x 2-56x +16>0,则p 是q的( A )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[思路分析] p 、q 都是不等式的解集,解不等式可得其解集,利用集合之间的子集关系即可判断出p 是q 的什么条件.[解析] 由log 12 (|x |-3)>0得,0<|x |-3<1,∴3<|x |<4,∴3<x <4或-4<x <-3, 由x 2-56x +16>0得x <13或x >12,显然(3,4)∪(-4,-3)(-∞,13)∪(12,+∞),∴p 是q 的充分不必要条件.故选A .『规律方法』 如果条件p 与结论q 是否成立都与数集有关(例如方程、不等式的解集、参数的取值范围等),常利用集合法来分析条件的充分性与必要性,将充要条件的讨论转化为集合间的包含关系讨论,可借助数轴等工具进行.┃┃跟踪练习2__■设命题甲为0<x <5,命题乙为|x -2|<3,那么甲是乙的( A ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 [解析] 由|x -2|<3得-1<x <5, 令A ={x |0<x <5},B ={x |-1<x <5}, ∴AB ,∴甲是乙的充分不必要条件.命题方向❸利用充要性求参数范围典例3 已知p :实数x 满足x 2-4ax +3a 2<0,其中a <0;q :实数x 满足x 2-x -6≤0或x 2+2x -8>0,且p 是q 的充分条件,求a 的取值范围.[思路分析] 先分别求出命题p 、q 中x 的取值范围,再探求符合条件的a 的取值范围. [解析] p :由x 2-4ax +3a 2<0,其中a <0得,3a <x <a ;q :由x 2-x -6≤0或x 2+2x -8>0,得x <-4或 x ≥-2.∵p 是q 的充分条件,∴a ≤-4或⎩⎪⎨⎪⎧3a ≥-2a <0,∴a ≤-4或-23≤a <0.综上可知a 的取值范围是a ≤-4或-23≤a <0.『规律方法』 利用条件的充要性求解参数问题,关键是将条件属性转化为适当的解题思路,如数集类问题,一般是将条件属性转化为集合包含关系,借助数轴列出不等式(组),从而求解.┃┃跟踪练习3__■ 已知p :-1≤x -13≤3,q :x 2-2x +1-m 2≤0(m >0),若p 是q 的必要不充分条件,求实数m 的取值范围.[解析] 由p :-1≤x -13≤3得-2≤x ≤10,由q :x 2-2x +1-m 2≤0(m >0)得-m ≤x -1≤m , ∴1-m ≤x ≤1+m .∵p 是q 的必要不充分条件,∴⎩⎪⎨⎪⎧1+m ≤101-m ≥-2,∴m ≤3,又∵m >0,∴0<m ≤3.学科核心素养 数学中的等价转化1.证明充要条件一般应分两个步骤,即分别证明“充分性”和“必要性”这两个方面.解题时要避免将充分性当作必要性来证明的错误,这就需要分清条件与结论,若“条件”⇒“结论”,即是证明充分性,若“结论”⇒“条件”,即是证明必要性.2.等价法:就是从条件开始,逐步推出结论,或者是从结论开始,逐步推出条件,但是每一步都是可逆的,即反过来也能推出,仅作说明即可,必要性(或者充分性)可以不再重复证明.典例4 已知数列{a n }的前n 项和S n =aq n+b (a ≠0,q 是不等于0和1的常数),求证:数列{a n }为等比数列的充要条件是a +b =0.[解析] (1)先证充分性:∵a +b =0,∴S n =aq n+b =aq n-a , 当n =1时,a 1=S 1=aq -a ;当n ≥2时,a n =S n -S n -1=(aq n-a )-(aq n -1-a )=a (q -1)·qn -1(n ≥2).∴a 1=aq -a ,a 2=aq 2-aq ,∴a 2a 1=aq 2-aq aq -a =q ,且a n +1a n =a q -1·q n a q -1·q n -1=q ,n ≥2. 故数列{a n }是公比为q 的等比数列. (2)再证必要性: ∵数列{a n }为等比数列,∴S n =a 11-q n 1-q =a 11-q -a 11-qq n .∵S n =aq n+b ,∴a =-a 11-q ,b =a 11-q ,∴a +b =0.故数列{a n }为等比数列的充要条件是a +b =0.『规律方法』 有关充要条件的证明问题,要分清哪个是条件,哪个是结论,由“条件”⇒“结论”是证命题的充分性,由“结论”⇒“条件”是证命题的必要性.证明分为两个环节:一是充分性;二是必要性,证明时,不要认为它是推理过程的“双向书写”,而应该进行由条件到结论,由结论到条件的两次证明.┃┃跟踪练习4__■已知集合A ={x |x 2-4mx +2m +6=0},B ={x |x <0},若命题“A ∩B =∅”是假命题,求实数m 的取值范围.[解析] 因为“A ∩B =∅”是假命题,所以A ∩B ≠∅. 设全集U ={m |Δ=(-4m )2-4(2m +6)≥0},则U =⎩⎨⎧⎭⎬⎫m |m ≤-1或m ≥32. 假设方程x 2-4mx +2m +6=0的两根x 1,x 2均非负,则有⎩⎪⎨⎪⎧m ∈U ,x 1+x 2≥0,x 1x 2≥0即⎩⎪⎨⎪⎧m ∈U ,4m ≥0,2m +6≥0解得m ≥32.又集合⎩⎨⎧⎭⎬⎫m |m ≥32关于全集U 的补集是{m |m ≤-1}. 所以实数m 的取值范围是(-∞,-1].易混易错警示 转化要保持等价性典例5 已知方程x 2-2(m +2)x +m 2-1=0有两个大于2的根,试求实数m 的取值范围.[错解] 由于方程x 2-2(m +2)x +m 2-1=0有两个大于2的根,设这两个根为x 1、x 2,则有⎩⎪⎨⎪⎧Δ=4m +22-4m 2-1≥0x 1+x 2=2m +2>4x 1x 2=m 2-1>4,解得m > 5.所以当m ∈(5,+∞)时,方程x 2-2(m +2)x +m 2-1=0有两个大于2的根.[错解分析] 若x 1>2,x 2>2,则有⎩⎪⎨⎪⎧x 1+x 2>4x 1x 2>4,成立;但若⎩⎪⎨⎪⎧x 1+x 2>4x 1x 2>4,则不一定有x 1>2,x 2>2成立,即⎩⎪⎨⎪⎧x 1+x 2>4x 1x 2>4,是x 1>2,x 2>2的必要不充分条件.[正解] 由于方程x 2-2(m +2)x +m 2-1=0有两个大于2的根,设这两个根为x 1、x 2,则有⎩⎪⎨⎪⎧Δ=4m +22-4m 2-1≥0x 1-2+x 2-2>0x 1-2x 2-2>0,结合⎩⎪⎨⎪⎧x 1+x 2=2m +2x 1x 2=m 2-1,解得m >5.所以m的取值范围为(5,+∞).。

【课堂新坐标】(教师用书)高中数学 第一章 常用逻辑用语综合检测 新人教A版选修1-1

【课堂新坐标】(教师用书)高中数学 第一章 常用逻辑用语综合检测 新人教A版选修1-1

第一章常用逻辑用语(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列语句是命题的为( )A.你到过北京吗?B.对顶角相等C.啊!我太高兴啦!D.x2+2x-1>0【解析】A是疑问句,C是感叹句都不是命题,D不能判断真假,只有B是命题.【答案】 B2.下列说法正确的是( )A.一个命题的逆命题为真,则它的否命题为假B.一个命题的逆命题为真,则它的逆否命题为真C.一个命题的逆否命题为真,则它的否命题为真D.一个命题的否命题为真,则它的逆命题为真【解析】一个命题的逆命题与否命题是互为逆否命题,它们同真同假,只有D正确.【答案】 D3.命题“∃x0∈R,x20-2x0+1<0”的否定是( )A.∃x0∈R,x20-2x0+1≥0B.∃x0∈R,x20-2x0+1>0C.∀x∈R,x2-2x+1≥0D.∀x∈R,x2-2x+1<0【解析】特称命题的否定是全称命题,“x20-2x0+1<0”的否定是“x2-2x+1≥0”.【答案】 C4.(2013·石家庄高二检测)若p是真命题,q是假命题,则( )A.p∧q是真命题B.p∨q是假命题C.綈p是真命题D.綈q是真命题【解析】由真值表知,若p真q假,则p∧q假,p∨q真,綈p假,綈q真,只有D 正确.【答案】 D5.(2013·东营高二检测)若a,b,c为实数,且a<b<0,则下列命题正确的是( ) A.ac2<bc2B.a2>ab>b2C.1a<1bD.ba>ab【解析】∵a<b<0,∴a 2>ab ,且ab >b 2,B 正确.【答案】 B6.“若x 2=1,则x =1或x =-1”的否命题是( )A .若x 2≠1,则x =1或x =-1B .若x 2=1,则x ≠1且x ≠-1C .若x 2≠1,则x ≠1或x ≠-1D .若x 2≠1,则x ≠1且x ≠-1【解析】 否命题是命题的条件与结论分别是原命题条件的否定和结论的否定,“或”的否定是“且”.【答案】 D7.设p :log 2x <0,q :(12)x -1>1,则p 是q 的( ) A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 【解析】 由log 2x <0,得0<x <1,即p :0<x <1;由(12)x -1>1得x -1<0,∴x <1,即q :x <1; 因此p ⇒q 但qp .【答案】 B8.下列命题的否定是真命题的是( )A .有理数是实数B .末位是零的实数能被2整除C .∃x 0∈R,2x 0+3=0D .∀x ∈R ,x 2-2x >0【解析】 只有原命题为假命题时,它的否定才是真命题,A 、B 、C 为真命题,D 为假命题.【答案】 D9.下列有关命题说法正确的是( )A .命题“若x 2=1,则x =1”的否命题为“若x 2=1,则x ≠1”B .“x =-1”是“x 2-5x -6=0”的必要不充分条件C .“1是偶数或奇数” 为假命题D .命题“若x =y ,则sin x =sin y ”的逆否命题为真命题【解析】 “若x 2=1,则x =1”的否命题应为“若x 2≠1,则x ≠1”,故A 错; ∵由x =-1⇒x 2-5x -6=0,而x 2-5x -6=0时x =-1或x =6,∴由x 2-5x -6=0x =-1. 因此x =-1是x 2-5x -6=0的充分不必要条件,故B 错;∵1是奇数,∴C 错.D 中原命题为真,其逆否命题也为真,故D 正确.【答案】 D10.下列命题:①∀x ∈R ,不等式x 2+2x >4x -3成立;②若log 2x +log x 2≥2,则x >1;③命题“若a >b >0且c <0,则c a >c b ”的逆否命题;④若命题p :∀x ∈R ,x 2+1≥1.命题q :∃x 0∈R ,x 20-2x 0-1≤0,则命题p ∧綈q 是真命题.其中真命题有( )A .①②③B .①②④C .①③④D .②③④ 【解析】 ①中,x 2+2x >4x -3⇒(x -1)2+2>0恒成立,①真.②中,由log 2x +log x 2≥2,且log 2x 与log x 2同号,∴log 2x >0,∴x >1,故②为真命题.③中,易知“a >b >0且c <0时,c a >c b ”.∴原命题为真命题,故逆否命题为真命题,③真.④中,p 、q 均为真命题,则命题p ∧綈q 为假命题.【答案】 A二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)11.“若x 2<1,则-1<x <1”的逆否命题是________.【答案】 若x ≥1或x ≤-1,则x 2≥1.12.已知f (x )=x 2+2x -m ,如果f (1)>0是假命题,f (2)>0是真命题,则实数m 的取值范围是________.【解析】 依题意,⎩⎪⎨⎪⎧ f =3-m ≤0f =8-m >0,∴3≤m <8.【答案】 [3,8)13.已知p :-4<x -a <4,q :(x -2)(3-x )>0,若綈p 是綈q 的充分条件,则实数a 的取值范围是________.【解析】 p :a -4<x <a +4,q :2<x <3,∵由綈p 是綈q 的充分条件(即綈p ⇒綈q ),∴q ⇒p ,∴⎩⎪⎨⎪⎧ a -4≤2a +4≥3,∴-1≤a ≤6.【答案】 [-1,6]14.在下列四个结论中,正确的序号是________.①“x =1”是“x 2=x ”的充分不必要条件;②“k =1”是“函数y =cos 2kx -sin 2kx 的最小正周期为π”的充要条件;③“x ≠1”是“x 2≠1”的充分不必要条件;④“a +c >b +d ”是“a >b 且c >d ”的必要不充分条件.【解析】 ①当x =1时,x 2=x 成立,反之,不一定,所以“x =1”是“x 2=x ”的充分不必要条件,故①正确;②函数y =cos 2kx -sin 2kx =cos 2kx ,其最小正周期T =2π|2k |=π|k |,当k =1时,T =π;当π|k |=π时,k =±1,所以②不正确; ③转化为等价命题,即判断“x 2=1”是“x =1”的充分不必要条件,由于x 2=1时,x =±1,不一定x =1,所以不充分,即③不正确;④a +c >b +d a >b 且c >d ,但a >b 且c >d 时,必有a +c >b +d ,所以④正确. 综上可知,正确结论为①④.【答案】 ①④三、解答题(本大题共4小题,共50分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分12分)π为圆周率,a 、b 、c 、d ∈Q ,已知命题p :若a π+b =c π+d ,则a =c 且b =d .(1)写出p 的否定并判断真假;(2)写出p 的逆命题、否命题、逆否命题并判断真假.【解】 (1)綈p :“若a π+b =c π+d ,则a ≠c 或b ≠d ”.∵a 、b 、c 、d ∈Q ,由a π+b =c π+d ,∴π(a -c )=d -b ∈Q ,则a =c 且b =d .故p 是真命题,∴綈p 是假命题.(2)逆命题:“若a =c 且b =d ,则a π+b =c π+d ”.真命题;否命题:“若a π+b ≠c π+d ,则a ≠c 或b ≠d .”真命题;逆否命题:“若a ≠c 或b ≠d ,则a π+b ≠c π+d ”.真命题.16.(本小题满分12分)分别指出由下列各组命题构成的“p 且q ”“p 或q ”“非p ”形式的命题的真假.(1)p :x =2是方程x 2-6x +8=0的一个解,q :x =4是方程x 2-6x +8=0的一个解;(2)p :不等式x 2-4x +4>0的解集为R ,q :不等式x 2-2x +2≤1的解集为∅.【解】 (1)p 或q :x =2是方程x 2-6x +8=0的一个解或x =4是方程x 2-6x +8=0的一个解.(真) p 且q :x =2是方程x 2-6x +8=0的一个解且x =4是方程x 2-6x +8=0的一个解.(真) 非p :x =2不是方程x 2-6x +8=0的一个解.(假) (2)p 或q :不等式x 2-4x +4>0的解集为R 或不等式x 2-2x +2≤1的解集为∅.(假) p 且q :不等式x 2-4x +4>0的解集为R 且不等式x 2-2x +2≤1的解集为∅.(假) 非p :不等式x 2-4x +4>0的解集不为R .(真)17.(本小题满分12分)(2013·抚州高二检测)p :x ∈A ={x |x 2-2x -3≤0,x ∈R },q :x ∈B ={x |x 2-2mx +m 2≤9,x ∈R ,m ∈R }.(1)若A ∩B =[2,3],求实数m 的值.(2)若p 是綈q 的充分条件,求实数m 的取值范围.【解】 (1)A ={x |-1≤x ≤3,x ∈R },B ={x |m -3≤x ≤m +3,x ∈R ,m ∈R },∵A ∩B =[2,3],∴m =5.(2)∵p 是綈q 的充分条件,∴A ⊆∁R B ,∴m -3>3或m +3<-1,∴m >6或m <-4.18.(本小题满分14分)给出两个命题:命题甲:关于x 的不等式x 2+(a -1)x +a 2≤0的解集为∅,命题乙:函数y =(2a 2-a )x为增函数.分别求出符合下列条件的实数a 的范围.(1)甲、乙至少有一个是真命题;(2)甲、乙中有且只有一个是真命题.【解】 甲命题为真时,Δ=(a -1)2-4a 2<0,即a >13或a <-1. 乙命题为真时,2a 2-a >1,即a >1或a <-12. (1)甲、乙至少有一个是真命题时,即上面两个范围取并集,∴a 的取值范围是{a |a <-12或a >13}. (2)甲、乙中有且只有一个是真命题,有两种情况:甲真乙假时,13<a ≤1,甲假乙真时,-1≤a <-12, ∴甲、乙中有且只有一个真命题时,a 的取值范围为{a |13<a ≤1或-1≤a <-12}.。

人教A版高中数学选修一第一章常用逻辑用语单元质量评估(一).docx

人教A版高中数学选修一第一章常用逻辑用语单元质量评估(一).docx

高中数学学习材料唐玲出品温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

阶段质量检测(一)/单元质量评估(一)第一章(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列语句中,能作为命题的是( )(A)3比5大(B)太阳和月亮(C)高年级的学生(D)x2+y2=02.(2012·泸州高二检测)命题“存在x0∈R,0x2≤0”的否定是( )(A)不存在x0∈R,0x2>0 (B)存在x0∈R,0x2≥0(C)对任意的x∈R,x2≤0 (D)对任意的x∈R,x2>02.(2012·湖北高考)命题“存在一个无理数,它的平方是有理数”的否定是( )(A)任意一个有理数,它的平方是有理数(B)任意一个无理数,它的平方不是有理数(C)存在一个有理数,它的平方是有理数(D)存在一个无理数,它的平方不是有理数3.“二次函数y=ax2+bx+c(a≠0)经过原点”是“b=c=0”的( )(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件4.与命题“能被6整除的整数,一定能被3整除”等价的命题是( )(A)能被3整除的整数,一定能被6整除(B)不能被3整除的整数,一定不能被6整除(C)不能被6整除的整数,一定不能被3整除(D)不能被6整除的整数,不一定能被3整除5.若向量a=(x,3)(x∈R),则“x=4是|a|=5”的( )(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件6.下列各组命题中,满足“‘p∨q’为真、‘p∧q’为假、‘⌝p’为真”的是( ) (A)p:0=∅;q:0∈∅(B)p:在△ABC中,若cos2A=cos2B,则A=B;q:y=sinx在第一象限是增函数(C)p:a+b≥2ab(a,b∈R);q:不等式|x|>x的解集是(-∞,0)(D)p:圆(x-1)2+(y-2)2=1的面积被直线x=1平分;q:∀x∈{1,-1,0},2x+1>07.(2011·本溪高二检测)在三角形ABC中,A>B,给出下列命题:(1)sinA>sinB;(2)cos2A<cos2B;(3)tan A 2>tan B 2. 其中正确的命题个数是( )(A)0 (B)1 (C)2 (D)38.设α,β,γ为两两不重合的平面,l ,m ,n 为两两不重合的直线,给出下列四个命题:①若α⊥γ,β⊥γ,则α∥β;②若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β;③若α∥β,l ⊂α,则l ∥β;④若α∩β=l ,β∩γ=m ,γ∩α=n ,l ∥γ,则m ∥n.其中真命题的个数是( )(A)1 (B)2 (C)3 (D)49.(2012·晋中高二检测)下面说法正确的是( )(A)命题“∃x 0∈R ,使得200x x 1++≥0”的否定是“∀x ∈R ,使得x 2+x+1≥0”(B)实数x >y 是x 2>y 2成立的充要条件(C)设p,q 为简单命题,若“p ∨q ”为假命题,则“⌝p ∧⌝q ”也为假命题(D)命题“若α=0,则cos α=1”的逆否命题为真命题10.已知命题p: ∃x 0∈R ,使tanx 0=1,命题q: ∀x ∈R,x 2>0.下面结论正确的是( )(A)命题“p ∧q ”是真命题(B)命题“p ∧⌝q ”是假命题(C)命题“⌝p ∨q ”是真命题(D)命题“⌝p ∧⌝q ”是假命题11.已知命题p :“∀x ∈[1,2],x 2-a ≥0”,命题q :“∃x 0∈R ,200x 2ax 2a ++-=0”,则命题“p 且q ”是真命题的充要条件是( )(A)a ≤-2或a =1 (B)a ≤-2或1≤a ≤2(C)a ≥1 (D)-2≤a ≤112.给出下列三个命题:①若a ≥b>-1,则a b 1a 1b≥++; ②若正整数m 和n 满足m ≤n ,则mn m -≤n 2; ③设P(x 1,y 1)是圆O 1:x 2+y 2=9上的任意一点,圆O 2以Q(a ,b)为圆心,且半径为1.当(a -x 1)2+(b -y 1)2=1时,圆O 1与圆O 2相切.其中假命题的个数为( )(A)0 (B)1 (C)2 (D)3二、填空题(本大题共4小题,每小题5分,共20分,请把正确的答案填在题中的横线上)13.给出命题:“若函数y=f(x)是幂函数,则函数y=f(x)的图象不过第四象限”.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是________.14.命题“ax 2-2ax-3>0不成立”是真命题,则实数a 的取值范围是________.15.若不等式|x-1|<a 成立的充分条件是0<x<4,则实数a 的取值范围是________.16.(易错题)下列说法中正确的序号是________.①如果命题“⌝p ”与命题“p ∨q ”都是真命题,那么命题q 一定是真命题; ②“若a 2+b 2=0,则a=0且b=0”的否命题是“若a 2+b 2≠0,则a ≠0且b ≠0”;③若⌝p 是q 的必要条件,则p 是⌝q 的充分条件;④命题p:x 2-8x-20>0和命题q:x 2-x-6≥0,则⌝p 是⌝q 的必要不充分条件.三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)命题:已知a ,b 为实数,若关于x 的不等式x 2+ax +b ≤0有非空解集,则a 2-4b ≥0,写出该命题的逆命题、否命题、逆否命题,并判断这些命题的真假.18.(12分)把下列命题改写成“若p ,则q ”的形式,并判断命题的真假:(1)能被6整除的数一定是偶数;(2)当a 1-+|b+2|=0时,a=1,b=-2;(3)已知x,y 为正整数,当y=x 2时,y=1,x=1.19.(12分)判断下列命题是全称命题还是特称命题,你能写出下列命题的否定吗?(1)所有的正方形都是矩形;(2)每一个奇数都是正数;(3)∀x ∈R,x 2-x +1≥0;(4)有些实数有平方根;(5)∃x 0∈R,20x +1=0.20.(12分)已知p :|x -3|≤2,q :(x -m +1)(x -m -1)≤0,若⌝p 是⌝q 的充分而不必要条件,求实数m 的取值范围.21.(12分)设命题p: ∃x 0∈R ,200x 2ax a +-=0.命题q: ∀x ∈R ,ax 2+4x+a ≥-2x 2+1.如果命题“p ∨q ”为真命题,“p ∧q ”为假命题,求实数a 的取值范围.22.(12分)(能力题)给出两个命题:命题甲:关于x的不等式x2+(a-1)x+a2≤0的解集为∅,命题乙:函数y=(2a2-a)x为增函数.分别求出符合下列条件的实数a的范围.(1)甲、乙至少有一个是真命题;(2)甲、乙中有且只有一个是真命题.答案解析1.【解析】选A.根据命题的概念知,语句A、B、C、D中,只有A能做出判断.2.【解析】选D.因为命题“存在x0∈R,0x2≤0”是特称命题,所以它的否定是全称命题.2.【解析】选B.由特称命题的否定是全称命题可知结果.3.【解析】选B.b=c=0⇒y=ax2(a≠0),二次函数一定经过原点;二次函数y =ax2+bx+c(a≠0)经过原点⇒c=0,b不一定等于0,故选B.4.【解析】选B.一个命题与它的逆否命题是等价命题,选项B中的命题为已知命题的逆否命题.5.【解析】选A.由x=4知|a|=22+=5,得x343+=5;反之,由|a|=22x=4或x=-4.故“x=4”是“|a|=5”的充分而不必要条件,故选A.6.【解析】选C.A中,p,q为假命题,不满足“p∨q”为真.B中,p是真命题,则“⌝p”为假,不满足题意.C中,p是假命题,q为真命题,“p∨q”为真,“p∧q”为假,“⌝p”为真,故C正确.D中,p是真命题,不满足“⌝p ”为真,故选C.7.【解析】选D.当A 、B 均为锐角时,由函数的单调性及不等式的性质知都成立;当B 为锐角,A 为钝角时,又有A 、B 为三角形的内角,所以A ,0B ,A B 22ππ<<π<<+<π,即A B ,0,B A 422242ππππ<<<<<π-<,即A B tan tan 22>,sinB<sin(π-A)=sinA ,cosB> cos(π-A)=-cosA>0,所以cos 2A<cos 2B.8.【解析】选B.①:由面面垂直知,不正确;②:由线面平行判定定理知,缺少m 、n 相交于一点这一条件,故不正确; ③:由线面平行判定定理知,正确;④:由线面相交及线面、线线平行分析知,正确.综上所述知,③④正确.9.【解析】选D.对A ,命题的否定是:“∀x ∈R ,使得x 2+x+1<0”,故不正确,对于B ,由x >y x 2>y 2,且x 2>y 2x >y ,故不正确.对于C ,若“p ∨q ”为假命题,则“⌝p ∧⌝q ”为真命题,故不正确.对于D ,若α=0,则cos α=1是真命题,故其逆否命题也为真命题,故正确.10.【解析】选D.因为命题p:∃x 0∈R ,使tanx 0=1是真命题,命题q:∀x ∈R ,x 2>0是假命题,所以⌝p 为假命题,⌝q 为真命题,所以由命题“p ∧q ”、“ p ∨q ”的真假判断方法知A 、B 、C 错误,D 正确.11.【解析】选A .p 真即a ≤x 2在1≤x ≤2范围内恒成立,因x 2∈[1,4],所以a ≤1;q 真等价于Δ=4a 2-4(2-a)≥0恒成立,即a 2+a -2≥0.所以a ≥1或a ≤-2.要使p 且q 为真则a 的取值范围为:a =1或a ≤-2,故选A.12.【解析】选B.①a b 111111a b 1a 1b 101a 1b 1a 1b 1a 1b≥⇒≥⇒≤≥>⇔≥>++++++--,又-++知本命题为真命题.②用基本不等式:2xy ≤x 2+y 2(x>0,y>0),取x =m ,y =n m -,知本命题为真.③圆O 1上存在两个点A 、B 满足弦AB =1,所以P 、O 2可能都在圆O 1上,当O 2在圆O 1上时,圆O 1与圆O 2相交.故本命题为假命题.【一题多解】本题中的①也可以利用函数的单调性判断,其判断如下:因为函数f(x)=x 1x +在区间(-1,+∞)上是增函数,又因为a ≥b>-1,所以f(a)≥f(b),即a 1a +≥b 1b+. 13.【解析】因为命题:“若函数y=f(x)是幂函数,则函数y=f(x)的图象不过第四象限”是真命题,其逆命题“若函数y=f(x)的图象不过第四象限,则函数y=f(x)是幂函数”是假命题,如函数y=x+1.再由互为逆否命题真假性相同知,在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是1.答案:114.【解题指南】解答本题的关键是对条件命题“ax 2-2ax-3>0不成立”是真命题的理解,其意义是“不存在实数x ,使ax 2-2ax-3>0成立”.【解析】因为命题“ax 2-2ax-3>0不成立”是真命题,所以不等式ax 2-2ax-3≤0对于任意的实数x恒成立,(1)当a=0时,符合条件;(2)当a0,0,<⎧⎨∆≤⎩即a≤-3.由(1)、(2)得实数a的取值范围是{a|a=0或a≤-3}. 答案:{a|a=0或a≤-3}15.【解析】因为|x-1|<a⇔1-a<x<1+a,又不等式|x-1|<a成立的充分条件是0<x<4,所以1a0a11a4a3 -≤≥⎧⎧⎨⎨+≥≥⎩⎩,,即,,所以a≥3.答案:[3,+∞)16.【解析】①:因为命题“⌝p”是真命题,所以p是假命题,又因为命题“p ∨q”是真命题,所以命题q一定是真命题,所以①正确;②:因为“若a2+b2=0,则a=0且b=0”的否命题是“若a2+b2≠0,则a≠0或b≠0”,所以②错误;③:因为⌝p是q的必要条件,所以命题“若q,则⌝p”是真命题,所以它的逆否命题“若p,则⌝q”是真命题,所以p是⌝q的充分条件,所以③正确;④:因为x2-8x-20>0⇒x<-2或x>10;x2-x-6≥0⇒x≤-2或x≥3,所以⌝p:-2≤x≤10,⌝q:-2<x<3,所以⌝p是⌝q的必要不充分条件,所以④正确.所以说法中正确的序号是①③④.答案:①③④【误区警示】对于命题“p∧q”、“p∨q”的否定是很容易出错的,命题“p∧q”、“p∨q”的否定分别是“(⌝p)∨(⌝q)”、“ (⌝p)∧(⌝q)”.17.【解析】逆命题:已知a,b为实数,若a2-4b≥0,则关于x的不等式x2+ax+b≤0有非空解集.否命题:已知a,b为实数,若关于x的不等式x2+ax+b≤0没有非空解集,则a2-4b<0.逆否命题:已知a 、b 为实数,若a 2-4b<0,则关于x 的不等式x 2+ax +b ≤0没有非空解集.原命题、逆命题、否命题、逆否命题均为真命题.18.【解析】(1)若一个数能被6整除,则这个数为偶数,是真命题.(2)若a 1-+|b+2|=0,则a=1且b=-2,真命题.(3)已知x,y 为正整数,若y=x 2,则y=1且x=1,假命题.19.【解析】前三个命题都是全称命题,即具有形式“∀x ∈M,p(x)”.其中命题(1)的否定是“并非所有的正方形都是矩形”,也就是说“存在一个正方形不是矩形”;命题(2)的否定是“并非每一个奇数都是正数”,也就是说“存在一个奇数不是正数”;命题(3)的否定是“并非∀x ∈R,x 2-x +1≥0”,也就是说“∃x 0∈R,200x x 1-+<0”;后两个命题都是特称命题,即具有形式“∃x 0∈M,p(x 0)”.其中命题(4)的否定是“不存在一个实数,它有平方根”,也就是说“所有实数都没有平方根”;命题(5)的否定是“不存在x 0∈R,20x +1=0”,也就是说“∀x ∈R,x 2+1≠0”.20.【解析】由题意p :-2≤x -3≤2,∴1≤x ≤5.∴⌝p :x<1或x>5.q :m -1≤x ≤m +1,∴⌝q :x<m -1或x>m +1.又∵⌝p 是⌝q 的充分而不必要条件,∴m11,2m 4. m1 5.-≥⎧∴≤≤⎨+≤⎩21.【解析】当命题p为真时,Δ=4a2+4a≥0得a≥0或a≤-1,当命题q为真时,(a+2)x2+4x+a-1≥0恒成立,∴a+2>0且16-4(a+2)(a-1)≤0,即a≥2.由题意得,命题p和命题q一真一假.当命题p为真,命题q为假时,得a≤-1;当命题p为假,命题q为真时,得a∈∅;∴实数a的取值范围为(-∞,-1].22.【解析】甲命题为真时,Δ=(a-1)2-4a2<0,即a>13或a<-1.乙命题为真时,2a2-a>1,即a>1或a<-12.(1)甲、乙至少有一个是真命题时,即上面两个范围取并集,∴a的取值范围是{a|a<-12或a>13}.(2)甲、乙中有且只有一个是真命题,有两种情况:甲真乙假时,13<a≤1,甲假乙真时,-1≤a<-12,∴甲、乙中有且只有一个真命题时,a的取值范围为{a|13<a≤1或-1≤a<-12}.精心制作仅供参考唐玲出品。

普通高中数学课程标准(新人教A):选修1-1

普通高中数学课程标准(新人教A):选修1-1

系列1,系列2说明在完成必修课程学习的基础上,希望进一步学习数学的学生,可以根据自己的兴趣和需求,选择学习系列1,系列2。

系列1是为希望在人文、社会科学等方面发展的学生而设置的,包括2个模块,共4学分.系列2则是为希望在理工、经济等方面发展的学生设置的,包括3个模块,共6学分。

系列1的内容分别为:选修1-1:常用逻辑用语、圆锥曲线与方程、导数及其应用。

选修1-2:统计案例、推理与证明、数系扩充与复数的引入、框图。

系列2的内容分别为;选修2-1:常用逻辑用语、圆锥曲线与方程、空间中的向量与立体几何.选修2-2:导数及其应用、推理与证明、数系的扩充与复数的引入。

选修2-3:计数原理、统计案例、概率。

在系列1、系列2的课程中,有一些内容及要求是相同的,例如,常用逻辑用语、统计案例、数系扩充与复数等;有一些内容基本相同,但要求不同,如导数及其应用、圆锥曲线与方程、推理与证明;还有一些内容是不同的,如系列1中安排了框图等内容,系列2安排了空间中的向量与立体几何、计数原理、离散型随机变量及其分布等内容。

系列1选修1-1本模块中,学生将学习常用逻辑用语、圆锥曲线与方程、导数及其应用。

正确地使用逻辑用语是现代社会公民应该具备的基本素质。

无论是进行思考、交流,还是从事各项工作,都需要正确地运用逻辑用语表达自己的思想.在本模块中,学生将在义务教育阶段的基础上,学习常用逻辑用语,体会逻辑用语在表述和论证中的作用,利用这些逻辑用语准确地表达数学内容,更好地进行交流。

在必修课程学习平面解析几何初步的基础上,在本模块中,学生将学习圆锥曲线与方程,了解圆锥曲线与二次方程的关系,掌握圆锥曲线的基本几何性质,感受圆锥曲线在刻画现实世界和解决实际问题中的作用,进一步体会数形结合的思想。

微积分的创立是数学发展中的里程碑,它的发展及广泛应用开创了向近代数学过渡的新时期,它为研究变量与函数提供了重要的方法和手段。

导数的概念是微积分的核心概念之一,它有极其丰富的实际背景和广泛的应用。

人教A版选修1-1第一章常用逻辑用语综合检测题(解析版)

人教A 版选修1-1第一章常用逻辑用语综合检测题(解析版)一、单选题 1.命题“c R ,22ac bc <”的否定是( ).A .c R ∀∉,22ac bc ≥B .c R ∃∉,22ac bc ≥C .c R ,22ac bc ≥D .c R ∃∈,22ac bc ≥【答案】D 【分析】根据全称命题的否定是特称命题进行判断即可. 【详解】 因为命题“c R ,22ac bc <”为全称命题,所以其否定为特称命题,即c R ∃∈,22ac bc ≥.故选:D .2.已知命题p :∃x 0∈(1,+∞),0012x x +=;命题q :∀x ∈R ,9x 2﹣6x +2>0.那么下列命题不正确的是( ) A .p q ⌝∨ B .p q ∨⌝C .p q ⌝∨⌝D .p q ∨【答案】B 【分析】由命题描述知p 为假,q 为真,判断由它们用逻辑联结词构成命题的真假,进而确定假命题的选项即可. 【详解】当且仅当x 0=1时,0012x x +=,故命题p 为假;对于方程9x 2﹣6x +2=0的2(6)4920∆=--⨯⨯<.故命题q 为真,∴p ⌝为真,q ⌝为假,故选项中只有p q ∨⌝为假, 故选:B.3.“0a b >>”是“222a b ab +<”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【分析】由题意分别考查充分性和必要性是否成立即可. 【详解】2202a b a b ab >>⇒+>,充分性成立,222a b ab a b +<⇒≠,a ,b R ∈,必要性不成立,故选A .【点睛】本题主要考查了充分性和必要性的判断,属于基础题.4.已知命题,cos()cos p x R x x π∃∈-=:;命题2:,10q x R x ∀∈+>.则下面结论正确的是( ) A .p q ∧是真命题 B .p q ∧是假命题C .p ⌝是真命题D .p 是假命题【答案】A 【分析】先确定命题,p q 真假性,再判断复合命题真假性. 【详解】,cos()cos 2x x x ππ∃=-=∴命题,cos()cos p x R x x π∃∈-=:为真命题;2,110x R x ∀∈+≥>∴命题2:,10q x R x ∀∈+>为真命题;因此p q ∧是真命题,p ⌝是假命题, 故选:A 【点睛】本题考查判断命题真假以及复合命题真假,考查基本分析判断能力,属基础题. 5.已知集合A ={x |x >5},集合B ={x |x >a },若命题“x ∈A ”是命题“x ∈B ”的充分不必要条件,则实数a 的取值范围是( ) A .(-∞,5) B .(-∞,5] C .(5,+∞) D .[5,+∞)【答案】A 【解析】 【分析】由“x ∈A ”是命题 “x ∈B ”的充分不必要条件可得A 是B 的真子集,结合数轴即可得解. 【详解】由题意可知,A ⫋B ,又A ={x |x >5}, B ={x |x >a },如图所示, 由图可知,a <5. 故选:A. 【点睛】本题考查了充分必要条件,考查了命题语言和集合语言的转化,考查转化思想,整体计算量不大,属于简单题.6.设m R ∈,命题“若0m <,则方程20x x m ++=有实根”的逆否命题是( ) A .若方程20x x m ++=有实根,则0m < B .若方程20x x m ++=有实根,则0m ≥ C .若方程20x x m ++=没有实根,则0m < D .若方程20x x m ++=没有实根,则0m ≥ 【答案】D 【分析】直接利用逆否命题的定义写出结果判断选项即可. 【详解】“0m <”的否定是“0m ≥”,“方程2+0x x m +=有实根”的否定是“方程2+0x x m +=没有实根”, 因此原命题的逆否命题是“若方程2+0x x m +=没有实根,则0m ≥”, 故选:D . 【点睛】该题考查的是有关写出命题的逆否命题的问题,在解题的过程中,注意原命题与逆否命题之间的关系,原命题确定之后,其逆否命题的形式,属于基础题.7.已知命题p :()22xxf x -=+是偶函数,命题q :若21a ≤,则1a ≤,则下列命题为真命题的是( ) A .p q ∧ B .()p q ∧⌝ C .()p q ⌝∧ D .()()p q ⌝∧⌝【答案】A 【分析】根据函数的奇偶性的判断可得命题p 是真命题,利用不等式的解法可得命题q 为真命题,再由复合命题的真假判断可得选项. 【详解】 因为()()22xx f x f x --=+=,所以函数()f x 是偶函数,所以p 是真命题,p ⌝是假命题,又21a ≤,解得11a -≤≤,满足1a ≤,所以q 是真命题,q ⌝是假命题,所以p q ∧是真命题,()p q ∧⌝是假命题,()p q ⌝∧是假命题,()()p q ⌝∧⌝是假命题,故选:A.8.已知1:2310l x y +-=,2:320l mx y +-=,则命题“m ∃∈R ,使1l 与2l 平行”的否定是( )A .m ∃∈R ,使1l 与2l 平行B .m ∃∈R ,使1l 与2l 不平行C .m R ∀∈,使1l 与2l 平行D .m R ∀∈,使1l 与2l 不平行【答案】D 【分析】根据特称命题的否定变换形式即可得出结果. 【详解】命题“m ∃∈R ,使1l 与2l 平行”, 命题的否定:m R ∀∈,使1l 与2l 不平行, 故选:D9.下列选项叙述错误的是( )A .命题“若1x ≠,则2320x x -+≠”的逆否命题是“若2320x x -+=,则1x =”B .若命题:p x AB ∈,则命题p ⌝是x A ∉或x B ∉C .若p q ∨为真命题,则p ,q 均为真命题D .“2x >”是“2320x x -+>”的充分不必要条件【答案】C 【分析】根据逆否命题的定义,即可判断A 的正误;根据命题的否定,可判断B 的正误;根据“或”命题的性质,可判断C 的正误;根据充分、必要条件的定义,可判断D 的正误,即可得答案. 【详解】对于A :命题“若1x ≠,则2320x x -+≠”的逆否命题是“若2320x x -+=,则1x =”,故A 正确,所以A 不符合题意; 对于B :若命题:p x AB ∈,即x A ∈且x B ∈,则命题p ⌝是x A ∉或x B ∉,故B正确,所以B 不符合题意;对于C :若p q ∨为真命题,则p ,q 有一个为真命题或两个都为真命题,故C 错误,所以C 符合题意;对于D :因为2320x x -+>,所以2x >或1x <,所以2x >”是“2320x x -+>”的充分不必要条件,故D 正确,所以D 不符合题意. 故选:C10.有下列四个命题:①“若xy =1,则x ,y 互为倒数”的逆命题; ②“面积相等的三角形全等”的否命题;③“若1m ,则x 2﹣2x +m =0有实数解”的逆否命题; ④“若AB B =,则A B ⊂”的逆否命题.其中为真命题的是( ) A .①② B .②③ C .④ D .①②③【答案】D 【分析】根据四种的形式及命题的等价关系,逐项判定,即可求解. 【详解】①中,命题“若xy =1,则x ,y 互为倒数”的逆命题是 “若x ,y 互为倒数,则xy =1”是真命题,故①正确;②中,命题“面积相等的三角形全等”的否命题是:“面积不相等的三角形不全等”是真命题,故②正确;③中,命题若x 2﹣2x +m =0有实数解,则440m ∆=-≥,解得1m ,所以若1m ,可得x 2﹣2x +m =0有实数解”是真命题,所以“若1m ,则x 2﹣2x +m =0有实数解”的逆否命题是“若x 2﹣2x +m =0没有有实数解,则m >1”是真命题,故③正确;④中,若A ∩B =B ,则B A ⊆,故原命题错误,所以若A ∩B =B ,则A ⊂B ”的逆否命题是错误, 故④错误; 故选:D .11.若命题P :1x ≠或2y ≠,命题Q :3x y +≠,则P 是Q 的( )条件 A .充分不必要 B .必要不充分C .充要D .既不充分又不必有 【答案】B 【分析】通过举反例,判断出P 成立推不出Q 成立,通过判断逆否命题的真假,判断出原命题的真假得到后者成立能推出前者成立,由充分条件、必要条件的定义得到结论. 【详解】当0x =,3y =时,Q 不成立,即P Q ⇒不成立,即充分性不成立; 判断必要性时,写出原命题:1x ≠或2y ≠时,则3x y +≠, 由于原命题不好判断,故转化为逆否命题进行判断,即原命题变为:若3x y +=,则有1x =且2y =,对于该命题,明显成立,所以,原命题也成立;即必要性成立;所以P 是Q 的必要而不充分条件, 故选B 【点睛】关键点睛:判断一个命题是另一个命题的什么条件,一般先判断前者成立是否能推出后者成立,再判断后者成立能否推出前者成立;本题难点在于:利用逆否命题的真假性判断原命题的真假性,属于中档题.12.在整数集Z 中,被6除所得余数为k 的所有整数组成一个“类”,记为[]k ,即[]{}6k n k n Z =+∈,1k =,2,3,4,5给出以下五个结论:①[]55-∈;②[][][][][][]012345=⋃⋃⋃⋃⋃Z ;③“整数a 、b 属于同一“类””的充要条件是“[]0a b -∈”;④“整数a 、b 满足[]1∈a ,[]2b ∈”的充要条件是“[]3+∈a b ”,则上述结论中正确的个数是( ) A .1 B .2C .3D .4【答案】B 【分析】根据“类”的定义逐一进行判断可得答案. 【详解】①因为[]{}565|n n Z =+∈,令655n +=-,得10563n =-=-Z ∉,所以[]55-∉,①不正确;②[][][][][][]012345⋃⋃⋃⋃⋃{}{}{}1122336|61|62|n n Z n n Z n n Z =∈+∈+∈{}4463|n n Z +∈{}5564|n n Z +∈{}6665|n n Z +∈Z =,故②正确;③若整数a 、b 属于同一“类”,则整数,a b 被6除所得余数相同,从而-a b 被6除所得余数为0,即[]0a b -∈;若[]0a b -∈,则-a b 被6除所得余数为0,则整数,a b 被6除所得余数相同,故“整数a 、b 属于同一“类””的充要条件是“[]0a b -∈”,所以③正确;④若整数a 、b 满足[]1∈a ,[]2b ∈,则161a n =+,1n Z ∈,262b n =+,2n Z ∈, 所以126()3a b n n +=++,12n n Z +∈,所以[]3+∈a b ;若[]3+∈a b ,则可能有[][]2,1a b ∈∈,所以“整数a 、b 满足[]1∈a ,[]2b ∈”的必要不充分条件是“[]3+∈a b ”,所以④不正确. 故选:B 【点睛】关键点点睛:对新定义的理解以及对充要条件的理解是本题解题关键.二、填空题13.设r 是q 的充分条件,s 是q 的充要条件,t 是s 的必要条件,t 是r 的充分条件,那么r 是t 的_____. 【答案】充要根据题目已知的关系,分别列出推出关系即可得解. 【详解】由题意知,r q ⇒,q s ⇔,s t ⇒,t r ⇒,所以r t ⇔. 故答案为:充要 【点睛】此题考查充分条件和必要条件的判断,根据已知条件的关系,利用推出关系进行分析.14.若“0[1,2],x ∃∈20010x ax -->”为真命题,则实数a 的取值范围为________.【答案】32a < 【分析】将问题转化为“001x a x ->在[]1,2能成立”,根据函数的单调性以及最值,计算出实数a 的取值范围. 【详解】因为0[1,2],x ∃∈20010x ax -->,所以001x a x ->在[]1,2能成立,所以00max 1a x x ⎛⎫<- ⎪⎝⎭且[]01,2x ∈,又因为()1f x x x=-在[]1,2上是增函数,所以()()max 132222f x f ==-=,所以32a <. 故答案为:32a <. 【点睛】本题考查已知特称命题的真假求解参数范围,难度较易.()f x a ≥区间上恒成立的问题可转化为()min f x a ≥;()f x a ≥区间上能成立的问题可转化为()max f x a ≥. 15.已知命题:p x ∃∈R ,||10m x +≤,若p ⌝为假命题,则实数m 的取值范围是________.【答案】{|0}m m < 【分析】p ⌝为假命题,则p 为真命题,对m 进行分类讨论,即可求得答案.若p ⌝为假命题,则p 为真命题.当0m ≥时,||110m x +≥>,p 为假命题;当0m <时,取2x m=,则2||112110m x m m -++==-+<=,p 为真命题. 因此若p ⌝为假命题,则实数m 的取值范围是{|0}m m <. 故答案为:{|0}m m <. 【点睛】本题考查含有一个量词的命题的否定及其真假性判断、不等式的性质,考查函数与方程思想,考查逻辑推理能力和运算求解能力,求解时注意参变分离法的运用. 16.下列几个命题①方程2(3)0x a x a +-+=有一个正实根,一个负实根,则0a <.②函数y =是偶函数,但不是奇函数.③函数()f x 的值域是[2,2]-,则函数(1)f x +的值域为[3,1]-.④ 设函数()y f x =定义域为R ,则函数(1)y f x =-与(1)=-y f x 的图象关于y 轴对称.⑤一条曲线2||3y x =-和直线()y a a R =∈的公共点个数是m ,则m 的值不可能是1. 其中正确的有___________________. 【答案】①⑤ 【详解】因为命题①中,利用根与系数的关系可知成立,命题②中,由于函数化简为y=0,因此是奇函数还是偶函数,故错误,命题③,值域不变,错误,命题④中,应该是关系与x=1对称,错误,命题⑤成立,故填写正确命题的序号为①⑤三、解答题17.已知0,1a a >≠,命题:p “函数()x f x a =在()0,∞+上单调递减”;命题:q “关于x 的不等式21204x ax -+≥对一切的x ∈R 恒成立”,若p q ∧为假命题,p q ∨为真命题,求实数a 的取值范围. 【答案】1,12⎛⎫⎪⎝⎭根据()f x 的单调递减,可得a 的取值范围;根据命题q 恒成立,可得a 的取值范围.由p q ∧为假命题,p q ∨为真命题可知命题p 与命题q 一真一假,通过分类讨论即可得a的取值范围. 【详解】p 为真:01a <<q 为真:2410a ∆=-≤,得1122a -≤≤又0,1a a >≠,102∴<≤a 因为p q ∧为假命题,p q ∨为真命题,所以,p q 命题一真一假(1)当p 真q 假0111122a a a <<⎧⎪⇒<<⎨>⎪⎩ (2)当p 假q 真1102a a >⎧⎪⎨<≤⎪⎩,无解综上,a 的取值范围是1,12⎛⎫⎪⎝⎭【点睛】本题考查了复合命题真假的关系,不等式分类讨论的应用,属于基础题. 18.设p :实数x 满足x 2-4ax +3a 2<0(其中a≠0),q :实数x 满足302x x -≤- (1)若a =1,且p ∧q 为真,求实数x 的取值范围; (2)若p 是q 的必要不充分条件,求实数a 的取值范围. 【答案】(1) (2,3) (2) (1,2] 【详解】试题分析:(1)当a =1时,解得1<x <3,即p 为真时实数x 的取值范围是1<x <3. 2分由2260280x x x x ⎧--≤⎨+->⎩,得2<x≤3,即q 为真时实数x 的取值范围是2<x≤3. 4分 若p ∧q 为真,则p 真且q 真,5分 所以实数x 的取值范围是(2,3).7分(2)p 是q 的必要不充分条件,即q ⇒p ,且p/⇒q ,8分设A ={x|p(x)},B ={x|q(x)},则A ⊂B ,又B =(2,3],由x 2-4ax +3a 2<0得(x -3a)(x -a)<0,9分当a >0时,A =(a,3a),有233a a ≤⎧⎨<⎩,解得1<a≤2;11分 当a <0时,A =(3a ,a),显然A∩B =∅,不合题意.13分所以实数a 的取值范围是(1,2].15分考点:解不等式及复合命题,集合包含关系点评:复合命题p ∧q 的真假由命题p ,q 共同决定,当两命题中有一个是真命题时复合后为假命题,由若p 是q 的必要不充分条件可得集合p 是集合q 的真子集19.已知命题p :函数()log 1a y x =+在定义域上单调递增;命题q :不等式()()222210a x a x -+-+>对任意实数x 恒成立.(1)若q 为真命题,求实数a 的取值范围;(2)若“()p q ∧¬”为真命题,求实数a 的取值范围.【答案】(1)23a ≤<(2)()1,2[3⋃,).+∞【分析】(1)分类讨论2a =恒成立和20a ->时,0<,结果求并集;2p ()为真时,1a >;q ¬为真,即q 为假时,2a <或3a ≥,结果再相交.【详解】解(1)因为命题q :不等式()()222210a x a x -+-+>对任意实数x 恒成立为真命题,所以2a =或()2024(2)421023a a a a ->⎧=---⨯<⇒<<⎨⎩综上所述:23a ≤<(2)因为“()p q ∧¬为真命题,故p 真q 假.因为命题p :函数()log 1a y x =+在定义域上单调递增,所以 1.a >q 假,由()1可知2a <或3a ≥所以()[)2311,23,a a a a <≥⎧>⇒∈⋃+∞⎨⎩或 所以实数a 的取值范围为()1,2[3⋃,).+∞【点睛】本题考查了复合命题及其真假,属基础题.20.已知命题p :实数x 满足3a x a -<<(其中0a >),命题q :实数x 满足14x << (1)若1a =,且p 与q 都为真命题,求实数x 的取值范围;(2)若p 是q 的必要不充分条件,求实数a 的取值范围.【答案】(1)()1,3;(2)4,3⎡⎫+∞⎪⎢⎣⎭.【分析】记命题p :x A ∈,命题q :x B ∈(1)当1a =时,求出A ,B ,根据p 与q 均为真命题,即可求出x 的范围; (2)求出A ,B ,通过p 是q 的必要不充分条件,得出B A ⊆,建立不等式组,求解即可.【详解】记命题p :x A ∈,命题q :x B ∈(1)当1a =时,{}13A x x =-<<,{}14B x x =<<, p 与q 均为真命题,则x A B ∈,∴x 的取值范围是()1,3.(2){}3A x a x a =-<<,{}14B x x =<<, p 是q 的必要不充分条件,∴集合B A ⊆,∴134a a -≤⎧⎨≥⎩,解得43a ≥, 综上所述,a 的取值范围是4,3⎡⎫+∞⎪⎢⎣⎭. 【点睛】1.命题真假的判断(1)真命题的判断方法:真命题的判定过程实际就是利用命题的条件,结合正确的逻辑推理方法进行正确地逻辑推理的一个过程,判断命题为真的关键是弄清命题的条件,选择正确的逻辑推理方法.(2)假命题的判断方法:通过构造一个反例否定命题的正确性,这是判断一个命题为假命题的常用方法.(3)一些命题的真假也可以依据客观事实作出判断.2.从逻辑关系上看,若p q ⇒,但q p ⇒/,则p 是q 的充分不必要条件;若p q ⇒/,但q p ⇒,则p 是q 的必要不充分条件;若p q ⇒,且q p ⇒,则p 是q 的充要条件;若p q ⇒/,且q p ⇒/,则p 是q 的既不充分也不必要条件. 21.已知幂函数f (x )=(3m 2﹣2m )x 12m -在(0,+∞)上单调递增,g (x )=x 2﹣4x +t . (1)求实数m 的值;(2)当x ∈[1,9]时,记f (x ),g (x )的值域分别为集合A ,B ,设命题p :x ∈A ,命题q :x ∈B ,若命题q 是命题p 的必要不充分条件,求实数t 的取值范围.【答案】(1)m =1(2)﹣42≤t ≤5【分析】(1)利用幂函数的性质即可求解;(2)先求出()f x ,()g x 的值域A ,B ,再利用命题q 是命题p 的必要不充分条件可以推出“A ⫋B ,”,由此即可求解.【详解】(1)∵f (x )=(3m 2﹣2m )x 12m -为幂函数,且在(0,+∞)上单调递增; ∴2321102m m m ⎧-=⎪⎨-⎪⎩>⇒m =1; (2)由(1)可得12()f x x =,当x ∈[1,9]时,f (x )值域为:[1,3],g (x )=x 2﹣4x +t 的值域为:[t ﹣4,t +45],∴A =[1,3],B =[t ﹣4,t +45];∵命题p :x ∈A ,命题q :x ∈B ,且命题q 是命题p 的必要不充分条件,∴A ⫋B ,∴41453t t -≤⎧⎨+≥⎩425t ⇒-≤≤, 故实数t 的取值范围为[42,5]-.【点睛】本题考查了幂函数的性质以及条件的充分性与必要性,考查学生分析与推理能力,属于中档题.22.设a R ∈,命题2:[1,2],0p x x a ∃∈->,命题2:,10q x R x ax ∀∈++>.(1)若命题p 是真命题,求a 的范围;(2)若命题()p q ⌝∨为假,求a 的取值范围.【答案】(1)4a <(2)2a ≤-或24a ≤<.【分析】(1)根据存在性问题的求解方法,得到a 与2x 之间的关系,即可求解出a 的范围; (2)根据()p q ⌝∨为假,判断出,p q 的真假,列出对应的不等式即可求解出a 的取值范围.【详解】(1)当p 为真命题时,则()2max a x <在[1,2]x ∈成立,解得4a <,∴p 为真时4a <;(2)当q 为真命题时,则240a -<,解得22a -<<,由(1)知p 为真时4a <,由()p q ⌝∨为假可得p 为真q 为假,则42a a <⎧⎨≤-⎩或42a a <⎧⎨≥⎩,则2a ≤-或24a ≤<. 【点睛】本题考查根据命题、含逻辑联结词的复合命题的真假求解参数范围,难度较易.其中对于存在性的分析,是求解问题的关键:若()a f x <存在解,则()max a f x <;若()a f x >存在解,则()min a f x >.。

人教新课标版(A)高二选修1-1 第一章常用逻辑用语单元测试

人教新课标版(A )高二选修1-1 第一章 常用逻辑用语单元测试(时间:120分钟 分值:100分)一、选择题(每小题5分,共60分)1. 命题“若B A ⊆,则A=B ”与其逆命题、否命题、逆否命题这四个命题中,真命题的个数是A. 0B. 2C. 3D. 42. 若非空集合N M ⊆,则“M a ∈或N a ∈”是“()N M a ⋂∈”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3. 已知命题p :3y x ≠+,命题1x :q ≠或2y ≠,则命题p 是q 的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4. 对下列命题的否定说法错误的是A. p :能被3整除的整数是奇数;⌝p :存在一个能被3整除的整数不是奇数B. p :每一个四边形的四个顶点共圆;p ⌝:存在一个四边形的四个顶点不共圆C. p :有的三角形为正三角形;p ⌝:所有的三角形都不是正三角形D. p :R x ∈∃,02x 2x 2≤++;p ⌝:当02x 2x 2>++时,R x ∈5. 命题甲:α是第二象限的角,命题乙:0tan sin <α⋅α,则命题甲是命题乙成立的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6. “1a =”是“函数ax sin ax cos y 22-=的最小正周期为π”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件7. 下列全称命题为真命题的是A. 所有的素数是奇数B. R x ∈∀,11x 2≥+C. 对每一个无理数x ,2x 也是无理数D. 所有的平行向量均相等8. 命题p :存在实数m ,使方程01mx x 2=++有实数根,则“非p ”形式的命题是A. 存在实数m ,使方程01mx x 2=++无实根B. 不存在实数m ,使方程01mx x 2=++无实根C. 对任意的实数m ,方程01mx x 2=++无实根D. 至多有一个实数m ,使方程01mx x 2=++有实根9. 用反证法证明命题:若整数系数一元二次方程0c bx ax 2=++(0a ≠)有有理数根,那么a 、b 、c 中至少有一个是偶数时,下列假设中正确的是A. 假设a 、b 、c 都是偶数B. 假设a 、b 、c 至多有一个是偶数C. 假设a 、b 、c 都不是偶数D. 假设a 、b 、c 至多有两个是偶数10. 在下列结论中,正确的结论为①“q p ∧”为真是“q p ∨”为真的充分不必要条件;②“q p ∧”为假是“q p ∨”为真的充分不必要条件;③“q p ∨”为真是“p ⌝”为假的必要不充分条件;④“p ⌝”为真是“q p ∧”为假的必要不充分条件。

高二数学 (新课标人教A版)选修1-1《第一章 常用逻辑用语》质量评估

章末质量评估(一)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设x是实数,则“x>0”是“|x|>0”的().A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要解析由x>0⇒|x|>0充分,而|x|>0⇒x>0或x<0,不必要.答案 A2.命题:“若x2<1,则-1<x<1”的逆否命题是().A.若x2≥1,则x≥1,或x≤-1B.若-1<x<1,则x2<1C.若x>1,或x<-1,则x2>1D.若x≥1,或x≤-1,则x2≥1解析-1<x<1的否定是“x≥1,或x≤-1”;“x2<1”的否定是“x2≥1”,故选D.答案 D3.下列命题中是全称命题的是().A.圆有内接四边形 B.3>2 C.3< 2D.若三角形的三边长分别为3、4、5,则这个三角形为直角三角形解析由全称命题的定义可知:“圆有内接四边形”,即为“所有圆都有内接四边形”,是全称命题.答案 A4.若α,β∈R,则“α=β”是“tan α=tan β”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件解析当α=β=π2时,tanα,tan β不存在;又α=π4,β=5π4时,tanα=tanβ,所以“α=β”是“tan α=tan β”的既不充分又不必要条件,故选D.答案 D5.命题“∀x>0,都有x2-x≤0”的否定是().A.∃x0>0,使得x20-x0≤0 B.∃x0>0,使得x20-x0>0C.∀x>0,都有x2-x>0 D.∀x≤0,都有x2-x>0解析由含有一个量词的命题的否定易知选B.答案 B6.命题p:a2+b2<0(a,b∈R);命题q:(a-2)2+|b-3|≥0(a,b∈R),下列结论正确的是().A.“p∨q”为真B.“p∧q”为真C.“p”为假D.“q”为真解析显然p假q真,故“p∨q”为真,“p∧q”为假,“綈p”为真,“綈q”为假,故选A.答案 A7.在下列各结论中,正确的是().①“p∧q”为真是“p∨q”为真的充分条件但不是必要条件;②“p∧q”为假是“p∨q”为假的充分条件但不是必要条件;③“p∨q”为真是“綈p”为假的必要条件但不是充分条件;④“綈p”为真是“p∧q”为假的必要条件但不是充分条件;A.①②B.①③C.②④D.③④解析“p∧q”为真则“p∨q”为真,反之不一定,①真;如p真,q假时,p∧q 假,但p∨q真,故②假;綈p为假时,p真,所以p∨q真,反之不一定对,故③真;若綈p为真,则p假,所以p∧q假,因此④错误.答案 B8.设函数f(x)=x2+mx(m∈R),则下列命题中的真命题是().A.任意m∈R,使y=f(x)都是奇函数B.存在m∈R,使y=f(x)是奇函数C.任意m∈R,使y=f(x)都是偶函数D.存在m∈R,使y=f(x)是偶函数解析存在m=0∈R,使y=f(x)是偶函数,故选D.答案 D9.“a=1”是“函数f(x)=|x-a|在区间[1,+∞)上为增函数”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析函数f(x)=|x-a|的图象如右图所示,其单调增区间为[a,+∞).当a=1时,函数f(x)=|x-a|在区间[1,+∞)上为增函数,则a≤1.于是可得“a=1”是“函数f(x)=|x-a|在区间[1,+∞)上为增函数”的充分不必要条件,故应选A.答案 A10.给出下列四个命题:①若x2-3x+2=0,则x=1或x=2②若-2≤x<3,则(x+2)(x-3)≤0③若x=y=0,则x2+y2=0④若x,y∈N+,x+y是奇数,则x,y中一个是奇数,一个是偶数,那么().A.①的逆命题为真B.②的否命题为真C.③的逆否命题为假D.④的逆命题为假解析②的逆命题:若(x+2)(x-3)≤0,则-2≤x≤3(假),故②的否命题为假.③的原命题为真,故③的逆否命题为真.④的逆命题显然为真.答案 A二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上) 11.命题“若a∉A,则b∈B”的逆否命题是__________.解析原命题的逆否命题即将原命题的条件与结论交换的同时进行否定,故逆否命题应为“若b∉B,则a∈A”.答案若b∉B,则a∈A12.设p:x>2或x<23;q:x>2或x<-1,则綈p是綈q的________条件.解析綈p:23≤x≤2.綈q :-1≤x ≤2.綈p ⇒綈q ,但綈q ⇒/ 綈p .∴綈p 是綈q 的充分不必要条件.答案 充分不必要13.已知命题p :“∀x ∈[1,2],x 2-a ≥0”,命题q :“∃x 0∈R ,x 20+2ax 0+2-a =0”,若命题“p 且q ”是真命题,则实数a 的取值范围是________.解析 命题p :“∀x ∈[1,2],x 2-a ≥0”为真,则a ≤x 2,x ∈[1,2]恒成立,∴a ≤1;命题q :“∃x 0∈R ,x 20+2ax 0+2-a =0”为真,则“4a 2-4(2-a )≥0,即a 2+a -2≥0”,解得a ≤-2或a ≥1.若命题“p 且q ”是真命题,则实数a 的取值范围是{a |a ≤-2或a =1}.答案 {a |a ≤-2或a =1}14.给出下列命题:①命题“若b 2-4ac <0,则方程ax 2+bx +c =0(a ≠0)无实根”的否命题;②命题“在△ABC 中,AB =BC =CA ,那么△ABC 为等边三角形”的逆命题;③命题“若a >b >0,则3a >3b >0”的逆否命题;④若“m >1,则mx 2-2(m +1)x +(m -3)>0的解集为R ”的逆命题.其中真命题的序号为________.解析 ①否命题:若b 2-4ac ≥0,则方程ax 2+bx +c =0(a ≠0)有实根,真命题; ②逆命题:若△ABC 为等边三角形,则AB =BC =CA ,真命题;③因为命题“若a >b >0,则3a >3b >0”是真命题,故其逆否命题真;④逆命题:若mx 2-2(m +1)x +(m -3)>0的解集为R ,则m >1,假命题.∵⎩⎨⎧m >0,[2(m +1)]2-4m (m -3)<0,得m ∈∅.所以应填①②③. 答案 ①②③三、解答题(本大题共5小题,共54分.解答应写出必要的文字说明,证明过程或演算步骤)15.(10分)写出下列命题的否定并判断真假:(1)所有自然数的平方是正数;(2)任何实数x 都是方程5x -12=0的根;(3)∀x ∈R ,x 2-3x +3>0;(4)有些质数不是奇数;解 (1)否定:有些自然数的平方不是正数,真命题.(2)否定:∃x 0∈R ,5x -12≠0,真命题.(3)否定:∃x 0∈R ,x 20-3x 0+3≤0,假命题.(4)否定:所有的质数都是奇数,假命题.16.(10分)已知命题p :“若ac ≥0,则二次方程ax 2+bx +c =0没有实根”.(1)写出命题p 的否命题;(2)判断命题p 的否命题的真假,并证明你的结论.解 (1)命题p 的否命题为:“若ac <0,则二次方程ax 2+bx +c =0有实根”.(2)命题p 的否命题是真命题.证明如下:∵ac <0,∴-ac >0⇒Δ=b 2-4ac >0⇒二次方程ax 2+bx +c =0有实根.∴该命题是真命题.17.(10分)已知命题p :-2<m <0,0<n <1;命题q :关于x 的方程x 2+mx +n =0有两个小于1的正根.试分析p 是q 的什么条件.解 p 是q 的必要不充分条件.若令m =-13∈(-2,0),n =12∈(0,1),则x 2-13x +12=0,此时方程的Δ=19-4×12<0无解,所以由p 推不出q ,即p 不是q 的充分条件;若方程x 2+mx +n =0有两个小于1的正根x 1,x 2,则0<x 1<1,0<x 2<1,∴0<x 1+x 2<2,0<x 1x 2<1.∴由根与系数的关系得⎩⎨⎧0<-m <2,0<n <1,即⎩⎨⎧-2<m <0,0<n <1,∴q ⇒p . 综上所述:p 是q 的必要不充分条件.18.(12分)设函数f (x )=x |x -a |+b ,求证:f (x )为奇函数的充要条件是a 2+b 2=0.证明 充分性:∵a 2+b 2=0,∴a =b =0,∴f (x )=x |x |.∵f (-x )=-x |-x |=-x |x |,-f (x )=-x |x |,∴f (-x )=-f (x ),∴f (x )为奇函数.必要性:若f (x )为奇函数,则对一切x ∈R ,f (-x )=-f (x )恒成立.即-x |-x -a |+b =-x |x -a |-b 恒成立.令x =0,则b =-b ,∴b =0,令x =a ,则2a |a |=0, ∴a =0.即a 2+b 2=0.19.(12分)设命题p :实数x 满足x 2-4ax +3a 2<0,其中a >0,命题q :实数x满足⎩⎨⎧x 2-x -6≤0,x 2+2x -8>0. (1)若a =1,且p ∧q 为真,求实数x 的取值范围;(2)若綈p 是綈q 的充分不必要条件,求实数a 的取值范围.解 (1)由x 2-4ax +3a 2<0,得(x -3a )(x -a )<0.又a >0,所以a <x <3a ,当a =1时,1<x <3,即p 为真命题时,实数x 的取值范围是1<x <3.由⎩⎨⎧x 2-x -6≤0,x 2+2x -8>0.解得⎩⎨⎧-2≤x ≤3,x <-4或x >2.即2<x ≤3. 所以q 为真时实数x 的取值范围是2<x ≤3.若p ∧q 为真,则⎩⎨⎧1<x <3,2<x ≤3⇔2<x <3, 所以实数x 的取值范围是(2,3).(2)綈p 是綈q 的充分不必要条件,即綈p ⇒綈q 且綈q 綈p .设A ={x |x ≤a 或x ≥3a },B ={x |x ≤2或x >3},则AB .所以0<a ≤2且3a >3,即1<a ≤2.所以实数a 的取值范围是(1,2].。

(易错题)高中数学选修1-1第一章《常用逻辑用语》检测(答案解析)(2)

一、选择题1.命题“x R ∃∈,2230x x -+<”的否定是( )A .x R ∃∈,2230x x -+≥B .x R ∀∈,2230x x -+≥C .x R ∃∉,2230x x -+≥D .x R ∀∉,2230x x -+≥2.“∀x ∈R ,e x -x +1≥0”的否定是( )A .∀x ∈R ,e x -x +1<0B .∃x ∈R ,e x -x +1<0C .∀x ∈R ,e x -x +1≤0D .∃x ∈R ,e x -x +1≤0 3.“2a =”是直线“1:210l ax y ++=与2:3(1)30l x a y ++-=平行”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.“ 1.5x >-”是“10x +>”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 5.设a ,b 都是不等于1的正数,则“222a b >>”是“log 2log 2a b <”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.下列说法中,正确的是( )A .若命题“非p ”与命题“p 或q ”都是真命题,那么命题q 一定是真命题B .命题“存在x ∈R ,使得210x x ++<”的否定是:“任意x ∈R ,都有210x x ++>”C .命题“若a b >,则221a b >-”的否命题为“若a b >,则221a b ≤-”D .“a b >”是“22ac bc >”的充分不必要条件7.下列说法错误的是( )A .“1a >”是“11a<”的充分不必要条件 B .“若2320x x -+=,则1x =”的逆否命题为“若1x ≠,则2320x x -+≠” C .命题p :x ∃∈R ,使得210x x ++<,则p ⌝:x ∀∈R ,均有210x x ++≥ D .若p q ∧为假命题,则p ,q 均为假命题8.若“x a ≥”是“12x ≥”的充分条件,则下列不可能是a 的一个取值的是( ) A .sin 3πB .13C .2D .π9.命题“0,4x π⎡⎤∀∈⎢⎥⎣⎦,cos sin x x ≥”的否定是( ) A .0,4x π⎡⎤∃∉⎢⎥⎣⎦,cos sin x x < B .0,4x π⎡⎤∃∈⎢⎥⎣⎦,cos sin x x <C .0,4x π⎡⎤∀∉⎢⎥⎣⎦,cos sin x x <D .0,4x π⎡⎤∃∈⎢⎥⎣⎦,cos sin x x ≤ 10.已知命题p :对任意1x >,都有21x >,则p ⌝为( )A .对任意1x >,都有21x ≤B .不存在1x <,使得21x ≤C .存在1x ≤,使得21x >D .存在1x >,使得21x ≤ 11.已知α,R β∈,则“αβ=”是“sin sin αβ=”成立的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件12.命题“0x ∀≥,20x x -≥”的否定是( ) A .0x ∃<,20x x -< B .0x ∀>,20x x -<C .0x ∃≥,20x x -≥D .0x ∃≥,20x x -< 二、填空题13.已知命题:0p x ∀>,x e ex >,写出命题p 的否定:___________.14.下列说法中,正确的序号为___________.①命题“2,0x R x x ∃∈->”的否定是“2,0x R x x ∀∈-≤”;②已知,x y R ∈,则“10x y +≠”是“5x ≠或5y ≠”的充分不必要条件;③命题“若22am bm <,则a b <”的逆命题为真;④若p q ∨为真命题,则p ⌝与q 至少有一个为真命题;15.已知命题:p “x ∀∈R ,23208kx kx +-<恒成立”是真命题,则实数k 的取值范围是___________.16.若命题“x R ∃∈,220x x a -+≤”是假命题,则实数a 的取值范围是________. 17.命题“2,0x R x x ∀∈+≤”的否定是__________.18.命题“0x ∃>,30x >”的否定为______.19.已知命题p :“∀x ∈[1,2],x 2+1≥a ”,命题q :“∃x 0∈R ,x 02+2ax 0+1=0”,若命题“¬p ∨¬q ”是假命题,则实数a 的取值范围是_____.20.条件:25p x -<<,条件2:0x q x a+<-,若p 是q 的充分不必要条件,则实数a 的取值范围是______________. 三、解答题21.已知集合{}1A x a x a =-≤≤,{}2430B x x x =-+≤.若“x A ∈”是“x B ∈”的充分不必要条件,求实数a 的取值范围.22.已知命题p :“存在a R ∈,使函数2()21f x x ax =-+在[1,)+∞上单调递增”,命题q :“存在a R ∈,使x R ∀∈,210x ax -+≠”.若命题“p q ∧”为真命题,求实数a 的取值范围.23.已知a R ∈,命题p :函数()()22log 1f x ax ax =++的定义域为R ;命题q ;关于α的不等式210x ax -+≤在1,22⎡⎤⎢⎥⎣⎦上有解. (1)若命题p 是真命题,求实数a 的取值范围;(2)若命题“p q ∨”为真命题,“p q ∧”为假命题,求实数a 的取值范围.24.已知命题[]2:1,2,320p x x mx ∀∈-+<;命题q :函数m y x x=+在区间0,1上单调递减.其中m 为常数.(1)若p 为真命题,求m 的取值范围;(2)若()p q ⌝∧为真命题,求m 的取值范围.25.设命题:p 关于x 的不等式1x a >(0a >且1)a ≠的解集为(,0)-∞;命题:q 函数()2()ln 2f x ax x =-+的定义域是R .如果命题“p q ∨”为真命题,“p q ∧”为假命题,求a 的取值范围.26.已知: p x R ∀∈,230ax x -+>,:[1,2]q x ∃∈,21x a ⋅≥.(1)若p 为真命题,求a 的取值范围;(2)若p q ∨为真命题,且p q ∧为假命题,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】利用特称命题的否定可得出结论.【详解】命题“x R ∃∈,2230x x -+<”为特称命题,该命题的否定为“x R ∀∈,2230x x -+≥”,故选:B.2.B解析:B【分析】由全称命题的否定即可得解.【详解】因为命题“∀x ∈R ,e x -x +1≥0”为全称命题,所以该命题的否定为:∃x ∈R ,e x -x +1<0.3.A解析:A【分析】根据充分条件和必要条件的定义即可求解.【详解】当2a =时,1:2210l x y ++=,2:10l x y +-=,此时两直线斜率都是1-且不重合,所以12//l l ,即2a =可以得出12//l l ,若12//l l ,则21313a a =≠+- ,即()16a a +=,解得3a =-或2a =, 所以12//l l 得不出2a =,所以“2a =”是“直线1:210l ax y ++=与直线2:3(1)30l x a y ++-=平行”的充分不必要条件,故选:A4.B解析:B【分析】用集合法判断,即可.【详解】10x +>,得1x >-,所以“ 1.5x >-是“1x >-”的必要不充分条件.故选B .【点睛】结论点睛:有关充要条件类问题的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)若p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件,q 对应集合与p 对应集合互不包含.5.A解析:A【分析】根据充分和必要条件的定义即可求解.【详解】由222a b >>可得1222a b >>,即1a b >>,可推出log 2log 2a b <,当01a <<,1b >时,不等式log 2log 2a b <成立,但推不出222a b >>,根据充分和必要条件的定义可得“222a b >>”是“log 2log 2a b <”的充分不必要条件, 故选:A.6.A【分析】对四个选项,一个一个选项验证:对于A:由复合命题的真假,结合真值表,即可判断;对于B: 全称量词命题的否定是特称(存在)量词命题,特称(存在)量词命题的否定是全称量词命题;对于C:由否命题直接写出结论;对于D:利用充要条件判断.【详解】对于A:由“非p ”为真,知p 假,“p 或q ”为真,所以q 为真,故A 正确;对于B: 命题“存在x ∈R ,使得210x x ++<”的否定是:“任意x ∈R ,都有210x x ++≥”,故B 错误;对于C: 命题“若a b >,则221a b >-”的否命题为“若a b ≤,则221a b ≤-”,故C 错误; 对于D:若c=0,由 “a b >”不能推出 “22ac bc >”,故D 错误故选:A.【点睛】判断命题真假的题目,四个选项内容各不相干,需要对四个选项一一验证.7.D解析:D【分析】根据充分条件和必要条件的定义可判断选项A ,根据逆否命题的定义可判断选项B ,根据特称命题的否定是全称命题即可判断选项C ,根据复合命题的真假判断命题的真假可判断选项D ,进而可得正确选项.【详解】对于选项A :1a >可得11a <,但11a <可得1a >或0a <,所以“1a >”是“11a<”的充分不必要条件,所以选项A 说法是正确的, 对于选项B :“若2320x x -+=,则1x =”的逆否命题为“若1x ≠,则2320x x -+≠” 所以选项B 说法是正确的,对于选项C :命题p :x ∃∈R ,使得210x x ++<,则p ⌝:x ∀∈R ,均有210x x ++≥,所以选项C 说法是正确的,对于选项D :若p q ∧为假命题,则p 和q 至少有一个为假命题,不一定都是假命题,所以选项D 说法是错误的,故选:D.8.B解析:B【分析】根据已知条件得出实数a 的取值范围,由此可得出合适的选项.【详解】因为“x a ≥”是“12x ≥”的充分条件,则12a ≥,而sin 32π=. 故满足条件的选项为B.故选:B. 9.B解析:B【分析】由全称命题的否定是特称命题可得选项.【详解】由全称命题的否定是特称命题得:“0,4x π⎡⎤∀∈⎢⎥⎣⎦,cos sin x x ≥”的否定是“0,4x π⎡⎤∃∈⎢⎥⎣⎦,cos sin x x <”, 故选:B.10.D解析:D【分析】根据全称量词命题的否定是存在量词命题,写出结果即可.【详解】因为全称量词命题的否定时存在量词命题,所以命题“对任意1x >,都有21x >”的否定是:“存在1x >,使21x ≤”,故选:D.11.A解析:A【分析】由条件推结论可判断充分性,由结论推条件可判断必要性.【详解】若“αβ=”,则“sin sin αβ=”必成立;但是“sin sin αβ=”,未必有“αβ=”,例如0,αβπ==.所以“αβ=”是“sin sin αβ=”成立的充分不必要条件.故选:A.12.D解析:D【分析】直接利用全称命题的否定是特称命题,将任意改成存在,并将结论否定即可.【详解】根据全称命题的否定的定义可知,命题“0x ∀≥,20x x -≥”的否定是0x ∃≥,20x x -<.故选:D.二、填空题13.【分析】全称命题的否定全称量词改为存在量词结论否定【详解】解:命题的否定为故答案为:解析:0x ∃>,x e ex ≤【分析】全称命题的否定,全称量词改为存在量词,结论否定.【详解】解:命题:0p x ∀>,x e ex >的否定为0x ∃>,x e ex ≤故答案为:0x ∃>,x e ex ≤14.①②【分析】对于①把特称命题否定为全称命题即可;对于②由充分条件和必要条件的定义判断即可;对于③取验证即可;对于④由为真命题得命题与命题至少有一个为真命题由此可判断【详解】解:对于①命题的否定是所以解析:①②【分析】对于①,把特称命题否定为全称命题即可;对于②,由充分条件和必要条件的定义判断即可;对于③,取0m =验证即可;对于④,由p q ∨为真命题,得命题p 与命题q 至少有一个为真命题,由此可判断【详解】解:对于①,命题“2,0x R x x ∃∈->”的否定是“2,0x R x x ∀∈-≤”,所以①正确;对于②,因为10x y +≠,所以5x =与5y =不可能同时成立,即10x y +≠可得5x ≠或5y ≠,但5x ≠或5y ≠不能得到10x y +≠,比如4,6x y ==,可得10x y +=,所以“10x y +≠”是“5x ≠或5y ≠”的充分不必要条件,所以②正确;对于③,题“若22am bm <,则a b <”的逆命题为“若a b <,则22am bm <”,当0m =时,结论不成立,所以③错误;对于④,若p q ∨为真命题,则命题p 与命题q 至少有一个为真命题,而当命题p 为真命题,命题q 为假命题时,p ⌝与q 均为假命题,所以④错误,故答案为:①②15.【分析】分与两种情况讨论结合已知条件可得出关于实数的不等式组由此可解得实数的取值范围【详解】已知命题恒成立是真命题当时则有恒成立合乎题意;当时则有解得综上所述实数的取值范围是故答案为:【点睛】结论点 解析:(]3,0-【分析】分0k =与0k ≠两种情况讨论,结合已知条件可得出关于实数k 的不等式组,由此可解得实数k 的取值范围.【详解】已知命题:p “x ∀∈R ,23208kx kx +-<恒成立”是真命题. 当0k =时,则有308-<恒成立,合乎题意; 当0k ≠时,则有22030k k k <⎧⎨∆=+<⎩,解得30k -<<. 综上所述,实数k 的取值范围是(]3,0-.故答案为:(]3,0-.【点睛】结论点睛:利用二次不等式在实数集上恒成立,可以利用以下结论来求解:设()()20f x ax bx c a =++≠ ①()0f x >在R 上恒成立,则00a >⎧⎨∆<⎩; ②()0f x <在R 上恒成立,则00a <⎧⎨∆<⎩; ③()0f x ≥在R 上恒成立,则00a >⎧⎨∆≤⎩; ④()0f x ≤在R 上恒成立,则00a <⎧⎨∆≤⎩. 16.【分析】首先根据题意得到恒成立从而得到即可得到答案【详解】因为是假命题所以恒成立所以解得故答案为:解析:1a >【分析】首先根据题意得到x R ∀∈,22>0x x a -+恒成立,从而得到440a -<,即可得到答案.【详解】因为“x R ∃∈,220x x a -+≤”是假命题,所以x R ∀∈,22>0x x a -+恒成立. 所以440a -<,解得>1a .故答案为:1a >.17.【分析】利用全称命题的否定是特称命题解答【详解】因为全称命题的否定是特称命题命题是全称命题所以命题的否定是故答案为:解析:2000,0x R x x ∃∈+>【分析】利用全称命题的否定是特称命题解答.【详解】因为全称命题的否定是特称命题,命题“2,0x R x x ∀∈+≤”是全称命题,所以命题“2,0x R x x ∀∈+≤”的否定是“2000,0x R x x ∃∈+>”.故答案为:2000,0x R x x ∃∈+>.18.【分析】根据特称命题的否定是全称命题可得【详解】由特称命题的否定是全称命题则命题的否定为故答案为:解析:0x ∀>,30x ≤【分析】根据特称命题的否定是全称命题可得.【详解】由特称命题的否定是全称命题,则命题“0x ∃>,30x >”的否定为0x ∀>,30x ≤.故答案为:0x ∀>,30x ≤19.∪12【分析】利用复合命题的真假性判断出的真假性即可求解【详解】若为真则;若为真则△即或;命题是假命题均为假命题即均为真命题;;或;故答案为:【点睛】本题考查了复合命题的真假性考查学生的分析能力计算 解析:(],1-∞∪[1,2]【分析】利用复合命题的真假性判断出p ,q 的真假性即可求解.【详解】若p 为真,则:2p a ;若q 为真,则△2440a =-,即1a -或1a ;命题“p q ⌝∨⌝”是假命题,p ∴⌝,q ⌝均为假命题,即p ,q 均为真命题;∴211a a a ⎧⎨-⎩或; 1a ∴-或12a ;故答案为:(-∞,1][1-,2].【点睛】本题考查了复合命题的真假性,考查学生的分析能力,计算能力,推理能力;属于中档题.20.【详解】解:是的充分而不必要条件等价于的解为或故答案为: 解析:5a >【详解】解:p 是q 的充分而不必要条件,p q ∴⇒,20xx a+<-等价于(2)()0x x a +-<,(2)()0x x a +-=的解为2x =-,或x a =, 5a ∴>,故答案为:(5,)+∞.三、解答题21.[]2,3.【分析】首先求出集合B ,因为“x A ∈”是“x B ∈”的充分不必要条件,所以A 真包含于B ,即可得到不等式组,解得即可;【详解】 解:由题意知,{}1A x a x a =-≤≤不为空集,{}2|430{|13}B x x x x x =-+≤=≤≤,因为“x A ∈”是“x B ∈”的充分不必要条件,所以A 真包含于B ,则113a a -≥⎧⎨≤⎩,解得23a ≤≤. 所以实数a 的取值范围是[]2,3.22.(1,1)-.【分析】“p q ∧”为真命题,则,p q 都为真命题.分别分析两个命题都为真命题时的a 的取值范围,求交集即可.【详解】解:若p 为真,则对称轴22a x a -=-=在区间[1,)+∞的左侧, 1a ∴≤.若q 为真,则方程210x ax -+=无实数根.2(2)40a ∴∆=--<,11a ∴-<<.命题“p q ∧”为真命题,∴命题p ,q 都为真,111a a ≤⎧∴⎨-<<⎩11a ∴-<<.故实数a 的取值范围为(1,1)-.23.(1)04a ≤<;(2)[)[)0,24,⋃+∞.【分析】(1)若命题p 是真命题,等价于210ax ax ++>在R 上恒成立,分别由0a =和00a >⎧⎨∆<⎩即可求解; (2)由题意可知命题p 和命题q 一真一假,分别讨论p 真q 假、p 假q 真两种情况即可求解.【详解】(1).当p 为真时,210ax ax ++>在R 上恒成立,①当0a =,不等式化为20010x x ++>,符合题意.②当0a ≠时,则0a >,且240a a ∆=-<故04a <<,即当p 真时有04a ≤<.(2)[)[)0,24,⋃+∞.由题意知:当q 为真时,1a x x ≥+在1,22⎡⎤⎢⎥⎣⎦上有解. 令()1g x x x =+,则()y g x =在1,12⎡⎤⎢⎥⎣⎦上递减,在[]1,2上递增, 所以()()min 12a g x g ≥==所以当q 假时,2a < ,由(1)知当p 假时0a <或4a ≥,又因为p q ∨为真,p q ∧为假,所以命题p 和命题q 一真一假,当p 真q 假时,所以042a a ≤<⎧⎨<⎩解得02a ≤<, 当p 假q 真时,0a <或4a ≥且2a ≥,所以4a ≥综上所述:a 的取值范围是[)[)0,24,⋃+∞.【点睛】方法点睛:不等式有解求参数常用分离参数法若不等式(),0f x λ≥()x D ∈(λ是实参数)有解,将(),0f x λ≥转化为()g x λ≥或()()g x x D λ≤∈有解,进而转化为()min g x λ≥或()()max g x x D λ≤∈,求()g x 的最值即可.24.(1)()7,+∞;(2)[]1,7.【分析】(1)由二次函数的性质得出()10f <且()20f <,求解得出m 的取值范围;(2)由()p q ⌝∧为真命题得出p 为假命题,q 为真命题,再讨论0,0m m ≤>两种情况,由函数m y x x=+在区间0,1的单调性,列出不等式得出m 的取值范围. 【详解】 (1)令()232f x x mx =-+,其图像是开口向上的抛物线要使p 为真命题,则()10f <且()20f <即320,12220,m m -+<⎧⎨-+<⎩,所以7m > 所以m 的取值范围是()7,+∞.(2)若()p q ⌝∧为真命题,则p 为假命题,q 为真命题由(1)知,p 为假命题等价于7m ≤.对于命题,q 当0m ≤时,函数m y x x =+在0,1上单调递增,不满足条件; 当0m >时,函数m y x x =+在(上单调递减,在)+∞上单调递增 要使m y x x=+在0,11≥,即m 1≥, 综上所述,若()p q ⌝∧为真命题,m 的取值范围是[]1,7.【点睛】关键点睛:解决第二问的关键在于熟知对勾函数的单调性,从而求出m 的取值范围.25.()10,1,8⎛⎤+∞ ⎥⎝⎦【分析】先分别假设p ,q 为真命题,求出对应的a 的范围,再根据题意,得到p 和q 有且只有一个是真命题,由此可求出结果.【详解】由题意,若p 为真命题,则01a <<;若q 为真命题,则220ax x -+>对任意x ∈R 恒成立,所以0180a a >⎧⎨∆=-<⎩,解得18a >; 因为命题“p q ∨”为真命题,“p q ∧”为假命题,所以p 和q 有且只有一个是真命题. 若p 真q 假,则0118a a <<⎧⎪⎨≤⎪⎩,解得108a <≤;若p 假q 真,则118a a >⎧⎪⎨>⎪⎩,综上所述:()10,1,8a ⎛⎤∈+∞ ⎥⎝⎦. 【点睛】本题主要考查由复合命题的真假求参数的问题,涉及一元二次不等式恒成立问题,属于基础题型.26.(1)112a >;(2)11124a <<. 【分析】(1)分0a =和0a ≠两种情况讨论即可;(2)因为p q ∨为真命题,且q q ∧为假命题,所以分p 真q 假或p 假q 真两种情况,分别解出即可.【详解】(1)当0a =时,30x -+>不恒成立,不符合题意;当0a ≠时,01120a a >⎧⎨∆=-<⎩,解得112a > 综上所述,112a >. (2)[]1,2x ∃∈,21x a ⋅≥,则14a ≥. 因为q ρ∨为真命题,且p q ∧为假命题,所以p 真q 假或p 假q 真,当p 真q 假时,有11214a a ⎧>⎪⎪⎨⎪<⎪⎩即11124a <<; 当p 假q 真时,有11214a a ⎧≤⎪⎪⎨⎪>⎪⎩则a 无解. 综上所述11124a <<. 【点睛】 由简单命题和逻辑连接词构成的复合命题的真假可以用真值表来判断,反之根据复合命题的真假也可以判断简单命题的真假.可把“p 或q”为真命题转化为并集的运算;把“p 且q”为真命题转化为交集的运算.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

章末质量评估一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设x是实数,则“x>0”是“|x|>0”的( ).A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要2.命题:“若x2<1,则-1<x<1”的逆否命题是( ).A.若x2≥1,则x≥1,或x≤-1 B.若-1<x<1,则x2<1C.若x>1,或x<-1,则x2>1 D.若x≥1,或x≤-1,则x2≥13.下列命题中是全称命题的是( ).A.圆有内接四边形 B.3> 2C.3< 2 D.若三角形的三边长分别为3、4、5,则这个三角形为直角三角形4.若α,β∈R,则“α=β”是“tan α=tan β”的( ).A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件5.命题“∀x>0,都有x2-x≤0”的否定是( ).A.∃x0>0,使得x20-x0≤0 B.∃x0>0,使得x20-x0>0C.∀x>0,都有x2-x>0 D.∀x≤0,都有x2-x>06.命题p:a2+b2<0(a,b∈R);命题q:(a-2)2+|b-3|≥0(a,b∈R),下列结论正确的是( ).A.“p∨q”为真B.“p∧q”为真C.“綈p”为假D.“綈q”为真7.在下列各结论中,正确的是( ).①“p∧q”为真是“p∨q”为真的充分条件但不是必要条件;②“p∧q”为假是“p∨q”为假的充分条件但不是必要条件;③“p∨q”为真是“綈p”为假的必要条件但不是充分条件;④“綈p”为真是“p∧q”为假的必要条件但不是充分条件;A.①② B.①③ C.②④ D.③④8.设函数f(x)=x2+mx(m∈R),则下列命题中的真命题是( ).A.任意m∈R,使y=f(x)都是奇函数 B.存在m∈R,使y=f(x)是奇函数C.任意m∈R,使y=f(x)都是偶函数 D.存在m∈R,使y=f(x)是偶函数9.“a=1”是“函数f(x)=|x-a|在区间[1,+∞)上为增函数”的( ).A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件10.给出下列四个命题:①若x2-3x+2=0,则x=1或x=2②若-2≤x<3,则(x+2)(x-3)≤0③若x=y=0,则x2+y2=0④若x ,y ∈N +,x +y 是奇数,则x ,y 中一个是奇数,一个是偶数,那么( ). A .①的逆命题为真 B .②的否命题为真 C .③的逆否命题为假D .④的逆命题为假二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上) 11.命题“若a ∉A ,则b ∈B ”的逆否命题是__________.12.设p :x >2或x <23;q :x >2或x <-1,则綈p 是綈q 的________条件.13.已知命题p :“∀x ∈[1,2],x 2-a ≥0”,命题q :“∃x 0∈R ,x 20+2ax 0+2-a =0”,若命题“p 且q ”是真命题,则实数a 的取值范围是________.三、解答题(本大题共5小题,共54分.解答应写出必要的文字说明,证明过程或演算步骤) 14.(12分)设命题p :实数x 满足x2-4ax +3a 2<0,其中a >0,命题q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0.(1)若a =1,且p ∧q 为真,求实数x 的取值范围;(2)若綈p 是綈q 的充分不必要条件,求实数a 的取值范围.2.设F 1,F 2是椭圆x 225+y 29=1的焦点,P 为椭圆上一点,则△PF 1F 2的周长为( )A.16B.18C.20D.不确定4.已知F 1,F 2是椭圆x224+y249=1的两个焦点,P 是椭圆上一点,且|PF 1|∶|PF 2|=4∶3,则三角形PF 1F 2的面积等于( )A.24B.26C.22 2D.24 26.方程x22m -y2m -1=1表示焦点在y 轴上的椭圆,则m 的取值范围是________.7.已知椭圆两焦点为F 1、F 2,a =32,过F 1作直线交椭圆于A 、B 两点,则△ABF 2的周长为______.8.求经过两点P 1⎝ ⎛⎭⎪⎫13,13,P 2⎝ ⎛⎭⎪⎫0,-12的椭圆的标准方程. 二、能力提升9.已知两椭圆ax 2+y 2=8与9x 2+25y 2=100的焦距相等,则a 的值为________.10.已知椭圆x225+y29=1上的点M 到该椭圆一个焦点F 的距离为2,N 是MF 的中点,O 为坐标原点,那么线段ON 的长是________.13.在Rt△ABC 中,∠CAB =90°,AB =2,AC =22,曲线E 过C 点,动点P 在E 上运动,且保持|PA |+|PB |的值不变,求曲线E 的方程.3.椭圆x 24+y 2=1的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则|PF 2|等于( )A.32B. 3C.72D.44.已知椭圆x 2a 2+y 2b2=1 (a >b >0),M 为椭圆上一动点,F 1为椭圆的左焦点,则线段MF 1的中点P的轨迹是( )A.圆B.椭圆C.线段D.直线5.曲线x225+y29=1与x29-k +y225-k =1 (0<k <9)的关系是( )A.有相等的焦距,相同的焦点B.有相等的焦距,不同的焦点C.有不相等的焦距,不同的焦点D.以上都不对6.椭圆x 2a 2+y 2b 2=1 (a >b >0)的两个焦点为F 1、F 2,点P 在椭圆C 上,且PF 1⊥F 1F 2,|PF 1|=43,|PF 2|=143.求椭圆C 的方程. 7.△ABC 的三边a ,b ,c 成等差数列,且a >b >c ,A ,C 的坐标分别为(-1,0),(1,0),求顶点B 的轨迹方程.二、能力提升8.设F 1、F 2分别是椭圆x 216+y 27=1的左、右焦点,若点P 在椭圆上,且PF 1→²PF 2→=0,则|PF 1→+PF 2→|=________.9.已知A ⎝ ⎛⎭⎪⎫-12,0,B 是圆F :⎝ ⎛⎭⎪⎫x -122+y 2=4(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于P ,则动点P 的轨迹方程为______________.11.已知点M 在椭圆x 236+y 29=1上,MP ′垂直于椭圆焦点所在的直线,垂足为P ′,并且M 为线段PP ′的中点,求P 点的轨迹方程.12.P 是椭圆x 2a 2+y 2b2 =1 (a >b >0)上的任意一点,F 1,F 2是它的两个焦点,O 为坐标原点,OQ →=PF 1→+PF 2→,求动点Q 的轨迹方程.4.过椭圆x 2a 2+y 2b2=1 (a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为( )A.52B.33C.12D.136.椭圆x 2a 2+y 2b 2=1和x 2a 2+y 2b2=k (k >0,a >0,b >0)具有( ) A.相同的顶点 B.相同的离心率 C.相同的焦点D.相同的长轴和短轴10.设椭圆的两个焦点分别为F 1、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是________. 11.已知椭圆x 2+(m +3)y 2=m (m >0)的离心率e =32,求m 的值及椭圆的长轴和短轴的长、焦点坐标、顶点坐标.12.已知椭圆x 2a 2+y 2b2=1 (a >b >0)的左焦点为F 1(-c,0),A (-a ,0),B (0,b )是两个顶点,如果F 1到直线AB 的距离为b7,求椭圆的离心率e .1.椭圆x225+y29=1上的点P 到椭圆左焦点的最大距离和最小距离分别是( )A.8,2B.5,4C.5,1D.9,12.直线y =x +2与椭圆x2m +y23=1有两个公共点,则m 的取值范围是( )A.m >1B.m >1且m ≠3C.m >3D.m >0且m ≠33.AB 为过椭圆x 2a 2+y 2b2=1中心的弦,F (c,0)为椭圆的右焦点,则△AFB 面积的最大值为( ) A.b 2B.abC.acD.bc4.经过椭圆x22+y 2=1的一个焦点作倾斜角为45°的直线l ,交椭圆于A 、B 两点.设O 为坐标原点,则OA →²OB →等于 ( )A.-3B.-13C.-13或-3D.±136.若倾斜角为π4的直线交椭圆x 24+y 2=1于A ,B 两点,则线段AB 的中点的轨迹方程是________________.7.人造地球卫星的运行是以地球中心为一个焦点的椭圆,近地点距地面p 千米,远地点距地面q 千米,若地球半径为r 千米,则运行轨迹的短轴长为______________. 9.若椭圆x 2a 2+y 2b 2=1的焦点在x 轴上,过点(1,12)作圆x 2+y 2=1的切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是________________. 11.已知椭圆C 1:x 24+y 2=1,椭圆C 2以C 1的长轴为短轴,且与C 1有相同的离心率.(1)求椭圆C 2的方程;(2)设O 为坐标原点,点A ,B 分别在椭圆C 1和C 2上,OB →=2OA →,求直线AB 的方程.。

相关文档
最新文档