初中几何空间与图形知识点

合集下载

初中数学几何的总结知识点

初中数学几何的总结知识点

初中数学几何的总结知识点一、几何基本概念1. 点、线、面的基本概念2. 线段、射线、角的基本概念3. 有向线段,边界二、角的性质1. 同位角、余角、邻补角、对顶角2. 锐角、直角、钝角、平角3. 角的度量、角的度分秒制三、相交线和平行线1. 同位角相等2. 对顶角相等3. 垂直线、垂直平行线的判定4. 平行线的性质:平行线性质的等价命题、平行线的性质四、三角形1. 三角形的分类2. 三角形内角和定理3. 三角形的边对角和定理4. 三角形的外角和定理5. 三角形的相似性质6. 相似三角形的判定、相似三角形的性质7. 角平分线定理、中位线定理五、全等三角形1. 全等三角形的对应角、对应边性质2. 全等三角形的判定六、直角三角形1. 勾股定理2. 直角三角形的性质和判定七、平行四边形1. 平行四边形的性质2. 矩形、正方形、菱形、长方形的性质3. 平行四边形的判定八、多边形1. 多边形的命名和分类2. 多边形内角和定理3. 多边形外角和定理4. 等边多边形的性质5. 正多边形的性质九、圆1. 圆的基本概念2. 圆的性质3. 圆周角和圆心角4. 弧长和面积5. 切线和切点6. 相交弦定理7. 立体几何体的基本概念8. 空间直角坐标系与距离十、空间图形1. 空间的基本概念2. 空间图形的基本元素3. 空间图形的分类4. 体积的计算5. 柱、锥、台、球的表面积和体积以上是初中数学几何的基本知识点,同学们要在平时多加强练习,掌握这些知识点,从而提高数学水平。

空间立体几何知识点归纳

空间立体几何知识点归纳

第一章 空间几何体知识点归纳1、空间几何体的结构:空间几何体分为多面体和旋转体和简单组合体⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。

简单组合体的构成形式:⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。

⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。

1、空间几何体的三视图和直观图投影:中心投影 平行投影(1)定义:几何体的正视图、侧视图和俯视图统称为几何体的三视图。

(2)三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等”2、空间几何体的直观图(表示空间图形的平面图). 观察者站在某一点观察几何体,画出的图形.3、斜二测画法的基本步骤:①建立适当直角坐标系xOy (尽可能使更多的点在坐标轴上)②建立斜坐标系'''x O y ∠,使'''x O y ∠=450(或1350),注意它们确定的平面表示水平平面;③画对应图形,在已知图形平行于X 轴的线段,在直观图中画成平行于X ‘轴,且长度保持不变;在已知图形平行于Y 轴的线段,在直观图中画成平行于Y ‘轴,且长度变为原来的一半;4、空间几何体的表面积与体积⑴圆柱侧面积;l r S ⋅⋅=π2侧面⑵圆锥侧面积:l r S ⋅⋅=π侧面 ⑶圆台侧面积:()S r R l π=+侧面⑷体积公式:h S V ⋅=柱体;h S V ⋅=31锥体; ()13V h S S =+下台体上⑸球的表面积和体积:32344R V R S ππ==球球,.一般地,面积比等于相似比的平方,体积比等于相似比的立方。

第二章 点、直线、平面之间的位置关系及其论证1,,A l B ll A B ααα∈∈⎧⇒⊂⎨∈∈⎩ 公理1的作用:判断直线是否在平面内2、公理2:过不在一条直线上的三点,有且只有一个平面。

图形的所有知识点

图形的所有知识点

图形的所有知识点图形是几何学中的一个重要概念,广泛应用于数学、理工科、计算机科学等领域。

本文将介绍图形的基本定义、分类以及与图形相关的重要概念和性质。

一、图形的基本定义在几何学中,图形是由点和线构成的集合。

点是图形中最基本的元素,用来表示位置;线是连接点的直线段,用来表示图形的边界或轮廓。

图形可以是二维的,也可以是三维的。

二、图形的分类根据图形的性质和特点,可以将图形分为以下几类:1. 点、线、面点是最基本的图形元素,没有长度、宽度和厚度。

线是由点组成的直线段,具有长度但没有宽度和厚度。

面是由线段围成的封闭区域,具有面积。

2. 平面图形平面图形是指在同一平面内的图形,包括直线、多边形、圆、椭圆等。

直线是由无限多个点组成的线段,没有宽度和厚度。

多边形是由直线段组成的封闭图形,包括三角形、四边形等。

圆是由等距离于圆心的点组成的封闭曲线,具有圆心、半径和直径等重要属性。

椭圆是由两个焦点到任意点距离之和不变的点组成的封闭曲线,具有焦距和长短轴等性质。

3. 空间图形空间图形是指存在于三维空间中的图形,包括立体、曲面、曲线等。

立体是由面围成的三维图形,包括立方体、棱柱、棱锥等。

曲面是由点和线组成的三维图形,可以是闭合曲面或开放曲面。

曲线是空间中的一条曲线,可以是闭合曲线或开放曲线。

4. 对称图形对称图形是指具有对称性质的图形,可以是平移、旋转、镜像对称等。

平移对称是指图形在平面内沿着一条直线移动后重合,保持形状和大小不变。

旋转对称是指图形围绕一个点旋转一定角度后重合,保持形状和大小不变。

镜像对称是指图形关于一条直线对称后重合,形状相同但方向相反。

三、图形的重要概念和性质除了基本定义和分类外,图形还具有以下重要概念和性质:1. 边长和周长边长是指多边形的边的长度,周长是指多边形所有边长的和。

边长和周长可以用来衡量多边形的大小和形状。

2. 面积和体积面积是指平面图形的大小,可以用来衡量图形所占据的区域大小。

体积是指立体图形的大小,可以用来衡量图形所占的空间大小。

图形与几何初中知识点总结

图形与几何初中知识点总结

图形与几何初中知识点总结图形与几何是数学中的一个重要分支,主要研究形状、大小以及它们之间的关系。

在初中阶段,学生将会接触到一系列的图形和几何知识。

本文将对这些初中图形与几何的知识点进行总结。

一、平面图形1. 三角形:三边的关系、内角和、直角三角形、等腰三角形等。

2. 四边形:平行四边形、矩形、正方形、菱形等。

3. 多边形:五边形、六边形、正多边形等。

4. 圆:圆的半径、直径、弧长、面积等。

二、空间图形1. 立体图形:长方体、正方体、圆柱体、圆锥体、正棱柱等。

2. 进一步了解这些立体图形的表面积、体积和侧面积的计算方法。

三、相似与全等1. 相似:两个图形形状相同,但大小可能不同。

学生需要了解相似三角形的判定条件,以及相似图形的比例关系。

2. 全等:两个图形既形状相同,又大小相同。

学生需要了解全等图形的性质和判定条件,以及如何做全等图形的对应构造。

四、坐标系与平面直角坐标系1. 坐标系的概念:了解平面上的点如何用坐标来表示。

2. 平面直角坐标系:了解直角坐标系的构建方法,以及如何通过坐标计算两点之间的距离和斜率。

五、角与角的计算1. 角的概念:了解角的定义,以及如何用角度和弧度来表示角。

2. 角的运算:了解角的加法、减法、相等和互补关系等。

六、直线与曲线1. 平行线和垂直线的概念:了解直线之间的平行和垂直关系。

2. 直线与曲线的交点:了解直线和圆的交点性质,以及如何通过已知条件求解交点问题。

七、投影与旋转1. 投影的概念:了解正交投影和斜投影的概念,以及投影的性质和相关计算方法。

2. 旋转的概念:了解平面上图形的旋转概念,以及旋转的性质和相关计算方法。

八、对称与镜像1. 对称的概念:了解平面上的图形对称性,以及对称图形的性质和判断方法。

2. 镜像的概念:了解平面上的图形镜像关系,以及镜像图形的构造方法。

九、尺规作图1. 基本作图:了解使用尺规作图工具(直尺和圆规)进行基本图形的作图。

2. 组合作图:了解使用尺规作图工具进行更复杂图形的作图,如平分角、作已知角的整倍角等。

初中几何空间与图形知识点

初中几何空间与图形知识点

初中几何空间与图形知识点A、图形的认识1、点,线,面点,线,面:①图形是由点,线,面构成的。

②面与面相交得线,线与线相交得点。

③点动成线,线动成面,面动成体。

展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。

②N棱柱就是底面图形有N条边的棱柱。

截一个几何体:用一个平面去截一个图形,截出的面叫做截面。

视图:主视图,左视图,俯视图。

多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。

弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。

②圆可以分割成假设干个扇形。

2、角线:①线段有两个端点。

②将线段向一个方向无限延长就形成了射线。

射线只有一个端点。

③将线段的两端无限延长就形成了直线。

直线没有端点。

④经过两点有且只有一条直线。

比较长短:①两点之间的所有连线中,线段最短。

②两点之间线段的长度,叫做这两点之间的距离。

角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。

②一度的1/60是一分,一分的1/60是一秒。

角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。

②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。

始边继续旋转,当他又和始边重合时,所成的角叫做周角。

③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

平行:①同一平面内,不相交的两条直线叫做平行线。

②经过直线外一点,有且只有一条直线与这条直线平行。

③如果两条直线都与第3条直线平行,那么这两条直线互相平行。

垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。

②互相垂直的两条直线的交点叫做垂足。

③平面内,过一点有且只有一条直线与直线垂直。

垂直平分线:垂直和平分一条线段的直线叫垂直平分线。

垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后〔关于画法,后面会讲〕一定要把线段穿出2点。

立体几何初步知识点全总结

立体几何初步知识点全总结

立体几何初步知识点全总结一、空间几何体的结构。

1. 棱柱。

- 定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。

- 分类:- 按底面多边形的边数分为三棱柱、四棱柱、五棱柱等。

- 直棱柱:侧棱垂直于底面的棱柱。

正棱柱:底面是正多边形的直棱柱。

- 性质:- 侧棱都相等,侧面是平行四边形。

- 两个底面与平行于底面的截面是全等的多边形。

- 过不相邻的两条侧棱的截面(对角面)是平行四边形。

2. 棱锥。

- 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。

- 分类:- 按底面多边形的边数分为三棱锥、四棱锥、五棱锥等。

- 正棱锥:底面是正多边形,且顶点在底面的射影是底面正多边形的中心的棱锥。

- 性质:- 正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高)。

- 棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形;棱锥的高、侧棱和侧棱在底面上的射影也组成一个直角三角形。

3. 棱台。

- 定义:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台。

- 分类:由三棱锥、四棱锥、五棱锥等截得的棱台分别叫做三棱台、四棱台、五棱台等。

- 性质:- 棱台的各侧棱延长后交于一点。

- 棱台的上下底面是相似多边形,侧面是梯形。

4. 圆柱。

- 定义:以矩形的一边所在直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫做圆柱。

- 性质:- 圆柱的轴截面是矩形。

- 平行于底面的截面是与底面全等的圆。

5. 圆锥。

- 定义:以直角三角形的一条直角边所在直线为轴旋转,其余两边旋转所成的曲面所围成的几何体叫做圆锥。

- 性质:- 圆锥的轴截面是等腰三角形。

- 平行于底面的截面是圆,截面半径与底面半径之比等于顶点到截面距离与圆锥高之比。

6. 圆台。

- 定义:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台。

初中数学几何知识点总结归纳

初中数学几何知识点总结归纳

初中数学几何知识点总结归纳初中数学几何知识点总结归纳在初中数学中,几何是一个重要的部分,几何学习主要涉及到形状、图形、空间和位置的概念和变换。

本文将从以下几个方面总结归纳初中数学几何的知识点。

一、直线与角1. 直线:直线是没有弯曲的最短路径,它有无限多个点。

2. 角:角是由两条射线在一个共同顶点上的拓展形成的,可以分为钝角(大于90°),直角(90°)和锐角(小于90°)。

3. 平行线:平行线是在同一个平面上从不相交的直线。

4. 垂直线:垂直线是两条互相垂直的线段。

5. 余角:两个角的余角是它们的和等于90°的角。

二、多边形1. 正多边形:正多边形是有n个等边且等角的边构成的多边形。

2. 等腰三角形:等腰三角形是有两条边相等的三角形。

3. 等边三角形:等边三角形是三边都相等的三角形。

4. 直角三角形:直角三角形是有一个直角(90°)的三角形。

5. 锐角三角形:锐角三角形是三个内角都小于90°的三角形。

6. 钝角三角形:钝角三角形是三个内角中有一个大于90°的三角形。

三、梯形与平行四边形1. 梯形:梯形是一个有两条平行边的四边形。

2. 平行四边形:平行四边形是两对相对的边都平行的四边形。

3. 矩形:矩形是一个拥有四个直角的平行四边形。

4. 正方形:正方形是一个具有四个相等边且四个直角的矩形。

四、圆与圆周1. 圆:圆是一个平面上所有距离圆心相等的点的集合。

2. 圆周率:圆周率是圆的周长与直径的比值,约等于3.14159。

3. 弧:一个弧是圆上的一部分。

4. 弦:弦是连接圆上两点的线段。

五、相似与全等1. 相似图形:相似图形是具有相同形状但比例不同的图形。

2. 全等图形:全等图形是具有相同形状和尺寸的图形。

3. 比例:比例是两个量之间的相对大小关系。

4. 对应边:两个相似图形中位置相对应的边称为对应边。

六、立体几何1. 空间几何:空间几何涉及到三维图形的概念和变换。

几何全部知识点总结归纳

几何全部知识点总结归纳

几何全部知识点总结归纳几何学的主要研究对象包括:1. 几何图形:平面几何和立体几何都是几何学的重要研究对象。

具体来说,平面几何主要研究平面上的点、直线、角、多边形等图形的性质和关系;立体几何主要研究空间中的点、直线、平面、多面体等图形的性质和关系。

2. 空间:几何学也研究空间的性质和运动规律,如平面空间、立体空间等。

在几何学中,空间包括了点、线、面和体等概念,一切几何图形都存在于空间中。

3. 运动:几何学研究物体在空间中的位置变化和变换规律,如平移、旋转、对称等。

这些运动规律不仅在几何学中具有重要意义,还对物理学、工程学等领域有着重要的应用价值。

以下是几何学中的一些重要知识点和概念:1. 平面几何1.1 点、线、面的性质和关系1.2 角的性质和分类1.3 特殊直线和角:垂直线、平行线、相交线、三角形内角和等于180度等1.4 多边形的性质与分类1.5 圆的性质与相关定理1.6 平面几何的解题方法与技巧2. 立体几何2.1 空间中的点、直线、面和体的性质2.2 多面体的性质和分类2.3 圆柱、圆锥、圆球的性质与计算2.4 立体几何的解题方法与技巧3. 向量和坐标几何3.1 向量的概念和运算3.2 向量的数量积和向量积3.3 直角坐标系和平面直角坐标系3.4 空间直角坐标系和坐标系中的直线、曲线方程4. 解析几何4.1 平面解析几何4.2 空间解析几何4.3 解析几何中的参数方程和极坐标方程5. 图形的变换5.1 平移、旋转、对称的概念和性质5.2 图形变换的运用和解题方法6. 空间几何6.1 空间中点、直线、面和体的性质6.2 空间几何的相关定理和应用7. 几何证明7.1 几何证明的基本规则和方法7.2 常见的几何定理和证明方法8. 几何学的应用8.1 几何学在建筑、绘画和工程等领域的应用8.2 几何学在科学研究和技术开发中的应用几何学的知识点繁多而且深奥,需要系统地学习和掌握。

通过学习几何学,我们可以提高逻辑思维能力、空间想象能力和解决问题的能力,有助于培养学生的数学素养和创新思维。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中几何空间与图形知识点A、图形的认识1、点,线,面点,线,面:①图形是由点,线,面构成的。

②面与面相交得线,线与线相交得点。

③点动成线,线动成面,面动成体。

展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。

②N棱柱就是底面图形有N条边的棱柱。

截一个几何体:用一个平面去截一个图形,截出的面叫做截面。

视图:主视图,左视图,俯视图。

多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。

弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。

②圆可以分割成若干个扇形。

2、角线:①线段有两个端点。

②将线段向一个方向无限延长就形成了射线。

射线只有一个端点。

③将线段的两端无限延长就形成了直线。

直线没有端点。

④经过两点有且只有一条直线。

比较长短:①两点之间的所有连线中,线段最短。

②两点之间线段的长度,叫做这两点之间的距离。

角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。

②一度的1/60是一分,一分的1/60是一秒。

角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。

②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。

始边继续旋转,当他又和始边重合时,所成的角叫做周角。

③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

平行:①同一平面内,不相交的两条直线叫做平行线。

②经过直线外一点,有且只有一条直线与这条直线平行。

③如果两条直线都与第3条直线平行,那么这两条直线互相平行。

垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。

②互相垂直的两条直线的交点叫做垂足。

③平面内,过一点有且只有一条直线与已知直线垂直。

垂直平分线:垂直和平分一条线段的直线叫垂直平分线。

垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。

垂直平分线定理:性质定理:在垂直平分线上的点到该线段两端点的距离相等;判定定理:到线段2端点距离相等的点在这线段的垂直平分线上角平分线:把一个角平分的射线叫该角的角平分线。

定义中有几个要点要注意一下的,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点性质定理:角平分线上的点到该角两边的距离相等判定定理:到角的两边距离相等的点在该角的角平分线上正方形:一组邻边相等的矩形是正方形性质:正方形具有平行四边形、菱形、矩形的一切性质判定:1、对角线相等的菱形2、邻边相等的矩形3、相交线与平行线角:①如果两个角的和是直角,那么称和两个角互为余角;如果两个角的和是平角,那么称这两个角互为补角。

②同角或等角的余角/补角相等。

③对顶角相等。

④同位角相等/内错角相等/同旁内角互补,两直线平行,反之亦然。

4、三角形三角形:①由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

②三角形任意两边之和大于第三边。

三角形任意两边之差小于第三边。

③三角形三个内角的和等于180度。

④三角形分锐角三角形/直角三角形/钝角三角形。

⑤直角三角形的两个锐角互余。

⑥三角形中一个内角的角平分线与他的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

⑦三角形中,连接一个顶点与他对边中点的线段叫做这个三角形的中线。

⑧三角形的三条角平分线交于一点,三条中线交于一点。

⑨从三角形的一个顶点向他的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高。

⑩三角形的三条高所在的直线交于一点。

图形的全等:全等图形的形状和大小都相同。

两个能够重合的图形叫全等图形。

全等三角形:①全等三角形的对应边/角相等。

②条件:SSS、AAS、ASA、SAS、HL。

勾股定理:直角三角形两直角边的平方和等于斜边的平方,反之亦然。

5、四边形平行四边形的性质:①两组对边分别平行的四边形叫做平行四边形。

②平行四边形不相邻的两个顶点连成的线段叫他的对角线。

③平行四边形的对边/对角相等。

④平行四边形的对角线互相平分。

平行四边形的判定条件:两条对角线互相平分的四边形、一组对边平行且相等的四边形、两组对边分别相等的四边形/定义。

菱形:①一组邻边相等的平行四边形是菱形。

②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。

③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。

矩形与正方形:①有一个内角是直角的平行四边形叫做矩形。

②矩形的对角线相等,四个角都是直角。

③对角线相等的平行四边形是矩形。

④正方形具有平行四边形,矩形,菱形的一切性质。

⑤一组邻边相等的矩形是正方形。

梯形:①一组对边平行而另一组对边不平行的四边形叫梯形。

②两条腰相等的梯形叫等腰梯形。

③一条腰和底垂直的梯形叫做直角梯形。

④等腰梯形同一底上的两个内角相等,对角线星等,反之亦然。

多边形:①N边形的内角和等于(N-2)180度。

②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)平面图形的密铺:三角形,四边形和正六边形可以密铺。

中心对称图形:①在平面内,一个图形绕某个点旋转180度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做他的对称中心。

②中心对称图形上的每一对对应点所连成的线段都被对称中心平分。

B、图形与变换:1、图形的轴对称轴对称:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

轴对称图形:①角的平分线上的点到这个角的两边的距离相等。

②线段垂直平分线上的点到这条线段两个端点的距离相等。

③等腰三角形的“三线合一”。

轴对称的性质:对应点所连的线段被对称轴垂直平分,对应线段/对应角相等。

2、图形的平移和旋转平移:①在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移。

②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等。

旋转:①在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。

②经过旋转,图形商店每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。

3、图形的相似比:①A/B=C/D,那么AD=BC,反之亦然。

②A/B=C/D,那么A土B/B=C土D/D。

③A/B=C/D=。

=M/N,那么A+C+…+M/B+D+…N=A/B。

黄金分割:点C把线段AB分成两条线段AC与BC,如果AC/AB=BC/AC,那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比(根号5-1/2)。

相似:①各角对应相等,各边对应成比例的两个多边形叫做相似多边形。

②相似多边形对应边的比叫做相似比。

相似三角形:①三角对应相等,三边对应成比例的两个三角形叫做相似三角形。

②条件:AAA、SSS、SAS。

相似多边形的性质:①相似三角形对应高,对应角平分线,对应中线的比都等于相似比。

②相似多边形的周长比等于相似比,面积比等于相似比的平方。

图形的放大与缩小:①如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。

②位似图形上任意一对对应点到位似中心的距离之比等于位似比。

C、图形的坐标平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴与Y轴统称坐标轴,他们的公共原点O称为直角坐标系的原点。

他们分4个象限。

XA,YB记作(A,B)。

唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。

而对那些特别讲授“武事”或讲解“经籍”者,又称“讲师”。

“教授”和“助教”均原为学官称谓。

前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。

“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。

唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。

至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显赫,也称得上朝廷要员。

至此,无论是“博士”“讲师”,还是“教授”“助教”,其今日教师应具有的基本概念都具有了。

D、证明教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。

如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。

定义与命题:①对名称与术语的含义加以描述,作出明确的规定,也就是给出他们的定义。

②对事情进行判断的句子叫做命题(分真命题与假命题)。

③每个命题是由条件和结论两部分组成。

④要说明一个命题是假命题,通常举出一个离子,使之具备命题的条件,而不具有命题的结论,这种例子叫做反例。

公理:①公认的真命题叫做公理。

②其他真命题的正确性都通过推理的方法证实,经过证明的真命题称为定理。

③同位角相等,两直线平行,反之亦然;SAS、ASA、SSS,反之亦然;同旁内角互补,两直线平行,反之亦然;内错角相等,两直线平行,反之亦然;三角形三个内角的和等于180度;三角形的一个外交等于和他不相邻的两个内角的和;三角心的一个外角大于任何一个和他不相邻的内角。

④由一个公理或定理直接推出的定理,叫做这个公理或定理的推论。

一般说来,“教师”概念之形成经历了十分漫长的历史。

杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:“师者教人以不及,故谓师为师资也”。

这儿的“师资”,其实就是先秦而后历代对教师的别称之一。

《韩非子》也有云:“今有不才之子……师长教之弗为变”其“师长”当然也指教师。

这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副其实的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。

相关文档
最新文档