空间与图形知识点整理与习题
2020年小升初数学专题复习训练—空间与图形:周长、面积与体积(2)(知识点总结+同步测试)

2020年小升初数学专题复习训练—空间与图形周长、面积与体积(2)知识点复习一.平行四边形的面积【知识点归纳】平行四边形面积=底×高,用字母表示:S=ah.(a表示底,h表示高)【命题方向】例1:一个平行四边形相邻两条边分别是6厘米、4厘米,量得一条边上的高为5厘米,这个平行四边形的面积是()平方厘米.A、24B、30C、20D、120分析:根据平行四边形的特点可知,底边上的高一定小于另一条斜边,所以高为5厘米对应的底为4厘米,利用面积公式计算即可.解:4×5=20(平方厘米);答:这个平行四边形的面积是20平方厘米.故选:C.点评:此题主要考查平行四边形的特点,分析出相对应的底和高,据公式解答即可.例2:一个平行四边形的底扩大3倍,高扩大2倍,面积就扩大()A、5倍B、6倍C、不变分析:平行四边形面积=底×高底扩大3倍,高扩大2倍,则面积扩大了3×2=6倍.解:因为平行四边形面积=底×高,底扩大3倍,高扩大2倍,则面积扩大了3×2=6(倍),故选:B.点评:本题考查了平行四边形的面积公式.二.三角形的周长和面积【知识点归纳】三角形的周长等于三边长度之和.三角形面积=底×高÷2.【命题方向】例1:4个完全相同的正方形拼成一个长方形.(如图)图中阴影三角形的面积的大小是A、甲>乙>丙B、乙>甲>丙C、丙>甲>乙D、甲=乙=丙分析:因为三角形的面积=底×高÷2,且图中三个阴影三角形等底等高,所以图中阴影三角形的面积都相等.解:因为三角形的面积=底×高÷2,且图中三个阴影三角形等底等高,所以图中阴影三角形的面积都相等.故选:D.点评:此题主要考查等底等高的三角形面积相等.例2:在如图的梯形中,阴影部分的面积是24平方分米,求梯形的面积.分析:由图形可知,阴影部分三角形的高与梯形的高相等,已知三角形的面积和底求出三角形的高,再根据梯形的面积公式s=(a+b)h÷2,计算梯形的面积即可.解:24×2÷8=48÷8=6(分米);(8+10)×6÷2=18×6÷2=54(平方分米);答:梯形的面积是54平方分米.点评:此题解答根据是求出三角形的高(梯形的高),再根据梯形的面积公式解答即可.三.组合图形的面积【知识点归纳】方法:①“割法”:观察图形,把图形进行分割成容易求得的图形,再进行相加减.②“补法”:观察图形,给图形补上一部分,形成一个容易求得的图形,再进行相加减.③“割补结合”:观察图形,把图形分割,再进行移补,形成一个容易求得的图形.【命题方向】例1:求图中阴影部分的面积.(单位:厘米)分析:根据图所示,可把组合图形分成一个直角梯形和一个圆,阴影部分的面积等于梯形的面积减去圆的面积再加上圆的面积减去三角形面积的差,列式解答即可得到答案.解:[(5+8+5)×5÷2-×3.14×52]+(×3.14×52-5×5÷2),=[18×5÷2-0.785×25]+(0.785×25-25÷2),=[90÷2-19.625]+(19.625-12.5),=[45-19.625]+7.125,=25.375+7.125,=32.5(平方厘米);答:阴影部分的面积为32.5平方厘米.点评:此题主要考查的是梯形的面积公式(上底+下底)×高÷2、三角形的面积公式底×高÷2和圆的面积公式S=πr2的应用.四.长方体和正方体的表面积【知识点归纳】长方体表面积:六个面积之和.公式:S=2ab+2ah+2bh.(a表示底面的长,b表示底面的宽,h表示高)正方体表面积:六个正方形面积之和.公式:S=6a2.(a表示棱长)【命题方向】例1:如果一个正方体的棱长扩大到原来的2倍,那么它的表面积就扩大到原来的()倍.A、2B、4C、6D、8分析:正方体的表面积=棱长×棱长×6,设原来的棱长为a,则扩大后的棱长为2a,分别代入正方体的表面积公式,即可求得面积扩大了多少.解:设原来的棱长为a,则扩大后的棱长为2a,原正方体的表面积=a×a×6=6a2,新正方体的表面积=2a×2a×6=24a2,所以24a2÷6a2=4倍,故选:B.点评:此题主要考查正方体表面积的计算方法.例2:两个表面积都是24平方厘米的正方体,拼成一个长方体.这个长方体的表面积是()平方厘米.A、48B、44C、40D、16分析:两个表面积都是24平方厘米的正方体拼成一个长方体,长方体的表面积就比原来两个正方体减少了2个面,那么长方体的表面积等于正方体10个面的面积,所以先求出正方体一个面的面积,然后即可求出长方体的表面积.解:24÷6=4(平方厘米),4×10=40(平方厘米);答:长方体的表面积是40平方厘米.故选:C.点评:此题解答关键是理解两个正方体拼成长方体后,表面积会减少2个面,由此即可解决问题.五.长方体和正方体的体积【知识点归纳】长方体体积公式:V=abh.(a表示底面的长,b表示底面的宽,h表示高)正方体体积公式:V=a3.(a表示棱长)【命题方向】例1:一个正方体的棱长扩大3倍,体积扩大()倍.A、3B、9C、27分析:正方体的体积等于棱长的立方,它的棱长扩大几倍,则它的体积扩大棱长扩大倍数的立方倍,据此规律可得.解:正方体的棱长扩大3倍,它的体积则扩大33=27倍.故选:C.点评:此题考查正方体的体积及其棱长变化引起体积的变化.例2:一只长方体的玻璃缸,长8分米,宽6分米,高4分米,水深2.8分米.如果投入一块棱长为4分米的正方体铁块,缸里的水溢出多少升?分析:根据题意知用水的体积加铁块的体积,再减去玻璃缸的容积,就是溢出水的体积.据此解答.解:8×6×2.8+4×4×4-8×6×4,=134.4+64-192,=6.4(立方分米),=6.4(升).答:向缸里的水溢出6.4升.点评:本题的关键是让学生理解:溢出水的体积=水的体积+铁块的体积-玻璃缸的容积,这一数量关系.六.圆柱的侧面积、表面积和体积【知识点归纳】圆柱的侧面积=底面的周长×高,用字母表示:S侧=Ch(C表示底面的周长,h表示圆柱的高),或S侧=2πrh圆柱的底面积=πr2圆柱的表面积=侧面积+两个底面积,用字母表示:S表=2πr2+2πrh圆柱的体积=底面积×高,用字母表示:V=πr2h.【命题方向】例1:做一个铁皮烟囱需要多少铁皮,就是求烟囱的()A、表面积B、体积C、侧面积分析:根据圆柱体的侧面积的定义知道,圆柱侧面积是指将一个圆柱体沿高展开后得到的长方形的面积,做一个铁皮烟囱实际就是做一个没有上、下底面的圆柱体,要求铁皮的多少就是求烟囱的侧面积.解:因为,烟囱是通风的,是没有上下两个底的,所以,做一个铁皮烟囱需要多少铁皮,就是求烟囱的侧面积,故选:C.点评:此题主要考查了圆柱体的侧面积的意义,及在生活中的实际应用.例2:一个圆柱形量杯底面周长是25.12厘米,高是10厘米,把它装满水后,再倒入一个长10厘米,宽8厘米的长方体容器中,水面高多少厘米?分析:由题意可知,把圆柱形容器中的水倒入长方体容器中,只是形状改变了,但是水的体积不变.因此,先根据圆柱的容积(体积)公式v=sh,求出圆柱形容器中水的体积,再除以长方体容器的底面积.由此列式解答.解:3.14×(25.12÷3.14÷2)2×10÷(10×8),=3.14×42×10÷80,=3.14×16×10÷80,=502.4÷80,=6.28(厘米);答:水面高6.28厘米.点评:此题属于圆柱和长方体的容积的实际应用,首先根据圆柱的容积(体积)公式求出水的体积,再用水的体积除以长方体容器的底面积.据出解决问题.七.圆锥的体积【知识点归纳】圆锥体积=×底面积×高,用字母表示:V=Sh=πr2h,(S表示底面积,h表示高)【命题方向】例1:把一团圆柱体橡皮泥揉成与它等底的圆锥体,高将()A、扩大3倍B、缩小3倍C、扩大6倍D、缩小6倍分析:根据题意知道,在捏橡皮泥的过程中,它的总体积不变,再根据等底等高的圆锥形和圆柱形的关系,即可得到答案.解:根据等底等高的圆锥形的体积是圆柱形体积的,又因为,在捏橡皮泥的过程中,它的总体积不变,所以,把一团圆柱体橡皮泥揉成与它等底的圆锥体,高将扩大3倍;故选:A.点评:解答此题的关键是,根据题意,结合等底等高的圆锥形的体积是圆柱形体积的,即可得到答案.例2:一个圆锥形小麦堆,高1米,底面周长18.84米,如果每立方米小麦重0.75吨,这堆小麦大约有多少吨?分析:根据圆锥的底面周长求出底面半径,再代入圆锥的体积公式求出体积,进而求得重量即可.解:r=C÷2π,=18.84÷(2×3.14),=3(米);V锥=πr2h,=×3.14×32×1,=×3.14×9×1,=9.42(立方米);9.42×0.75=7.065(吨);答:这堆小麦大约有7.065吨.点评:此题考查了圆锥的体积公式的实际应用.同步测试一.选择题(共10小题)1.压路机的前轮转动一周所压过的路面面积是指()A.前轮的表面积B.前轮的侧面积C.前轮的底面积2.在长12厘米,宽10厘米,高8厘米的长方体中切出一个体积最大的圆柱,这个圆柱的体积是()立方厘米.A.1130.4B.602.88C.628D.904.323.下面说法正确的是()A.圆锥的体积等于圆柱体积的B.把0.56扩大到它的100倍是56C.书的总页数一定,未读的页数与已读的页数成正比例4.把一个棱长1厘米的正方体切成两个完全一样的长方体后,表面积比原来增加()A.50%B.C.5.一底面是正方形的长方体,把它的侧面展开后,正好是一个边长为8分米的正方形,原来长方体的体积是()立方分米.A.32B.64C.166.有两个表面积都是60平方厘米的正方体,把它们拼成一个长方体.这个长方体的表面积是()平方厘米.A.90B.100C.110D.1207.奇思用和两种图形拼成了一个图案(如图),这个图案的面积是()dm2.A.10B.8C.68.如图梯形中有()对面积相等的三角形.A.1B.2C.3D.49.一个三角形和一个平行四边形的底相等,面积也相等,已知平行四边形的高是4厘米,那么三角形的高是()A.8厘米B.4厘米C.2厘米D.16厘米10.平行四边形如图所示,计算其面积的算式可以是()A.24×21B.14×16C.21×16二.填空题(共8小题)11.如图,平行四边形的高是4厘米,它的面积是平方厘米.12.如图中,圆的直径是8厘米,那么图中阴影部分的面积是平方厘米.13.把一个圆柱的侧面展开是一个正方形,这个圆柱的底面直径是4厘米,圆柱的高是厘米.(π取3.14)14.一个圆锥体积是12cm3,底面积是1.2cm2,高是cm.15.一个等腰三角的周长是16厘米,底边是4厘米,腰长是厘米.16.一个三角形和与它等底等高的平行四边形面积和是240平方米,三角形面积是平方米.17.一个长方体的长是10厘米,宽是5厘米,它的高是2厘米.这个长方体的表面积是平方厘米,体积是立方厘米.18.一个正方体,如果高减少3厘米,就变成了一个长方体(如图).这时表面积比原来减少48平方厘米,原来正方体的体积是立方厘米.三.判断题(共5小题)19.一根圆木的长一定,它的体积和横截面积成正比例.(判断对错)20.一块长方体的橡皮泥捏成一个正方体,体积发生了变化.(判断对错)21.图中阴影部分的面积是大平行四边形面积的一半.(判断对错)22.两个三角形相比较,高越长面积就越大.(判断对错)23.圆柱的体积一定比圆锥的体积大,圆锥的体积一定比圆柱的体积小.(判断对错)四.计算题(共5小题)24.计算出下面图形的面积.(单位:厘米)25.已知:直角三角形如图所示,若以AC为轴旋转一周得一个几何体,求这个几何体的体积.26.求阴影部分的面积.(π取3.14)27.计算下面长方体的表面积和正方体的体积.(单位:厘米)28.(表面积和体积)五.应用题(共7小题)29.在长40厘米、宽30厘米的长方形铁皮的四个角上,分别剪去一个边长5厘米的正方形后,正好折成一个无盖的铁盒.如果每毫升汽油重0.75克,那么这个铁盒最多能装多少克汽油?30.小明家一面外墙墙皮脱落,要重新粉刷,每平方米需要用0.5千克涂料.如果涂料的价格是每千克15元,粉刷这面墙需要多少元?31.一块三角形的地,底是600米,高是450米,这块地的面积是多少公顷?32.一个圆锥形沙堆,高1.5米,底面周长是18.84米,如果每立方米沙子重500千克,那么这堆沙子共重多少千克?33.一根圆柱形实心钢管,它的横截面周长是25.12cm,那么它的横截面面积是多少?34.一个长方体的食品盒,长8厘米,宽8厘米,高12厘米,如果围着它贴一圈商标(上、下面不贴),这张商标纸的面积至少有多少平方厘米?35.王大爷家有一块菜地(如图).(1)这块菜地的面积是多少平方米?(2)如果每平方米收青菜12千克,这块菜地一共收青菜多少千克?参考答案与试题解析一.选择题(共10小题)1.【分析】压路机的前轮是圆柱形,压路机的前轮转动一周所压过的路面积是指前轮的侧面积.【解答】解:压路机的前轮转动一周所压过的路面面积是指前轮的侧面积.故选:B.【点评】压路机的前轮的形状是圆柱,这个圆柱是侧躺在地面,转动一周,所压过的面正好是圆柱的侧面.2.【分析】要使削成的圆柱的体积最大,也就是用10厘米作为圆柱的底面直径,8厘米作为圆柱的高,根据圆柱的体积公式:V=Sh,把数据代入公式解答.【解答】解:以10厘米为底面直径,高是8厘米;3.14×(10÷2)2×8=3.14×25×8=78.5×8=628(立方厘米答:这个圆柱体的体积是628立方厘米.故选:C.【点评】解答此题的关键是,如何将一个长方体削成一个最大的圆柱,并找出它们之间的联系,再根据相应的公式解决问题.3.【分析】A.因为等底等高的圆锥的体积是圆柱体积的,所以圆锥体积是圆柱体积的.这种说法是错误的.B.根据小数点的位置移动引起小数大小变化的规律,把一个小数扩大100倍,也就是把这个小数的小数点向右移动两位,即0.56 扩大100倍是56.因此,把0.56扩大到它的100倍是56.这种说法是正确的.C.因为未读的页数+已读的页数=一本书的总页数,所以书的总页数一定,未读的页数与已读的页数不成正比例.因此,书的总页数一定,未读的页数与已读的页数成正比例.这种说法是错误的.据此判断.【解答】解:A.因为等底等高的圆锥的体积是圆柱体积的,所以圆锥体积是圆柱体积的.这种说法是错误的.B.根据小数点的位置移动引起小数大小变化的规律,把一个小数扩大100倍,也就是把这个小数的小数点向右移动两位,即0.56 扩大100倍是56.因此,把0.56扩大到它的100倍是56.这种说法是正确的.C.因为未读的页数+已读的页数=一本书的总页数,所以书的总页数一定,未读的页数与已读的页数不成正比例.因此,书的总页数一定,未读的页数与已读的页数成正比例.这种说法是错误的.故选:B.【点评】此题考查的目的是理解掌握等底等高的圆柱与圆锥体积之间的关系及应用;小数点的网址移动引起小数大小变化规律的应用;比例的意义及应用.4.【分析】把正方体切成完全一样的两块长方体后,它的表面积比原来增加了2个正方体的面的面积,正方体有6个面,由此即可解答问题.【解答】解:2÷6=答:表面积比原来增加.故选:C.【点评】此题要抓住一个正方体切割出2个完全一样的长方体的方法,得出切割后比原来增加了2个正方体的面,是解决此类问题的关键.5.【分析】理解长方体的侧面展开图:把它的侧面展开后正好成一个边长是8分米的正方形,这说明长方体的底面周长和高相等,都是8分米,因长方体的底面是正方形,所以能求出底面边长,进一步求出底面积,再根据长方体的体积=底面积×高,即可列式解答.【解答】解:底面边长:8÷4=2(分米)底面积:2×2=4(平方分米)体积:4×8=32(立方分米)答:这个长方体的体积是32立方分米.故选:A.【点评】此题考查了长方体的侧面展开图和体积公式,关键是弄清侧面展开图与长方体之间的关系.6.【分析】两个表面积都是60平方厘米的正方体拼成一个长方体,长方体的表面积就比原来两个正方体减少了2个面,那么长方体的表面积等于正方体10个面的面积,所以先求出正方体一个面的面积,然后即可求出长方体的表面积.【解答】解:60÷6=10(平方厘米)10×10=100(平方厘米)答:这个长方体的表面积是100平方厘米.故选:B.【点评】此题解答关键是理解两个正方体拼成长方体后,表面积会减少2个面,由此即可解决问题.7.【分析】通过观察可知这个图案是由4个平行四边形和一个正方形组合而成,根据平行四边形的面积公式计算出4个平行四边形的面积;根据正方形的面积等于对角线乘积的一半计算出正方形的面积;然后将4个平行四边形的面积和正方形的面积相加即可求出答案.【解答】解:2×1×4+×2×2=8+2=10(平方分米)答:这个图案的面积是10平方分米.故选:A.【点评】本题考查了平行四边形的面积公式和正方形面积等于对角线乘积的一半公式的应用,要熟练掌握.8.【分析】根据三角形的面积公式:S=底×高÷2,则等底同高的三角形面积相等;根据图形的特点解答即可.【解答】解:如图,△ABD 与△ACD ,等底同高,所以S △ABD =S △ACD△ABC 与△DBC ,等底同高,所以S △ABC =S △DBC因为S △ABO =S △ABC ﹣S △BOC ,S △DOC =S △DBC ﹣S △BOC ,等量代换得:S △ABO =S △DOC即梯形ABCD 中共有3对面积相等的三角形.故选:C .【点评】本题主要运用三角形的面积与底成正比的性质;等底同高的三角形面积相等.9.【分析】根据平行四边形的面积公式S =ah 及三角形的面积公式S =ah ÷2,推导出在一个平行四边形和一个三角形的面积相等,底边长相等时,三角形的高是平行四边形的高的2倍,再列式解答即可.【解答】解:4×2=8(厘米)答:三角形的高是8分米.故选:A .【点评】本题主要是灵活利用平行四边形的面积公式及三角形的面积公式推导:一个平行四边形和一个三角形的面积相等,底边长相等时,平行四边形的高是三角形的高的一半.10.【分析】根据平行四边形的面积公式:S =ah ,把数据代入公式解答.【解答】解:16×21=33624×14=336答:这个平行四边形的面积是336.故选:C.【点评】此题主要考查平行四边形面积公式的灵活运用,关键是熟记公式,注意:底与高的对应.二.填空题(共8小题)11.【分析】根据题意可知,平行四边形的底为5厘米时,高不可能为4厘米,因为高是两条平行线内最短的线段,所以这个平行四边形的底应该为3厘米,高为4厘米,那么根据平行四边形的面积=底×高计算即可得到答案,其中平行四边形的边长5厘米不参与计算.【解答】解:3×4=12(平方厘米)答:它的面积为12平方厘米.故答案为:12.【点评】解答此题的关键是确定平行四边形的底为哪一条,然后再根据平行四边形的面积公式进行计算即可.12.【分析】求阴影部分的面积,可以分成两部分:上面阴影部分的面积=半圆的面积﹣三角形的面积,下面阴影部分的面积=长方形的面积﹣半圆的面积,然后把两部分阴影部分的面积相加;圆的面积=πr2,三角形的面积=底×高÷2,由此代入解答即可.【解答】解:3.14×(8÷2)2÷2=3.14×16÷2=25.12(平方厘米)[8×(8÷2)﹣25.12]+[25.12﹣8×(8÷2)÷2]=6.88+9.12=16(平方厘米)答:图中阴影部分的面积是16平方厘米;故答案为:16.【点评】求阴影部分的面积,只要把不规则图形的面积转化为规则图形的面积,即把阴影部分的面积化为求常用图形面积的和与差求解.13.【分析】根据圆柱的侧面展开图特征可知,这个正方形的边长等于圆柱的底面周长和高,由此根据即可解答问题.【解答】解:3.14×4=12.56(厘米)答:圆柱的高是12.56厘米.故答案为:12.56.【点评】解答此题的关键是根据侧面展开图是一个正方形,明确圆柱的高与底面周长相等.14.【分析】根据圆锥的体积公式:V=sh,那么h=3V÷S,把数据代入公式解答.【解答】解:12×3÷1.2=36÷1.2=30(厘米)答:高是30厘米.故答案为:30.【点评】此题主要考查圆锥体积公式的灵活运用,关键是熟记公式.15.【分析】已知等腰三角形的周长是16厘米,底边长4厘米,依据等腰三角形的两条腰相等,用三角形的周长减去底边的长,再除以2,就是等腰三角形的腰长,据此解答.【解答】解:(16﹣4)÷2=12÷2=6(厘米)答:腰长是6厘米.故答案为:6.【点评】本题主要考查了学生对等腰三角形周长计算方法的应用,注意等腰三角形的两腰相等.16.【分析】因为平行四边形的面积的是与它等底等高的三角形面积的2倍,所以这两个面积的和是三角形面积的3倍,所以用两个面积的和除以3就是三角形的面积.【解答】解:240÷(1+2)=2400÷3=80(平方米)答:三角形面积是80平方米.故答案为:80.【点评】此题考查了等底等高的三角形与平行四边形的面积之间的关系:平行四边形的面积的是与它等底等高的三角形面积的2倍.17.【分析】根据长方体的表面积公式:S=(ab+ah+bh)×2,体积公式:V=abh,把数据分别代入公式解答.【解答】解:(10×5+10×2+5×2)×2=(50+20+10)×2=80×2=160(平方厘米)10×5×2=100(立方厘米)答:这个长方体的表面积是160平方厘米、体积是100立方厘米.故答案为:160、100.【点评】此题主要考查长方体的表面积公式、体积公式的灵活运用,关键是熟记公式.18.【分析】根据题意,高减少3厘米,表面积比原来减少48平方厘米,表面积减少的只是4个侧面的面积,减少的4个侧面是完全相同的长方形,用减少的面积除以4求出减少的一个面的面积,用面积除以宽(3厘米),即可求出正方体的边长,再根据正方体的体积公式:V=a3,解答即可.【解答】解:边长:48÷4÷3=12÷3=4(厘米)体积:4×4×4=16×4=64(立方厘米)答:原来正方体的体积是64立方厘米.【点评】此题解答关键是理解高减少3厘米,表面积比原来减少48平方厘米,表面积减少的只是4个侧面的面积,底面积不变,进而求出正方体的边长,再根据体积公式解答即可.三.判断题(共5小题)19.【分析】判断体积和横截面积成什么比例关系,就看这两种量是否是对应的比值一定还是乘积一定,如果是比值一定,就成正比例,如果是乘积一定,就成反比例,如果不是比值一定或比值不一定,就不成正比例.【解答】解:因为圆木的体积÷横截面积=圆木的长(一定),是比值一定,所以一根圆木的长一定,它的体积和横截面积成正比例;原题说法正确.故答案为:√.【点评】此题属于根据正、反比例的意义,辨识两种相关联的量是否成正比例,就看这两种量是否是对应的比值一定还是乘积一定,再做出判断.20.【分析】根据体积的意义,物体所占空间的大小叫做物体的体积,所以把一块长方体橡皮泥捏成一个正方体后,只是形状变了,但体积不变.据此解答.【解答】解:把一块长方体橡皮泥捏成一个正方体后,只是形状变了,但体积不变,故原题说法错误;【点评】此题考查的目的是理解掌握物体体积的意义,物体所占空间的大小叫做物体的体积.21.【分析】由题意可知:因为3个阴影三角形的底的和等于平行四边形的底,高等于平行四边形的高,所以3个阴影三角形的面积和等于平行四边形的面积的一半,据此即可进行解答.【解答】解:因为3个阴影三角形的底的和等于平行四边形的底,高等于平行四边形的高,所以3个阴影三角形的面积和等于平行四边形的面积的一半;所以原题说法正确.故答案为:√.【点评】解答此题的主要依据是:三角形的面积是与其等底等高的平行四边形面积的一半.22.【分析】三角形的面积=底×高÷2,因此决定三角形面积大小的因素有两个,那就是它的底和对应底上的高,据此即可解答.【解答】解:根据以上分析知:当三角形的底一定时,高越长,面积越大,如三角形的底也是变化的,高越长,面积不一定越大.故答案为:×.【点评】本题主要考查了根据三角形面积公式解答问题的能力.23.【分析】因为等底等高的圆柱的体积是圆锥体积的3倍,所以在没有确定圆柱与圆锥是否等底等高这个前提条件下,无法确定圆柱。
2020年小升初数学专题复习训练—空间与图形:测量与作图(1)(知识点总结 同步测试) (含详细答案)

2020年小升初数学专题复习训练—空间与图形测量与作图(1)知识点复习一.长度的测量方法【知识点归纳】1.长度的测量:长度的测量是最基本的测量,最常用的工具是刻度尺.2.正确使用刻度尺刻度线、量程、分度值.使用时要注意:(1)尺子要沿着所测长度放,尺边对齐被测对象,必须放正重合,不能歪斜.(2)不利用磨损的零刻度线,如因零刻线磨损而取另一整刻度线为零刻线的,切莫忘记最后读数中减掉所取代零刻线的刻度值.(3)厚尺子要垂直放置(4)读数时,视线应与尺面垂直.【命题方向】例:量出每条边的长度,以毫米为单位.分析:用直尺的“0”刻度线和线段的一个端点重合,另一个端点在直尺上的刻度,就是该线段的长度.解:测量数据如下图:点评:本题考查了学生测量线段的能力.二.角的度量【知识点归纳】1.角的度量:角度的测量是最基本的测量,最常用的工具是量角器.就是180度,一周就是360度.由于1度的大小不因为圆的大小而改变,所以角度大小是一个与圆的半径无关的量.弧度制,顾名思义,就是用弧的长度来度量角的大小的方法.单位弧度定义为圆周上长度等于半径的圆弧与圆心构成的角.由于圆弧长短与圆半径之比,不因为圆的大小而改变,所以弧度数也是一个与圆的半径无关的量.角度以弧度给出时,通常不写弧度单位,有时记为rad或R.3.度量方法:量角要注意两对齐:量角器的中心和角的顶点对齐.量角器的0刻度线和角的一条边对齐.做到两对齐后看角的另一条边对着刻度线几,这个角就是几度.看刻度要分清内外圈.【命题方向】例1:用一个放大10倍的放大镜看一个50°的角,看到的角是()A、50°B、500°C、100°分析:用放大镜看角时,放大的是角的边,不改变角的形状,根据角的大小与边长无关可知角的度数不会改变.解:用放大镜看角时,放大的是角的边,不改变角的形状,根据角的大小与边长无关可知角的度数不会改变.所以用放大10倍的放大镜看一个50度的角,看到的度数仍是50度.故选:A.点评:用放大镜看角,很容易错误认为角的度数会被放大相同倍数,关键要学生理解角的大小与边的长短无关.也要认识到一个普遍规律:放大镜只改变物体大小,不改变物体形状,对角而言只是一种图形,既然形状不变,角度也不会改变.例2:下面每对时刻中,时钟的时针和分针所成的角不一样的有()A、1:30和2:30B、3:30和8:30C、9:00和3:00D、10:30和1:30分析:因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出不同时间下,时针和分针之间相差的大格数,用大格数乘30°即可进行判断,选择.解:A,1:30时针和分针中间相差,4.5个大格,夹角是:30×4.5=135度,2:30时针和分针中间相差3.5个大格,夹角是:30×3.5=105度;符合题意;B,3:30时针和分针中间相差2.5个大格,夹角是2.5×30=75度,8点30分,时针和分针中间相差2.5个大格,夹角是2.5×30°=75度;C,9:00时针和分针中间相差3个大格,夹角是:30×3=90度,3:00时针和分针中间相差3个大格,夹角是:30×3=90度;D,10:30时针和分针中间相差4.5个大格,夹角是:30×4.5=135度,1:30时针和分针中间相差,4.5个大格,夹角是:30×4.5=135度;所以夹角不同的是A.故选:A.点评:本题考查了钟面角,用到的知识点为:钟表上12个数字,每相邻两个数字之间的夹角为30°.三.画指定度数的角【知识点归纳】三角板能画出15、30、45、60、75、90、105、120、135、150、165、180度的角,是30°,45°,60°,90度的和差,因为通过三角尺只能作角的和差.其余的度数只能通过量角器画角.【命题方向】例1:画一个120°的角.分析:画一个120°的角可据以下步骤进行:(1)先画一条射线使量角器的中心和射线的端点重合,零刻度线和射线重合;(2)在量角器120°角刻度线的地方点一个点;(3)以射线的端点为端点,通过刚画的点,再画一条射线即可作成一个120°的角.解:根据角的画法,作图如下:点评:本题考查了学生根据所给度数利用作图工具画角的动手能力.例2:用一副三角板画一个105°的角.分析:显然从两个三角板中,将一个等于45°的角,再加上另一个三角板中等于60°的角,即可得到105°的角.解:让等腰直角三角形的一个锐角和另一个直角三角形的较大的锐角拼在一起,画出这个角如下图所示,45°+60°=105°;点评:本题考查了三角板的角的度数、角的计算、角的拼图、画角的方法,较为简单,熟练掌握三角板各角的度数是解答本题的关键.四.用三角尺画30°,45°,60°,90°角【知识点归纳】1、30°和60°可以通过30°直角三角形得到.2、45°通过等腰直角三角形可以得到.3、90°的角两个直角三角形尺都可以得到.【命题方向】例:用一副三角板可以画出的角是()A、160°B、40°C、120°分析:先明确一副三角板的六个角共有四个度数,30°,45°,60°,90°.然后进行加减运算,找到符合条件的角.解:利用一副三角板可以画出的角有:30°,45°,60°,90°;30°+45°=75°,30°+90°=120°,45°+60°=105°,45°+90°=135°,60°+90°=150°,30°+45°+90°=165°;45°-30°=15°,一共可以画出11个角.所以符合题意的选项是C.故选:C.点评:此题结合生活实际,既考查了对角的认识,又考查了同学们的完全归纳能力,是一道好题.不要漏角,也不能重复计算.五.探索某些实物体积的测量方法【知识点归纳】1.用排水法来测量不规则物体的体积.在有刻度的量杯里装上水,记下水的体积,把不规则的物体放入杯中,记下此时的体积,求出两次体积的差,就求出了不规则物体的体积,最后再将容积单位换算成体积单位.2.通过测多个相同物体的体积,然后除以数量得到每个物体的体积.【命题方向】例1:把一块石头,浸没在一个底面积是60平方厘米的圆柱形容器里,容器的水面上升了1.5厘米,这块石头的体积是90立方厘米.分析:这块石头的体积等于上升的水的体积,用底面积乘上升的厘米数即可.解:60×1.5=90(立方厘米);故答案为:90.点评:此题主要考查某些实物体积的测量方法.例2:如图是测量一颗玻璃球体积的过程:(1)将300cm3的水倒进一个容量为500cm3的杯子中;(2)将四颗相同的玻璃球放入水中,结果水没有满;(3)再加一颗同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测这样一颗玻璃球的体积在()A、20cm3以上,30cm3以下B、30cm3以上,40cm3以下C、40cm3以上,50cm3以下D、50cm3以上,60cm3以下分析:要求每颗玻璃球的体积在哪一个范围内,根据题意,先求出5颗玻璃球的体积最少是多少,5颗玻璃球的体积最少是(500-300)立方厘米,进而推测这样一颗玻璃球的体积的范围即可.解:因为把5颗玻璃球放入水中,结果水满溢出,所以5颗玻璃球的体积最少是:500-300=200(立方厘米),一颗玻璃球的体积最少是:200÷5=40(立方厘米),因此推得这样一颗玻璃球的体积在40立方厘米以上,50立方厘米以下.故选:C.点评:此题考查了探索某些实物体积的测量方法,本题关键是明白:杯子里水上升的体积就是5颗玻璃球的体积,进而得解.六.估测【知识点归纳】1.按四舍五入的原则估算成整百数再计算答案;2.按四舍五入的原则估算成整十数再计算答案.但注意,一道题目中采取的方法要一致,不能第一个数按整百估算,第二个数按整十数估算.如果先算后估就不叫估算,应称为求近似数.【命题方向】例:100本第十二册小学数学课本的厚度接近()A、7毫米B、7厘米C、7米D、7分米分析:根据生活经验,一本数学书的厚度大约是7毫米,那么100本书的厚度大约是7分米.解:一本数学书的厚度大约是7毫米,那么100本书的厚度大约是7分米.故选:D.点评:估算在生产和生活中有着广泛的用途,对于小学生学习数学来说,利用估算可提高分析与解答问题的能力.同步测试一.选择题(共8小题)1.小明想用如下三种规格的透明方格纸测量一片树叶的面积.选择边长()厘米的方格纸测量,所得的面积与树叶的准确面积最接近.A.0.25B.0.5C.12.丽丽家的鱼缸长8分米,宽5分米,高4分米,放入一块棱长2分米的正方体,水面的上升了()厘米.A.0.2B.5C.2D.0.53.图中∠1的度数是()A.10°B.60°C.70°D.110°4.小动物们测量方法正确的是()A.狮子B.青蛙C.小狗D.蜘蛛5.要想使物体从斜面上滚下来时尽可能快,木板与地面的夹角是()度时最符合要求.A.15B.45C.606.400米跑到围起来的部分的面积大约是()A.100平方米B.1公顷C.1平方千米7.用一副三角尺不能画出()的角.A.75°B.95°C.120°8.小东从学校走回家,出发时是下午3:00,到家时是下午3:15,分针转动了()度.A.15B.60C.90二.填空题(共6小题)9.画一个105°的角,除了用量角器画,我们还可以用三角尺上的°和°的角来画.10.量一量,填一填.(取整厘米)第二条线段长度是第一条的倍.11.∠1+∠2=90°,∠2=47°,那么∠1=.12.画一条射线,使量角器的和它的段点重合,并使刻度线和射线重合.13.如图中大球体积是mL.14.用方格纸估计一个不规则图形的面积时,数出这个图形一共包含58个整格和26个不满整格.如果每个小方格表示1平方分米,这个图形的实际面积比平方分米大一些,比平方分米小一些.三.判断题(共5小题)15.量角器是经过圆心把半圆平均分成180份,将其中1份所对的角大小计为1°.(判断对错)16.在学生用的直尺上,从刻度1到刻度5之间的长度是4厘米.(判断对错)17.3滴水有1升.(判断对错)18.测量不规则物体的体积,利用排水法,物体排开水的体积就是不规则物体的体积.(判断对错)19.不用量角器,用一副三角板就可以画出105o和15o的角.(判断对错)四.计算题(共2小题)20.看图计算珊瑚石的体积.21.脱口秀180°﹣25°﹣75°=180°﹣(37°+63°)=90°﹣37°=80°+36°+64°=178°﹣(78°+54°)=180°﹣85°=五.应用题(共2小题)22.估算下面不规则图形的面积.(1格表示1厘米)23.棱长是5dm的正方体金鱼缸,放入一些碎石后,水面上升8cm.这些碎石的体积是多少?六.操作题(共4小题)24.下面分别是树叶的平面图(每个小方格表示1平方厘米).先把整格和不满整格的分别涂上不同颜色,数一数各有多少个,再算出这片树叶的面积大约各是多少平方厘米.(不满整格的都按半格计算)整格个;不满整格个;面积大约平方厘米.25.量出每条边的长度.26.以A点为顶点画一个30°的角;为B顶点画一个120°的角.27.用三角板画一个75°的角.七.解答题(共4小题)28.写出下面各角的度数.29.在括号里填上合适的数或单位.30.同学们都知道“乌鸦喝水”的故事吧.一个正方体的水槽里装了一些水(如图),乌鸦只能够到水槽最上沿,在水槽的旁边有大小不一的三块石头.同学们,你能选择其中的两块石头,帮助乌鸦喝到水吗?你打算怎么做,填在横线上,并用计算解释你的做法.我的做法:计算过程:31.王伯伯家有一块菜地(如图),底是51米,高是24米.如果每平方米收白菜10千克,这块地大约收白菜多少千克?参考答案与试题解析一.选择题(共8小题)1.【分析】根据边长是1厘米的正方形的面积是1平方厘米,并结合实际可知:选择边长1厘米的方格纸测量,所得的面积与树叶的准确面积最接近;由此解答即可.【解答】解:由分析可知:选择边长1厘米的方格纸测量,所得的面积与树叶的准确面积最接近;故选:C.【点评】此题考查了估测,应结合实际进行估测.2.【分析】根据题意得出:上升的水的体积等于正方体的体积,先利用正方体体积=棱长×棱长×棱长计算出上升的水的体积,再除以长方体鱼缸的底面积即可求出水面升高的高度.【解答】解:2×2×2÷(8×5)=8÷40=0.2(分米)0.2分米=2厘米答:这时水面升高了2厘米.故选:C.【点评】解决本题的关键是明确上升的水的体积等于正方体的体积.灵活利用长方体和正方体的体积公式计算.3.【分析】通过已知条件图形的观察可知;在进行角度测量的时候一条边没有从零刻度线开始,在读数是应该用末端读数减去起始端读数;据此解答即可.【解答】解:图中∠1的度数是:80°﹣10°=70°故选:C.【点评】本题考查了正确的角的度量方法.4.【分析】刻度尺的使用规则:①刻度尺要与被测部分对齐;②让刻度尺有刻度的一面紧贴被测部分,测量的始端与0刻度线对齐,如果0刻度线磨损,可以与其它整格刻线对齐,测量结果要减去前面的数值;③读数时视线要与尺面垂直;④读数时结果要估读到分度值的下一位;⑤记录数据要写单位.【解答】解:根据刻度尺的使用规则可知,青蛙的测量方法是正确的.故选:B.【点评】此题考查了刻度尺的使用以及如何测量物体的长度.5.【分析】要想使物体从斜面上滚下来时尽可能快,木板与地面的夹角越大,滚下来的速度越快.据此即可进行选择.【解答】解:要想使物体从斜面上滚下来时尽可能快,木板与地面的夹角是60度时最符合要求.故选:C.【点评】关键明白:要想使物体从斜面上滚下来时尽可能快,木板与地面的夹角越大,滚下来的速度越快.6.【分析】我们知道,周长一定时,所有平面图形中圆面积最大,跑道都是由弯道、直道组成的.按圆进行估算,根据圆周长计算公式“C=2πr”,周长是400米的圆半径,根据圆面积计算公式“S=πr”求出圆的面积,然后进行选择.【解答】解:400÷3.14÷2≈64(米)64米按60米估算3.14×602=3.14×3600=11304(平方米)由于路道不是圆,是由弯道、直道组成的,实际面积小于11304平方米,按10000平方米,10000平方米=1公顷答:400米跑到围起来的部分的面积大约是1公顷.故选:B.【点评】周长400米的路道也可按边长是100米的正方形估算,100×100=10000(平方米),10000平方米=1公顷.7.【分析】75°=30°+45°,75°的角可以有三角板中30°的角和45°的角画;95°的角不能用三角板画;120°=30°+90°=60°+60°,120°的角可以有三角板中30°的角和90°的角画,也可用60°的角画.【解答】解:用一副三角尺不能画出95的角.故选:B.【点评】15°倍数的角可以有三角板中的一个角或几个角的和、差画.如可画15°、30°、15°、60°、75°、90°……的角.8.【分析】用小东到家的时刻减出发的时刻就是小东回家路上用的时间,即3时15分﹣3时=15分.分针走1大格是5分钟,15分钟是3大格.钟面上12个数字把钟面平均分成12份,每份所对应的圆心角是360°÷12=30°,即指针每走1大格,要转动30°.据此即可确定分针转动的度数.【解答】解:3时15分﹣3时=15分15÷5=3(大格)指针每转动1大格是30°30°×3=90°答:分针转动了90度.故选:C.【点评】两个关键:一是分针转动了几大格;二是钟面上指针转动1大格转动的度数.二.填空题(共6小题)9.【分析】我们使用的三角尺有30°、45°、60°、90°等四个现成的角度,将各个角相加或相减即可得出答案:105°=60°+45°;由此即可解答.【解答】解:画一个105°的角,除了用量角器画,我们还可以用三角尺上的45°和60°的角来画;故答案为:45,60.【点评】考查了画指定度数的角,关键是熟悉画角的步骤,是基础题型.10.【分析】(1)根据线段的测量方法,把直尺的0刻度线与线段的一段重合,线段的另一端对应的直尺的刻度就是这条线段的长度.(2)根据求一个数是另一个数的几倍,用除法解答.【解答】解:(1)测量结果如下:(2)8÷2=4答:第二条线段的长度是第一条线段的4倍.故答案为:4.【点评】此题考查的目的是理解掌握线段的测量方法及应用,以及整数除法的意义及应用.11.【分析】根据减法的意义,用90度减去∠2的度数即可.【解答】解:90°﹣47°=43°答:∠1=43°.故答案为:43°.【点评】解答本题关键是明确加减法的意义.12.【分析】根据用量角量测量角的大上的方法可知,量角时,量角器的中心与角的顶点重合,零刻度与角的一条边重合,角的另一条边所对的量角器上的刻度,就是这个角的度数,解答即可.【解答】解:由分析可知:画一条射线,使量角器的中心点和它的段点重合,并使零刻度线和射线重合.故答案为:中心点、零.【点评】本题考查了用量角器测量角的大小的方法.13.【分析】观察图形可知,放入一个大球一个小圆球后,溢出15ml水,再放入三个小圆球后溢出水到30ml,那么三个小圆球的体积就是这次溢出的水的体积30ml﹣15ml=15ml,由此可得:一个小圆球的体积是:15÷3=5ml,那么一个大球的体积是15﹣5=10ml.【解答】解:由分析知:(30﹣15)÷3=15÷3=5(ml)15﹣5=10(ml)答:大球的体积是10ml.故答案为:10.【点评】解答此题的关键是求出一个小圆球的体积是多少,再放入三个小圆球后溢出水水的体积30ml ﹣15ml=15ml,即可进行解答.14.【分析】图形一共包含58个整格和26个不满整格,满格、不满格一共是58+26=84(个),如果都按满格计算,是1×84=84(平方分米),实际面积要比1×58=58(平方分米)大一些,要比84平方分米小一些.【解答】解:58+26=84(个)因为有58个满格,26个不满格所以实际面积大大于58平方分米,而小于84平方分米.故答案为:58,84.【点评】用数小方格的方法估算不规则图形的面积,通常是先数整格数,再数不足格数,整格数按一个面积单位计算,不足格的按半个面积单位计算.三.判断题(共5小题)15.【分析】量角器又称“半圆仪”,就是经过圆心,把半圆平均分成180份,将其中1份所对的角大小计为1°.【解答】解:量角器是经过圆心把半圆平均分成180份,将其中1份所对的角大小计为1°原题说法正确.故答案为:√.【点评】此题是考查量角器的认识.把半圆平均分成180份(180个小扇形),每份所对了的角为1度.16.【分析】根据题意,直尺上的刻度从1到5,用5减去1就是它们之间的长度.【解答】解:5﹣1=4(厘米)答:从直尺上的刻度1到5,这段长度是4厘米;故答案为:√.【点评】本题主要是考查刻度尺的认识,注意,用终了刻度减去起始刻度就是本段的长度.17.【分析】根据生活经验、对容积单位、体积单位和数据大小的认识,可知:3滴水大约是1毫升,不可能有1升;据此判断.【解答】解:由生活经验分析可知:3滴水大约是1毫升;题干说法错误.故答案为:×.【点评】此题考查根据情景选择合适的计量单位,要注意联系生活实际、计量单位和数据的大小,灵活的选择.18.【分析】由题目可知,测量不规则物体的体积,用排水法测量,则物体的体积就是物体排开水的体积.所以原说法正确.【解答】解:根据分析可知:利用排水法测量不规则物体的体积,物体排开水的体积就是不规则物体的体积.所以原说法是正确的.故答案为:√.【点评】此题考查了探索某些实物体积的测量方法.19.【分析】因一副三角板中的各个角的度数分别是30°、60°、45°、90°,把它们进行组合可得到:60°﹣45°=15°,45°+30°=75°,60°+45°=105°,45°+90°=135°,据此解答.【解答】解:根据题干分析可得:因一副三角板中的各个角的度数分别是30°、60°、45°、90°,把它们进行组合可得到:60°﹣45°=15°,45°+30°=75°,60°+45°=105°,45°+90°=135°.故答案为:√.【点评】本题考查了学生用一副三角尺画角度情况的掌握.四.计算题(共2小题)20.【分析】珊瑚石的体积即上升水的体积,根据长方体的体积公式V=abh,即可列式解答.【解答】解:8×8×(7﹣6)=64×1=64(立方厘米)答:这块珊瑚石的体积是64立方厘米.【点评】本题主要考查不规则物体体积的测量方法,解答本题的关键是理解珊瑚石的体积即上升水的体积.21.【分析】(1)根据减法的性质,一个数连结减去两个数,就是等于这个数减这两个减数之和计算.(2)根据运算顺序,先算括号内的,最后算减.(3)90°﹣37°,看作90°﹣30°﹣7°口算.(4)根据加法结合律,把后两个数相加再与第一个数相加.(5)去括号,再根据由左到右的顺序计算.(6)180°﹣85°看作180°﹣90°+5°口算.【解答】解:(1)180°﹣25°﹣75°=80°(2)180°﹣(37°+63°)=80°(3)90°﹣37°=53°(4)80°+36°+64°=180°(5)178°﹣(78°+54°)=46°(6)180°﹣85°=95°【点评】此题是考查角度的计算,“°”是角度的计量单位,计算时可以不看单位,直接算出各式的值,单位为变.口算的关键是找技巧,包括运算定律及性质、规律等的应用等.五.应用题(共2小题)22.【分析】把不规则图形看作底是11厘米,高是7厘米的三角形,然后根据三角形的面积公式S=ah÷2解答即可.【解答】解:11×7÷2=77÷2=38.5(平方厘米)答:不规则图形的面积是38.5平方厘米.【点评】这种类型的问题常常用数格子的方法,或看做一个近似的规范的图形进行计算.23.【分析】由题意可知:上升的8cm高的水的体积就等于这些碎石的体积,利用长方体的体积公式V=abh代入数据即可求解.【解答】解:8cm=0.8dm5×5×0.8=25×0.8=20(dm3)答:这些碎石的体积是20dm3.【点评】此题主要考查长方体的体积的计算方法,关键是明白:上升的水的体积就等于碎石的体积.六.操作题(共4小题)24.【分析】先数出整格数,再数出半格的个数.然后再求出它的面积.【解答】解:整格30个,不满整格18个,面积大约30×1+18÷2=30+9=39(平方厘米)故答案为:30,18,39.【点评】本题数格时,一定要按一定的顺序进行去数.25.【分析】用直尺的“0”刻度线和线段的一个端点重合,另一个端点在直尺上的刻度,就是该线段的长度,【解答】解:测量数据如下图:故答案为:25,25,25.【点评】本题考查了学生测量线段的能力.26.【分析】(1)使量角器的中心与端点A(B)重合,0刻度线与射线重合;(2)在量角器30度(120度)的地方点上一个点;(3)以画出的射线的端点为端点,通过刚画的点,再画出另一条射线;(4)画完后在角上标上符号,写出度数.【解答】解:根据题干分析可得:【点评】本题考查了学生画角的能力,掌握画角的方法即可解答问题.27.【分析】一副三角板中一个三角板的度数为30°,60°,90°,则另一个三角板的度数为45°,45°,90°,所以用30°和45°组合即可画出75°角,作图即可.【解答】解:画角如下:【点评】该题考查的是三角形的角度,需掌握一副三角板的度数.七.解答题(共4小题)28.【分析】用量角器进行测量,方法是:先把量角器放在角的上面,使量角器的中心和角的顶点重合,零度刻度线和角的一条边重合,角的另一条边所对的量角器上的刻度,就是这个角的度数.【解答】解:如图所示:【点评】此题主要是考查根据角的度量方法正确量出角的度数.29.【分析】(1)铁钉的左端是与刻度1对齐的,右端是与4厘米6毫米处对齐,所以铁钉的长度是3厘米6毫米;(2)根据生活经验、对质量单位和长度单位大小的认识和数据的大小,可知:一辆货车的载重量是3吨,清苑到北京的距离是165千米.【解答】解:故答案为:3,6,吨,千米.【点评】此题考查根据情景选择合适的计量单位,要注意联系生活实际、计量单位和数据的大小,灵活的选择.30.【分析】先根据长方体的体积公式V=abh求出正方体的水槽上面空白处的体积,再找到相加大于或等于该体积的两块石头即可求解.【解答】解:我的做法:先求出正方体的水槽上面空白处的体积,再找到相加大于或等于该体积的两块石头.计算过程:20×20×(20﹣18)=20×20×2=800(cm3)因为358+454=812(cm3)812>800所以选择其中的②号③号两块石头.故答案为:先求出正方体的水槽上面空白处的体积,再找到相加大于或等于该体积的两块石头.20×20×(20﹣18)=20×20×2=800(cm3)因为358+454=812(cm3)812>800所以选择其中的②号③号两块石头.【点评】考查了探索某些实物体积的测量方法,关键是熟练掌握长方体的体积公式.31.【分析】可以把这块菜地,看作是底是51米,高是24米的平行四边形,根据平行四边形的面积公式:s=ah,求出菜地的面积,再根据单产量×数量=总产量进行解答.【解答】解:51×24=1224(平方米)10×1250=12240(千克)答:这块菜地一共可收白菜12240千克.【点评】此题主要考查平行四边形的面积的公式的实际应用.。
四年级下册数学关于空间与图形的知识点

(一) 位置与方向:
1、根据方向和距离确定或者绘制物体的具体地点。
2、位置间的相对性。
会描述两个物体间的相互位置关系。
3、简单路线图的绘制。
(二)三角形:
1、三角形的定义:由三条线段围成的图形,叫三角形。
2、从三角形的一个顶点到它的对边做一条垂线,顶点和垂足间的线段叫做三角形的高,这条对边叫做三角形的底。
3、三角形的特性:稳定性。
如:自行车的三角架、电线杆上的三角架等等。
4、边的特性:任意两边之和大于第三边。
5、三角形的分类:
(1).按照角的大小来分:锐角三角形、直角三角形、钝角三角形。
(2).按照边长短来分:三边不等的三角形、等腰三角形。
(3).等边三角形的三边相等,每个角是60度。
6、三角形的内角和等于180度。
7、图形的拼组:两个完全一样的三角形一定能拼成一个平行四边形。
8、密铺:可以进行密铺的图形有长方形、正方形、三角形以及正六边形等等。
空间与图形知识点

空间与图形知识点1. 点、线、面的基本性质- 点:没有大小,只有位置,用大写字母表示,如点A。
- 线:由无数个点组成的一维几何对象,分为直线、射线和线段。
直线无端点,无限延伸;射线有一个端点,无限延伸;线段有两个端点,有限长度。
- 面:由线围成的二维几何对象,可以是平面或曲面。
2. 平面图形- 多边形:由线段依次首尾相连围成的封闭图形,如三角形、四边形、五边形等。
- 矩形:四个角都是直角的四边形。
- 正方形:四条边等长且四个角都是直角的四边形。
- 平行四边形:对边平行的四边形。
- 梯形:一组对边平行的四边形。
3. 空间图形- 立方体:六个面都是正方形的立体图形。
- 长方体:六个面都是矩形的立体图形。
- 圆柱体:底面为圆,侧面为矩形的旋转体。
- 圆锥体:底面为圆,顶点与底面圆心相连的三角形侧面的立体图形。
- 球体:所有点到中心点距离相等的立体图形。
4. 图形的变换- 平移:图形在平面内沿着某一方向按照一定距离移动。
- 旋转:图形绕一点(旋转中心)按照一定角度旋转。
- 反射(镜像):图形关于某一直线(对称轴)对称。
5. 几何公理和定理- 公理:不需证明,被认为是真实的基本假设。
- 定理:通过逻辑推理证明的命题。
6. 欧几里得几何- 欧几里得几何:基于欧几里得的《几何原本》中的公理和定理构建的几何体系。
- 相似形:两个图形对应角相等,对应边成比例。
- 全等形:两个图形可以完全重合。
7. 坐标几何- 坐标系:通过一对数值(坐标)来表示点的位置。
- 距离公式:计算两点间直线距离的公式。
- 斜率:表示直线倾斜程度的量。
8. 几何计算- 面积:平面图形所围成的区域的大小。
- 体积:立体图形所围成的空间的大小。
- 表面积:立体图形所有面的面积总和。
9. 几何图形的应用- 建筑设计:利用几何图形和空间关系进行建筑设计。
- 工程制图:使用几何原理来制作精确的技术图纸。
- 计算机图形学:在计算机中创建和操作图形的科学。
2020年小升初数学专题复习训练—空间与图形:图形与位置(1)(知识点总结 同步测试) 通用版(含答案)

2020年小升初数学专题复习训练—空间与图形图形与位置(1)知识点复习一.位置【知识点归纳】位置用行和列表示.把竖排叫做列,横排叫做行.【命题方向】例:(1)长宁大道的北面有图书馆、小慧家、书店.(2)竹园路的西面有图书馆、小军家、游乐园.(3)学校在小慧家的南面,小军家在小慧家的西南面.(4)小军到书店,可以怎样走?分析:(1)长宁大道的北面就是长宁大道的上面(上北),然后找出即可;(2)竹园路的西面就是竹园路的左面(左西),然后找出即可;(2)学校在小慧家的下面,由上北下南可知,是在南面;小军家在小慧家的左下方,左是西下是南即西南方;(4)小军到书店有两条路可走;一条是沿着象山大道往东经过竹园路到海慧路,再往北走到长宁大道路口就到了;另一条是沿着象山大道往东到竹园路,在往北到长宁路,再沿着长宁大道往东经过海慧路口就到书店.解:(1)长宁大道的北面有:图书馆、小慧家、书店;(2)竹园路的西面有:图书馆、小军家、游乐园;(3)学校在小慧家的南面,小军家在小慧家的西南面;(4)小军到书店有两条路可走;一条是沿着象山大道往东到海慧路,再往北走到长宁大道就到了;另一条是沿着象山大道往东到竹园路,在往北到长宁路,再沿着长宁大道往东经过海慧路口就到书店.故答案为:图书馆、小慧家、书店,图书馆、小军家、游乐园,南,西南.点评:本题主要考查位置与方向,注意根据上北下南,左西右东的方位辨别方法.二.数对与位置【知识点归纳】1.数对的意义:用有顺序的两个数表示出一个确定的位置就是谁对.2.用数对表示位置时,先表示第几列,再表示第几行.3.给出物体在平面图上的数对,就可以确定物体所在的位置了.【命题方向】例:如图:如果将△ABC向左平移2格,则顶点A′的位置用数对表示为()A、(5,1)B、(1,1)C、(7,1)D、(3,3)分析:将△ABC向左平移2格,顶点A′的位置如下图,即在第1列,第1行,由此得出A′的位置.解:因为,A′在第1列,第一行,所以,用数对表示是(1,1),故选:B.点评:此题考查了数对的写法,即先看在第几列,这个数就是数对中的第一个数;再看在第几行,这个数就是数对中的第二个数.三.在平面图上标出物体的位置【知识点归纳】利用直角坐标系把平面上的点与数对应起来,以确定平面上物体的位置.【命题方向】例:某文化宫广场周围环境如图所示:(1)文化宫东面400米处,有一条商业街与人民路互相垂直.在图中画直线表示这条街,并标上:商业街.(2)体育馆在文化宫北偏东45°400米处.(3)李小明以60米/分的速度从学校沿着人民路向东走,3分钟后他在文化宫西面70米处.分析:先从图上看出1厘米代表100米,再解决一下问题:(1)因1厘米代表100米,距文化宫400米,求出一条商业街距文化宫的图上距离是400÷100=4厘米,再根据数据作图,(2)从图上根据方位可知体育馆在文化宫北偏东45°,量得图上距离是4厘米,求出实际距离即可.(3)先量得学校到文化宫的图上距离是2.5厘米,再求出实际距离,再从图上根据方位判断即可.解:(1)一条商业街距文化宫的图上距离是:400÷100=4(厘米),再根据数据作图如下,(2)从图上根据方位可知体育馆在文化宫北偏东45°,量的图上距离是4厘米,实际距离:100×4=400(米),答:体育馆在文化宫北偏东45°400米处.故答案为:北,东、400.(3)3分钟行的路程:60×3=180(米),学校到文化宫的实际距离:2.5×100=250(米),180米<250米,250-180=70(米),所以3分钟后他在文化宫西面70米处.故答案为:西,70.点评:此题主要考查了利用线段比例尺和已知的实际距离求得图上距离结合方位进行标注位置的方法的灵活应用,及动手量得图上距离求实际距离的方法的运用.四.方向【知识点归纳】方向:东、西、南、北、东北、东南、西北、西南、上、下、左、右、前、后.【命题方向】例1:张华面向北方,他的右侧是()方.A、西B、东C、南分析:由题意可得:面向北方,则其后方为南方,右方为东方,左方为西方,据此解答即可.解:张华面向北方,他的右侧是东方;故选:B.点评:此题主要考查方向的辨别,关键是找清对应的方向,最好能亲自体验一下.例2:小芳看小敏在东偏南30°的方向上,小敏看小芳在()方向上.A、北偏西30度B、北偏西60度C、北偏东30度D、北偏东60度分析:根据方向的相对性,东偏南30°和西偏北30°相对,西偏北30°就是北偏西60°,据此解答.解:东偏南30°和西偏北30°相对,西偏北30°就是北偏西60°,所以小芳看小敏在东偏南30°的方向上,小敏看小芳在北偏西60度方向上;故选:B.点评:本题主要考查方向的辨别,注意东偏南30°和西偏北30°相对,西偏北30°就是北偏西60°.五.路线图【知识点归纳】1.看懂并描述路线图:(1)根据方向标确定路线图的方向;(2)根据比例尺和测得的图上距离算出相应的实际距离;(3)弄清楚图中从哪儿按什么方向走,走多远到哪儿.2.画线路图:(1)确定方向;(2)根据实际距离及图纸大小确定比例;(3)求出图上距离;(4)以某一地点为起点,根据方向和图上距离确定下一地点的位置,再以下一地点为起点继续画.【命题方向】例:看路线图填空红红从甜品屋出发到电影院,她可以有下面几种走法.请把红红的行走路线填完整.(1)从甜品屋出发,向北走到布店,再向东走到电影院(2)从甜品屋出发,向东北走到街心花园,再向东北走到电影院.(3)从甜品屋出发,向东走到花店,再向东走到书店,再向北走到电影院.分析:根据上北下南,左西右东的方位辨别法分析解答.解:(1)从甜品屋出发,向北走到布店,再向东走到电影院(2)从甜品屋出发,向东北走到街心花园,再向东北走到电影院.(3)从甜品屋出发,向东走到花店,再向东走到书店,再向北走到电影院;故答案为:布店,东,东北,东北,东,东.点评:本题主要考查方向的辨别,注意找准观察点掌握基本方位.同步测试一.选择题(共8小题)1.周六上午,小玉要去买书,买零食,去银行,然后再回家,走()条路近.A.小玉家→学校→超市→银行→书店→小玉家B.小玉家→书店→银行→超市→书店→小玉家C.小玉家→超市→银行→书店→小玉家2.学校位于公园的西偏北35°方向2km处;从学校去公园要往()方向走2km.A.西偏北35°B.北偏西35°C.东偏南55°D.东偏南35°3.教学楼在体育馆东偏南30°方向200米处,则体育馆在教学楼()方向200米处.A.西偏北30°B.西偏南30°C.北偏西30°4.李军的座位记为(4,4),如果他往后挪三排,这时他的位置应记为()A.(7,4)B.(4,7)C.(1,1)D.(7,7)5.点a用数对(6,8)表示,将点a向右平移4格后的位置用数对表示是()A.(6,12)B.(2,8)C.(10,8)D.(6,4)6.在同一幅图上,如果A点的位置为(1,5),B点的位置为(3,5),C点的位置为(3,1),那么连接ABC三点所围成的三角形,一定是()三角形.A.直角B.钝角C.锐角D.等腰7.广场为观察点,学校在北偏西30°的方向上,下图中正确的是()A.B.C.D.无答案8.小红家、小明家和学校在一条直线上,小红家离学校300米,小明家离学校500米,小红家和小明家相距()米.A.200B.800C.200或800二.填空题(共8小题)9.一架飞机从某机场向南偏东40°方向飞行了1200千米,返回时飞机要向偏方向飞行.10.凯凯同学坐在教室的第4行第5列,用数对表示是.11.小东家在学校西偏北40°方向500米处,则学校在小东家.12.小明从家出发,先向走100米,接着向走150米到医院.邮局在小明家的方向.13.根据线路图回答问题.同学们从少年宫出发去学校参如活动,先向方向走米到公园,再向走米到书店,最后向走米到学校.14.先观察小华家到地铁站的路线图,然后按要求填空.(1)小华从家出发向方向行走120米到少年宫,再向东行走米到图书馆,然后向方向行走80米到公交站,最后向东南方向走米可到地铁站.(2)图书馆在地铁站方向.15.电影院里,小明坐在音乐教室的第4列第2行,用数对(4,2)表示,小刚坐在第7列第4行,明明的位置用数表示.16.观察图.学校在小明家偏度的方向上,距离约是.三.判断题(共5小题)17.音乐课,聪聪坐在音乐教室的第4列第2行,可以用数对(4,2)表示.(判断对错)18.在描述路线时,参照点是不断变动着的.(判断对错)19.B市在A市北偏东60°方向,那么A市在B市西偏南30°方向.(判断对错)20.数对(4,6)和(5,6)表示的位置是在同一列.(判断对错)21.由远到近看景物,看到的范围越小,也越清楚..(判断对错)四.应用题(共2小题)22.如图是一个游乐场的平面示意图.(1)请写出游乐场各景点的位置:海洋世界(2,3),假山(,),骑马场(,),溜冰场(,),儿童乐园(,).(2)小刚的位置是(7,2),他想到溜冰场去,请画出他的路线图.23.(1)小鸡在白马的面,鲜花在白马的面,鸽子在白马的面.(2)小熊在海豚的面,钟表在海豚的面,树叶在海豚的面.(3)企鹅在小鸡的面,海豚在小鸡的面,钟表在小鸡的面.(4)钟表在鸽子的面,钟表在鲜花的面,、在钟表的西北面.(5)白马在鸽子的面,在小熊的面,在鲜花的面.五.操作题(共4小题)24.画一画.25.在图中描出点A(1,1),点B(5,1),点C(3,5),然后把三个点顺次连接,得到的图形是三角形(按边分类).26.如图是一辆公共汽车的行驶路线.(1)在图上标出各站点所在的位置.(2)公共汽车从起点站驶出,往北走多少米,再往东走多少米到医院,从医院往东走多少米,再往北走多少米到学校,从学校往哪走多少米到邮局,从邮局往哪走多少米,再往哪走多少米到商场,从商场往哪走多少米,再往哪走多少米到终点.27.一群动物一起玩,熊猫说:“从假山向北再向东是我家,”长颈鹿说:“我家在假山的东南面”,大象说:“从假山向西,再向南走就是我家.”猴子说我家在长颈鹿家的西北.六.解答题(共3小题)28.观察如图回答问题.(1)超市在小明家的面,公园在学校的面,电影院在公园的面,超市在银行的面.(2)小明去上学怎样走?一共走多少米?29.下面是某学校集合时各个班级在礼堂的位置图:(1)写出各年级三班所在的位置.(2)表示某班的位置时(x,4),可能是哪个班?(3)表示某班的位置时(5,y),可能是哪个班?30.如果小明家的位置是(0,0),医院的位置是(,),公园的位置是(,),超市的位置是(,),王刚家在小明家正东300米处,比例尺是1:30000,(图上1格表示1厘米)请你在图上标出王刚家的位置.(写出计算过程)参考答案与试题解析一.选择题(共8小题)1.【分析】小玉要去买书,买零食,去银行,然后再回家,由图可知,有三条路线:小玉家→学校→超市→银行→书店→小玉家;小玉家→书店→银行→超市→书店→小玉家;小玉家→超市→银行→书店→小玉家;逐项分析判断即可.【解答】解:A、小玉家→学校→超市→银行→书店→小玉家,多走路了,不是最近的;B、小玉家→书店→银行→超市→书店→小玉家,有重复经过一个地方,不是最近的;C、小玉家→超市→银行→书店→小玉家,是最近的;故选:C.【点评】完成本题要注意从图文中获得正确信息,然后解答.2.【分析】根据方向的相对性可知,东和西相对,南和北相对,所以从学校去公园要往东偏南35°方向走2km;据此解答.【解答】解:根据分析可得,学校位于公园的西偏北35°方向2km处;从学校去公园要往东偏南35°方向走2km;故选:D.【点评】本题考查了方向的相对性,注意:方向相反,角度不变.3.【分析】根据位置的相对性可知,它们的方向相反,角度相等,距离相等,据此解答.【解答】解:教学楼在体育馆东偏南30°方向200米处,则体育馆在教学楼西偏北30°方向200米处.故选:A.【点评】本题主要考查了学生对位置相对性的掌握情况,熟记“方向相反,角度相等,距离相等”是解决本题关键.4.【分析】数对表示位置的方法是:第一个数字表示列;第二个数字表示行,据此即可解答.【解答】解:根据数对表示位置的方法,如果李军往后挪三排,则表示行的数要加上3,因此为4+3=7,而列数不变,所以李军往后挪三排,应记为(4,7).故选:B.【点评】此题主要考查数对表示位置的方法的灵活应用.5.【分析】根据数对表示位置的方法可知:第一个数字表示列,第二个数字表示行.将点a向右平移4格后,列加4,行不变.据此解答.【解答】解:点a用数对(6,8)表示,将点a向右平移4格后的位置用数对表示是(10,8).故选:C.【点评】此题考查数对表示位置的方法的灵活应用.6.【分析】利用方格图,在平面上标出这三个顶点,顺次连接画出这个三角形,即可进行选择.【解答】解:根据数对表示位置的方法可在下面方格图中画出这个三角形如下:观察图形可知,这个三角形一定是直角三角形.故选:A.【点评】此题主要考查数对表示位置的方法以及直角三角形的定义.7.【分析】此题可采用排除法,将ABC中的物体位置正确的读出来,即可选择正确答案.【解答】解:A:学校在广场的东偏北30°方向上,B:学校在广场的北偏东30°方向上,C:学校在广场的北偏西30°方向上,所以只有C符合题意.故选:C.【点评】排除法是解决选择题的一种重要手段.8.【分析】由小红家离学校300米,小明家离学校500米,可知有两种情况,小红和小明家都在学校的同一方,这时求两家的距离用500﹣300计算解答;另一种情况是小红和小明家在学校的两边,这时求两家的距离用500+300计算解答.【解答】解:小红和小明家都在学校的同一方时,两家的距离:500﹣300=200(米);小红和小明家都在学校的两边时,两家的距离:500+300=800(米);故选:C.【点评】解答本题关键是理解求两家的距离,有两种情况,小红和小明家都在学校的同一方;小红和小明家在学校的两边.二.填空题(共8小题)9.【分析】根据位置的相对性:两地相互之间的方向相反,距离相等.据此解答.【解答】解:根据分析可知:返回时飞机要按北偏西40°方向飞行1200千米.故答案为:北,西40°,1200千米.【点评】本题主要考查了学生对位置相对性知识的掌握情况.10.【分析】数对表示位置的方法是:第一个数字表示列,第二个数字表示行,由此即可解决问题.【解答】解:凯凯同学坐在教室的第4行第5列,用数对表示是(5,4).故答案为:(5,4).【点评】此题考查了利用数对表示位置的方法的灵活应用.11.【分析】根据位置的相对性:方向相反,角度相同,距离相等;进行解答即可.【解答】解:小东家在学校西偏北40°方向500米处,则学校在小东家东偏南40°方向500米处.故答案为:东偏南40°方向500米处.【点评】本题考查了方向的相对性,注意:东对西,南对北,角度不变,距离不变.12.【分析】依据地图上的方向辨别方法,即“上北下南,左西右东”,以及图上标注的其他信息,即可逐题解答.【解答】解:小明从家出发,先向西走100米,接着向北走150米到医院.邮局在小明家的东南方向;故答案为:西,北,东南.【点评】此题主要考查依据方向(角度)和距离判定物体位置的方法.13.【分析】依据地图上的方向辨别方法,即“上北下南,左西右东”,以及图上标注的其他信息,即可描述同学们的行走路线.【解答】解:同学们从少年宫出发去学校参如活动,先向西北方向走450米到公园,再向西南方向走320米到书店,最后向西走300米到学校.故答案为:西北,450,西南方向,320,西.【点评】此题主要考查地图上的方向辨别方法的灵活运用.14.【分析】根据上北下南,左西右东的方位辨别法辨别方向,并根据比例尺计算出距离.【解答】解:(1)根据线段比例尺,少年宫到图书馆的距离为:40×4=160(米)公交站到地铁站的距离为:40×5=200(米)根据地图上确定方向的方法知:小华从家出发向东北方向行走120米到少年宫,再向东行走160米到图书馆,然后向西南方向行走80米到公交站,最后向东南方向走200米可到地铁站.(2)根据地图上确定方向的方法可知,图书馆在地铁站西北方向.故答案为:东北;160;西南;200;西北.【点评】本题主要考查方向的辨别,注意找准观察点掌握基本方位,并利用比例尺计算距离.15.【分析】由小明的位置及数对表示可知:第一个数字表示列,第二个数字表示行,据此解答.【解答】解:小刚坐在第7列第4行,明明的位置用数(7,4)表示.故答案为:(7,4).【点评】此题考查了数对的写法,即先看在第几列,这个数就是数对中的第一个数;再看在第几行,这个数就是数对中的第二个数.16.【分析】抓住确定物体的两大要素:方向和距离,根据图中比例尺,即可得出物体的确切位置.【解答】解:根据图中线段比例尺可得:学校到小明家的距离是:200×3=600(米),以小明家为观测中心:学校在小明家北偏西45°方向上,距离约600米.答:学校在小明家北偏西45°方向上,距离约600米.故答案为:北;西;45;600米.【点评】确定物体的位置,首先要确定观测中心,抓住方向和距离两个要素,即可解决此类问题.三.判断题(共5小题)17.【分析】根据用数对表示点的位置的方法,第一个数字表示列数,第二个数字表示行数,聪聪坐在音乐教室的第4列第2行,可以用数对(4,2)表示.【解答】解:音乐课,聪聪坐在音乐教室的第4列第2行,可以用数对(4,2)表示;原题说法正确.故答案为:√.【点评】数对中每个数字所代表的意义,在不同的题目中会有所不同,但在无特殊说明的情况下,数对中第一个数字表示列,第二个数字表示行.18.【分析】描述路线时,需要找出标志物作为观测点,因为位置是变动的,所以参照物也是变动的.据此解答即可【解答】解:描述路线时,要以路线上不同路段的标志物作观测点.所以,原题说法是对的.故答案为:√.【点评】此题主要考查描述线路时,如何选择观测点.19.【分析】根据位置的相对性可知,它们的方向相反,角度相等,距离相等,据此解答.【解答】解:B市在A市北偏东60°方向,那么A市在B市西偏南30°方向,说法正确;故答案为:√.【点评】本题主要考查了学生对位置相对性的掌握情况,画图更容易解答.20.【分析】根据用数对表示点的位置的方法,第一个数字表示列数,第二个数字表示行数,数对(4,6)表示第4列,第6行,而数对(5,6)表示第5列,第6行.即数对(4,6)和(5,6)表示的位置是在同一行.【解答】解:数对(4,6)和(5,6)表示的位置是在同一行原题说法错误.故答案为:×.【点评】数对中每个数字所代表的意义,在不同的题目中会有所不同,但在无特殊说明的情况下,数对中第一个数字表示列,第二个数字表示行.21.【分析】人看物体时,眼睛相当于凸透镜,物近、像远、像变大,所以由远到近看景物,看到的范围越小,但像大了也越清楚了.【解答】解:人看物体时,眼睛相当于凸透镜,物距近了,像距远了,但像变大,所以由远到近看景物,看到的范围越小,也越清楚;故答案为:√.【点评】本题主要考查了凸透镜成像的知识.四.应用题(共2小题)22.【分析】数对表示位置的方法是:第一个数字表示列,第二个数字表示行,据此即可标出平面图中各个点的数对位置.【解答】解:(1)海洋世界(2,3),假山(7,2),骑马场(6,4),溜冰场(1,5),儿童乐园(5,1).(2)小刚的位置是(7,2),他想到溜冰场去,最近路线是(7,2)→(6,4)→(1,5),画图如下:(此题答案不唯一,只要符合即可)故答案为:7,2,6,4,1,5,5,1.【点评】此题主要考查数对表示位置的方法.23.【分析】依据地图上的方向辨别方法,即“上北下南,左西右东”,以及图上标注的其他信息,即可进行解答.【解答】解:(1)小鸡在白马的北面,鲜花在白马的西北面,鸽子在白马的东北面.(2)小熊在海豚的南面,钟表在海豚的东南面,树叶在海豚的东南面.(3)企鹅在小鸡的东南面,海豚在小鸡的西南面,钟表在小鸡的南面.(4)钟表在鸽子的西南面,钟表在鲜花的东南面,海豚、鲜花在钟表的西北面.(5)白马在鸽子的西南面,在小熊的东北面,在鲜花的东南面.故答案为:北、西北、东北;南、东南、东南;东南、西南、南;西南、东南、海豚、鲜花;西南、东北、东南.【点评】此题主要考查地图上的方向辨别方法的灵活应用.五.操作题(共4小题)24.【分析】依据图上标注的各种信息,以及地图上的方向辨别方法“上北下南,左西右东”就可以直接填写答案.【解答】解:【点评】此题主要考查依据方向和距离判定物体位置的方法,关键是弄清楚地图上的方向规定.25.【分析】根据数对表示位置的方法:第一个数字表示列,第二个数字表示行,在图中找出A、B、C三个点的位置顺次连接,然后根据三角形特点判断三角形形状即可.【解答】解:如图所示:答:把三个点顺次连接,得到的图形是等腰三角形.故答案为:等腰.【点评】本题主要考查了数对表示位置的方法及等腰三角形的性质.26.【分析】(1)根据用数对表示点的位置的方法,第一个数字表示列数,第二个数字表示行数,即可用数对表示出各设施的位置.(2)根据平面图上方向的辨别“上北下面,左西右东”,图是一格表示100米,即中确定从起点站到各站所行驶的方向、距离.【解答】解:(1)在图上标出各站点所在的位置.(2)公共汽车从起点站驶出,往北走100米,再往东走300米到医院,从医院往东走100米,再往北走300米到学校,从学校往东走300米到邮局,从邮局往东走100米,再往北走200米到商场,从商场往东走200米,再往北走200米到终点.【点评】此题主要是考查路线图,关键是观测点、方向及距离.27.【分析】根据地图上的方向,上北下南,左西右东,以假山为观测点即可确定熊猫、长颈鹿、大象、猴子家的方向,并根据出熊猫、长颈鹿、大象、猴子的家.【解答】解:分别标出熊猫、长颈鹿、大象、猴子的家:【点评】根据方向和距离确定特征的位置,关键是确定观测点,同一物体,所选的观测点不同,方向和距离也会改变.六.解答题(共3小题)28.【分析】(1)根据图上确定方向的方法,以小明家为观测点,超市在东面;以学校为观测点,公园在西北方向;以公园为观测点,电影院在西南方向;以银行为观测点,超市在西南方向.据此做题.(2)现根据图上确定方向的方法确定方向,然后根据图上给出的距离,确定小明上学所走路线为:小明从家出发,先向东行100米到超市,再向东北方向行100米到银行,再向南行120米到电影院,再向东走110米到少年宫,再向北行110米到公园,再向东北方向行170米到学校.然后计算小明上学所行路程:100+100+120+110+110+170=710(米).【解答】解:(1)超市在小明家的东面,公园在学校的西北面,电影院在公园的西南面,超市在银行的西北面.(2)100+100+120+110+110+170=710(米)答:小明从家出发,先向东行100米到超市,再向东北方向行100米到银行,再向南行120米到电影院,再向东走110米到少年宫,再向北行110米到公园,再向东北方向行170米到学校.他一共行了710米.故答案为:东;西北;西南;西北.【点评】本题主要考查方向的辨别,注意找准观察点掌握基本方位.29.【分析】(1)根据用数对表示点的位置的方法,第一个数字表示列数,第二个数字表示行数,即可用数对表示出各年级三班的位置.(2)(x,4)表示第4行的班级,此行的班级都有可能.(3)(5,y)表示第5列的班级,此列的班级都有可能.【解答】解:(1)一(3)班:(4,1)二(3)班:(3,2)三(3)班:(4,2)四(3)班:(3,3)五(3)班:(3,4)六(3)班:(3,5)(2)答:(x,4),表示每4行的班级,可能是五(1)班或五(2)班或五(3)班或五(4)班或五(5)班.(3)答:(5,y),表示第5列的班级,可能是二(2)班或三(4)班)或四(5)班或五(5)班或六(5班).【点评】此题考查了数对的写法,即先看在第几列,这个数就是数对中的第一个数;再看在第几行,这个数就是数对中的第二个数.30.【分析】(1)数对表示位置的方法是:第一个数字表示列,第二个数字表示行;(2)以小明家为观测中心,正东300米处,利用比例尺计算出它的图上距离,即可标出王刚家的位置.【解答】解:(1)根据数对表示位置的方法,医院的位置是(3,3),公园的位置是(1,2),超市的位置是(4,1);(2)300米=30000厘米,所以图上距离为:30000×=1(厘米),由此可以标出王刚家的位置如图所示:。
空间与图形知识点六年级上

空间与图形知识点六年级上空间与图形知识点是六年级上学期数学的重要内容之一,它包含了一系列与空间和图形相关的知识和概念。
通过学习和掌握这些知识点,学生将能够提高他们的几何思维能力和问题解决能力。
本文将对六年级上学期的空间与图形知识点进行综述,并提供一些相关的练习题供学生们巩固和复习。
一、平面图形的认识在六年级上学期,学生将进一步学习和认识不同的平面图形,如三角形、四边形、圆等。
他们需要了解每种图形的特点、性质和命名规则。
例如,学生应该知道三角形有三条边和三个内角,并且根据边的长度和角的大小可以将三角形分为等边三角形、等腰三角形和一般三角形。
二、图形的周长和面积计算学生在学习了不同图形的特点后,应该学会如何计算图形的周长和面积。
对于任何一个四边形,学生需要掌握计算周长的方法,即将四条边的长度相加。
而对于三角形和圆形,学生需要学会计算其周长和面积的特殊方法。
例如,学生可以通过计算底边乘以高的一半来计算三角形的面积,而圆的面积可以通过半径的平方乘以π来计算。
三、立体图形的认识在六年级上学期,学生还将学习和认识一些常见的立体图形,如长方体、正方体、圆柱体等。
他们需要了解每种立体图形的特点、性质和命名规则。
例如,学生应该知道长方体有六个面、八个顶点和十二条棱,并且能够通过计算面积和体积来解决与长方体相关的问题。
四、图形的投影投影是指将一个物体在光线的照射下所形成的影子或者在某个平面上的投射。
六年级上学期,学生将学习如何通过观察和绘制图形的投影来判断图形的形状和位置。
他们需要了解正投影和侧投影的概念,并能够根据给定的图形和光源方向来画出相应的投影图。
五、图形的折叠与展开折纸是六年级上学期空间与图形中一个有趣且重要的内容。
学生将学习如何通过折纸来制作不同的图形,并能够根据已折好的图形还原出原始的平面图形。
这将培养学生的几何思维和操作能力,提高他们的学习兴趣和动手能力。
练习题:1. 有一个正方形的边长为5厘米,计算它的周长和面积。
小学图形与空间知识点整理

小学图形与空间知识点整理小学生在学习数学的过程中,图形与空间是一个重要的知识点。
图形与空间的学习涵盖了形状、方位、位置、尺寸等内容。
通过学习图形与空间,可以帮助学生培养观察、分析和推理能力,加深对数学的理解。
以下是小学图形与空间的知识点整理。
一、平面图形1.点、线、线段、射线、角:学生需要了解这些基本概念,包括它们的定义以及区别。
2.三角形:三边相交于三个顶点,并且三个内角之和为180度,学生需要学习三角形的分类与性质。
3.四边形:四边相交于四个顶点,并且四个内角之和为360度,学生需要学习四边形的分类与性质。
4.圆:由一条曲线上的所有点与其中心点的距离相等构成,学生需要了解圆的性质,如直径、半径、弧等。
5.多边形:学生需要学习多边形的分类与性质,如正多边形、凸多边形、凹多边形等。
二、立体图形1.正方体:六个面都是正方形的立体图形,学生需要学习正方体的边、面、顶点等概念。
2.长方体:六个面都是矩形的立体图形,学生需要学习长方体的边、面、顶点等概念。
3.圆柱体:由两个平行的圆面和一个侧面组成的立体图形,学生需要学习圆柱体的边、底面、侧面等概念。
4.圆锥体:由一个圆锥面和一个顶点组成的立体图形,学生需要学习圆锥体的底面、侧面、顶点等概念。
5.圆球体:所有点到球心的距离相等的立体图形,学生需要学习圆球体的半径、表面积、体积等概念。
三、方向与位置1.方位词:学生需要学习基本的方位词,如前、后、左、右、上、下等,以便于描述位置关系。
2.平行:指两条直线在同一个平面内,永不相交,始终保持相同的距离,学生需要学习平行线的判断和性质。
3.垂直:指两条直线相交于90度,学生需要学习垂直线的判断和性质。
4.水平:指与地面平行的方向或线条,学生需要学习水平的概念及其判断。
五、尺寸与比例1.长度:学生需要学习测量长度的方法和基本单位,如米、厘米等。
2.面积:学生需要学习测量面积的方法和基本单位,如平方米、平方厘米等。
3.体积:学生需要学习测量体积的方法和基本单位,如立方米、立方厘米等。
空间与图形知识点

空间与图形知识点考点分析1、直线、射线和线段2、垂直与平行在同一平面内,不相交的两条直线叫做平行线,也可以说这两条直线互相平行。
3、角的意义及分类从一点引出的两条射线所组成的图形叫做角。
角的大小与边的长短无关,与两边叉开的大小有关。
45、画平面图形的高6、三角形的内角和求三角形中未知的一个角或几个角的度数,涉及到综合运用直角三角形的特征,等腰三角形的特征以及有关比的知识。
7、把多边形分成几个简单的图形。
8、常见四边形的周长和面积求法:9、圆的周长和圆的面积:圆的周长=直径×圆周率;圆的面积=半径的平方×圆周率。
10、平面图形面积公式推导过程。
11、常见的长度、面积计量单位。
(1)名数 测量的结果用数字表示,在后面加上单位名称,合起来就是名数。
(2)名数种类 名数有单名数和复名数之分。
(3)单名数之间的改写 高级单位改写成低级单位要乘进率,低级单位改写成高级单位要除以进率。
(4)复名数、单名数互化。
13、圆柱和圆锥的特征 14、长方体、正方体和圆柱体的表面积的意义。
15、长方体、正方体和圆柱体的表面积的计算方法。
16、物体的体积和物体的容积的意义。
体积:物体所占空间的大小。
容积:容器所能容纳的物体的体积。
17、物体的体积和物体的容积之间的联系和区别。
18、体积和容积单位及其相邻单位之间的进率。
19、计量单位换算的方法。
20、立体图形体积计算方法:长方体的体积=长×宽×高(V =abh ) 正方体的体积=棱长×棱长×棱长(V =a 3) 圆柱的体积=底面积×高(V =Sh)圆锥的体积=底面积×高×13 (V =13Sh) 21、长方体、正方体、圆柱体积公式的统一:V =Sh22、解决几何体体积和表面积的综合实际问题(注意表面积与体积的联系和区别)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
来源:网络 2009-07-27 10:02:14
[标签:图形总复习六年级苏教版数学]奥数精华资讯免费订阅
教学内容:义务教育课程标准实验教科书97-98页“整理与反思”和“练习与实践”7 -10题。
教学目标:
1、通过复习,使学生加深对长方形.正方形.平行四边形.梯形.三角形和圆等平面图形基本特征的认识。
2、能用所学的知识解决一些简单的实际问题。
教学重点、难点:用所学的知识解决一些简单的实际问题。
教学设计:
一、整理与复习
1.提出要求:请大家回忆,我们学过哪些围成的平面图形?先画出相关的图形,再在小组里交流一下。
2.进一步要求;如果把这些平面图形分成两类,可以怎样分?
引导学生认识到:由线段围成的平面图形分为一类,由曲线或由曲线和线段共同围成平面图形分为一类。
3.追问:由线段围成的平面图形都可称为什么图形?如果把多边形进一步分类,可以怎样分?
4.让学生在画出的三角形.平行四边形和梯形上作高,在画出的圆中用字母标出圆心.半径和直径。
二、复习三角形的知识
1、三角形的概念。
“我们已经学过三角形,请同学们自己画出几种不同的三角形。
”教师巡视。
“大家已经会画三角形了,说一说三角形是什么样的图形。
”(三角形是由三条线段围成的图形。
)
“三角形具有什么特性?日常生活中哪些地方用到这一特性?”
“在三角形中一个顶点的对边是哪一条边?看一看自己画的三角形,指一下每个顶点的对边。
”
“想一想三角形的高指的是什么,怎样画一个三角形的高。
”教师巡视,检查学生的画法是否正确。
2、三角形的分类。
“同学们刚才画了几种不同的三角形,它们有什么不同?是按照什么标准分类的?”(两种标准:按角分类,按边分类。
)
“按照三角形中角的不同可以把三角形分成几类?它们分别叫做什么三角形?”
(可以把三角形分成三类:锐角三角形、直角三角形和钝角三角形。
)
“每类三角形的三个角各是什么角?”
“我们学过什么特殊的三角形?”(等边三角形和等腰三角形。
)
3.出示三角形的集合图
提问:你是怎样理解上面这个图形的?
什么样的三角形是等腰三角形?什么样的三角形是等边三角形?
判断下面说法是否正确:
(1)等边三角形一定是等腰三角形。
()
(2)等腰三角形一定是等边三角形?两边之和大于第三边。
你能用学过的其他知识来解释上面的结论吗?
4.完成“练习与实践”第8.9题
第8题让学生先独立选一选,再要求说说选择时是怎样想的。
第9题先让学生独立算一算.填一填,再指名说说计算时的思考过程。
三、四边形的复习
1、四边形的概念。
“什么样的图形是四边形?自己画—个四边形。
”教师巡视,
看学生画了几种四边形。
教师根据学生的回答,按照教科书第131页中间的四边形关系图,把各种四边形画在黑板
“什么样的图形叫做平行四边形?”
“平行四边形有什么特点?”
“平行四边形的底指的是什么?用什么字母表示?”
“平行四边形的高指的是什么?用什么字母表示?“
“怎样画出平行四边形的高?”让学生自己画一画。
还要引导学生说一说图形间的关系:
“长方形与平行四边形有什么关系?”教师可以用准备好的活动的平行四边形进行演示。
“正方形与长方形有什么关系?”
教师根据各种四边形之间的关系逐步整理成下图。
讨论,你是怎样理解上面这示意图的?什么样的四边形是平行四边形?什么样的四边形是梯形?
判断下面说法是否正确。
(1)长方形一定是平行四边形。
()
(2)平行四边形一定是长方形。
(3)正方形一定是长方形。
(4)长方形一定是正方形。
提问:平行四边形.长方形.正方形之间的关系还可以怎样表达?
2、指导完成“练习与实践”第7题
提醒学生要借助工具规范地作图,再指名说说具体的画图过程。
四、指导完成“练习与实践”第10题和思考题
第10题先让学生在小组里讨论分割图形的方法,并试着分一分,再通过交流和评点,使学生进一步体会不同分割方法的特点。
思考题可以先让学生在图中画出相应的线段,再数一数三角形一共有多少个,并说一说这些三角形各是什么三角形。
五、全课小结
通过这节课的复习,你对平面图形又有了哪些新的认识?还有哪些疑问?或哪些自己认为需要进一步研究的问题?
六、补充
(一)填空
1.三角形的一个内角正好等于其余两个内角的和,这是一个()三角形。
2.一个等腰三角形,它的顶角是72o,它的底角是()度。
3.一个等腰三角形的两条边分别是5厘米和8厘米,那么它的周长最多是()厘米,最少是()厘米。
(第三条边为整厘米数)
4.用圆规画一个周长是12 .56厘米的圆,圆规两脚间的距离应该是()厘米。
5.用360厘米长的铁丝围成一个三角形,三条边长度的比是1:2:3,它的三条边的长度分别是().()和()厘米。
(二)选择
1.人们常用三角形的()性生产自行车大梁,运用平行四边形的()性应用电动大门。
A.稳定性 B.易变形 C.平衡性
2.平行四边形有()高,梯形有()条高,三角形有()条高。
A.无数条 B.一条 C.三条
3.圆的半径扩大2倍,则它的直径扩大(),面积扩大()。
A.2倍 B.4倍 C.8倍
课前思考:
复习平面图形的特征时一、要抓住从直观图形到抽象知识的概括,由具体的某个图形再进行归类,找出共同特征。
二、可引导学生思考以下几方面的问题:等边三角形与等腰三角形具有怎样的关系?它们与三角形具有怎样的关系?平行四边形.梯形和四边形具有怎样的关系?正方形.长方形与平行四边形具有怎样的关系?圆的圆心.半径.直径的含义分别是什么?分别用什么字母表示。
三、解决“练习与实践”的7.8.9题时,要注重学生方法的指导,画法要规范,围三角形时要考虑全面,求角的度数时的方法是否最优。