二次函数

合集下载

二次函数

二次函数

返回目录
(1)∵f(1+x)=f(1-x), ∵ 关于直线x=1对称 对称, ∴函数f(x)关于直线 函数 关于直线 对称 的最大值为15, 又f(x)的最大值为 的最大值为 故可设f(x)=a(x-1)2+15(a<0). 故可设 ∴f(x)=ax2-2ax+a+15,
15 ∴x1+x2=2,x1x2=1+ a ,
a +2 = 1.即a=-4,而函数 是定义在[ ] 即 ,而函数f(x)是定义在[a,b] 是定义在 2 a +b 上的, 关于x=1对称 ∴ 2 = 1 .∴b=6. 对称.∴ 上的,即a,b关于 关于 对称 ∴
返回目录
解法二: 二次函数的对称轴为 解法二:∵二次函数的对称轴为x=1, 与原函数表达式对比可得a+2 ∴f(x)=(x-1)2+c与原函数表达式对比可得 与原函数表达式对比可得 =-2, ∴a=-4,又 又 ∴b=6.
返回目录
3.二次函数的三种表示形式 二次函数的三种表示形式 一般式: 一般式 y=ax2+bx+c(a≠0) . 顶点式: 顶点式 y=a(x-h)2+k(a≠0) ,其中 其中 (h,k) 为抛
物线的顶点坐标. 物线的顶点坐标 两根式: 两根式: y=a(x-x1)(x-x2) ,其中 ,其中 x1,x2 是
1 (2)试比较 试比较f(0)·f(1)-f(0)与 16 的大小 并说明理由 的大小,并说明理由 并说明理由. 试比较 与
【分析】可利用二次函数中根与系数的关系列出不 分析】 等关系,从而确定参数 的取值范围 等关系 从而确定参数a的取值范围 从而确定参数 的取值范围.
返回目录
【解析】 (1)令g(x)=f(x)-x=x2+(a-1)x+a, 解析】 令 ∆>0

二次函数知识点总结

二次函数知识点总结

二次函数知识点总结二次函数是初中数学的重要内容之一,也是中考数学的重点和难点。

它不仅在数学领域有着广泛的应用,在物理、经济等其他学科中也经常出现。

下面我们来详细总结一下二次函数的相关知识点。

一、二次函数的定义一般地,形如\(y = ax^2 + bx + c\)(\(a\)、\(b\)、\(c\)是常数,\(a ≠ 0\))的函数,叫做二次函数。

其中\(x\)是自变量,\(a\)叫做二次项系数,\(b\)叫做一次项系数,\(c\)叫做常数项。

需要注意的是,二次函数的最高次必须是二次,并且二次项系数\(a\)不能为\(0\)。

如果\(a = 0\),那么函数就变成了一次函数。

二、二次函数的图象二次函数的图象是一条抛物线。

抛物线的形状由二次项系数\(a\)决定:1、当\(a > 0\)时,抛物线开口向上;当\(a < 0\)时,抛物线开口向下。

2、\(|a|\)越大,抛物线的开口越窄;\(|a|\)越小,抛物线的开口越宽。

抛物线是轴对称图形,对称轴为直线\(x =\frac{b}{2a}\)。

二次函数的顶点式为\(y = a(x h)^2 + k\),其中\((h, k)\)是抛物线的顶点坐标。

当抛物线的顶点坐标已知时,通常使用顶点式来表示二次函数,这样可以更方便地求出函数的最值等性质。

四、二次函数的一般式与顶点式的转化由一般式\(y = ax^2 + bx + c\)通过配方法可以转化为顶点式:\\begin{align}y&=ax^2 + bx + c\\&=a(x^2 +\frac{b}{a}x) + c\\&=a(x^2 +\frac{b}{a}x +\frac{b^2}{4a^2} \frac{b^2}{4a^2})+ c\\&=a(x +\frac{b}{2a})^2 \frac{b^2}{4a} + c\\&=a(x +\frac{b}{2a})^2 +\frac{4ac b^2}{4a}\end{align}\所以顶点坐标为\((\frac{b}{2a},\frac{4ac b^2}{4a})\)。

二次函数知识点总结

二次函数知识点总结

二次函数总结一、二次函数概念1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质:上加下减。

3. ()2y a x h =-的性质:左加右减。

4.()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k=-+与2y axbx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质 1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a -.2. 当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大;⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异”.3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ; 3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:图像参考:y=-2x 22y=3(x+4)22y=3x2y=-2(x-3)2十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少2-32。

二次函数知识点

二次函数知识点

二次函数(知识点)1. 二次函数的概念:一般地,如果y=ax 2+bx+c(a ,b ,c 是常数,a ≠0),其中二次项中x 的次数必须是2并且二次项的系数不能为0,那么这样的函数y 叫做x 的二次函数.2.二次函数y=ax 2+bx+c(a ,b ,c 是常数,a ≠0)的图象及画法二次函数y=ax 2+bx+c(a ≠0)的图象是对称轴平行于y 轴(或是y 轴本身)的抛物线.几个不同的二次函数.如果二次项系数a 相同,那么其图象的开口方向、形状完全相同,只是顶点的位置不同. 一 用描点法画图象首先确定二次函数的开口方向、对称轴、顶点坐标,然后在对称轴两侧,以顶点为中心,左右对称地画图.画结构图时应抓住以下几点:对称轴、顶点、与x 轴的交点、与y 轴的交点. 二 用平移法画图象由于a 相同的抛物线y=ax 2+bx+c 的开口及形状完全相同,故可将抛物线y=ax 2的图象平移得到a 值相同的其它形式的二次函数的图象.步骤为:利用配方法或公式法将二次函数化为y=a(x-h)2+k 的形式,确定其顶点(h ,k),然后做出二次函数y=ax 2的图象.将抛物线y=ax 2平移,使其顶点平移到(h ,k).3.(1)函数y=ax 2(a ≠0)的图象与性质:a 的符号图象开口方向 顶点坐标 对称轴增减性最大(小)值a>0向上(0,0)y 轴或说直线x=0 x>0时,y 随x 增大而增大 x<0时,y 随x 增大而减小当x=0时,y 最小=0a<0向下(0,0)y 轴或说直线x=0 x>0时,y 随x 增大而减小 x<0时,y 随x 增大而增大当x=0时,y 最大=0顶点是坐标原点(0,0),对称轴是y 轴或直线x=0的抛物线的解析式形式为220)0(ax x a y =+-=)(0≠a(2)函数y=ax 2+c(a ≠0)的图象及其性质:a 的符号图象开口方向 顶点坐标对称轴 增减性 最大(小)值 a>0向上(0,c)y 轴或说 直线x=0x>0时,y 随x 增大而增大 x<0时,y 随x 增大而减小 当x=0时, y 最小=ca<0向下(0,c)y 轴或说 直线x=0x>0时,y 随x 增大而减小 x<0时,y 随x 增大而增大当x=0时, y 最大=c顶点在y 轴上其坐标为(0,c ),对称轴是y 轴或直线x=0的抛物线的解析式形式为y=a (x-0)2+c=ax 2+c (3)抛物线y=ax 2与y=ax 2±c 之间的关系是:形状大小相同,开口方向相同,对称轴相同,而顶点位置和抛物线的位置不同. (4)抛物线之间的平移规律:抛物线y=ax 2向上平移c 个单位可以得到抛物线 y=ax 2+c ;抛物线y=ax 2向下平移c 个单位可以得到抛物线 y=ax 2-c ;4.(1)二次函数 y=ax 2+bx+c 的图像的性质二次函数y=ax 2+bx+c(a ≠0)的图象是一条抛物线.它的顶点坐标是(a b ac a b 44,22--),对称轴是直线x=ab 2-函数 二次函数y=ax 2+bx+c(a ,b ,c 是常数,a ≠0) 图象a>0a<0性质 (1)当a>0时,抛物线开口向上,并向上无限延伸,顶点(a b ac a b 44,22--)有最低点,存在最小值,对称轴为x=a b 2-,当x=a b 2-,y 最小值=ab ac 442-。

二次函数知识点归纳

二次函数知识点归纳

二次函数知识点归纳二次函数是高中数学中重要的内容之一,它在数学以及其他科学领域中有着广泛的应用。

下面是针对二次函数的相关知识点的归纳,希望能够对您理解和掌握二次函数有所帮助。

一、基本概念1. 二次函数的定义: 二次函数是形如f(x) = ax^2+bx+c的函数,其中a、b、c为常数且a不等于零。

2. 二次函数的图像: 二次函数的图像是一个抛物线,其开口方向由二次项系数a的符号确定。

- 若a>0,则抛物线开口向上;- 若a<0,则抛物线开口向下。

二、图像的性质1. 对称轴:二次函数的图像关于直线x=-b/2a对称。

2. 最值点:二次函数的最值点即为图像的顶点,其横坐标为-x/2a,纵坐标为f(-x/2a)。

- 当a>0时,函数的最小值为f(-x/2a);- 当a<0时,函数的最大值为f(-x/2a)。

3. 零点:二次函数的零点即为使函数取值为零的x值,可通过解二次方程ax^2+bx+c=0来求得。

三、函数的变换1. 平移:二次函数可以通过改变h和k的值来进行平移操作。

- f(x)的图像向左平移|k|个单位,新函数为f(x+h);- f(x)的图像向右平移|k|个单位,新函数为f(x-h);- f(x)的图像向上平移|k|个单位,新函数为f(x)+k;- f(x)的图像向下平移|k|个单位,新函数为f(x)-k。

2. 压缩和拉伸:二次函数可通过改变a的值来改变图像的形状。

- 若|a|>1,则函数图像纵向压缩;- 若0<|a|<1,则函数图像纵向拉伸。

四、函数的性质1. 定义域:对于二次函数,其定义域为实数集R,即所有实数x都在定义域内。

2. 奇偶性:二次函数一般是偶函数,除非存在线性项b,则二次函数为奇函数。

3. 单调性:当a>0时,二次函数在抛物线的开口范围内是单调递增的;当a<0时,二次函数在抛物线的开口范围内是单调递减的。

4. 零点和交点: 二次函数与x轴的交点即为零点,与y轴的交点为常数项c,与抛物线的交点为实数解。

二次函数讲解

二次函数讲解

一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

a 的符号 开口方向 顶点坐标 对称轴 性质0a >向上()00,y 轴0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值0. 0a < 向下()00,y 轴0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值0.2. 2y ax c =+的性质: 上加下减。

3. ()2y a x h =-的性质:左加右减。

4. ()2y a x h k =-+的性质:a 的符号 开口方向 顶点坐标 对称轴 性质0a >向上()0c ,y 轴0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值c .0a < 向下()0c ,y 轴0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值c .a 的符号 开口方向 顶点坐标 对称轴 性质0a >向上()0h ,X=hx h >时,y 随x 的增大而增大;x h <时,y随x 的增大而减小;x h =时,y 有最小值0. 0a < 向下()0h ,X=hx h >时,y 随x 的增大而减小;x h <时,y随x 的增大而增大;x h =时,y 有最大值0.a 的符号 开口方向 顶点坐标 对称轴 性质三、二次函数图象的平移 1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:向右(h >0)【或左(h <0)】平移 |k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向右(h >0)【或左(h <0)】平移|k|个单位向右(h >0)【或左(h <0)】平移|k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向上(k >0)【或向下(k <0)】平移|k |个单位y=a (x-h )2+ky=a (x-h )2y=ax 2+ky=ax 22. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较0a > 向上()h k ,X=hx h >时,y 随x 的增大而增大;x h <时,y随x 的增大而减小;x h =时,y 有最小值k . 0a < 向下()h k ,X=hx h >时,y 随x 的增大而减小;x h <时,y随x 的增大而增大;x h =时,y 有最大值k .从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a-.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大;⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结: 3. 常数项c⑴当0c>时,抛物线与y轴的交点在x轴上方,即抛物线与y轴交点的纵坐标为正;⑵当0c=时,抛物线与y轴的交点为坐标原点,即抛物线与y轴交点的纵坐标为0;⑶当0c<时,抛物线与y轴的交点在x轴下方,即抛物线与y轴交点的纵坐标为负.总结起来,c决定了抛物线与y轴交点的位置.总之,只要a b c,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. 关于x轴对称2=---;y ax bx cy ax bx c=++关于x轴对称后,得到的解析式是2()2y a x h ky a x h k=---;=-+关于x轴对称后,得到的解析式是()22. 关于y轴对称2=-+;y ax bx cy ax bx c=++关于y轴对称后,得到的解析式是2()2y a x h k=++;=-+关于y轴对称后,得到的解析式是()2y a x h k3. 关于原点对称2=-+-;y ax bx cy ax bx c=++关于原点对称后,得到的解析式是2()2=-+-;y a x h ky a x h k=-+关于原点对称后,得到的解析式是()24. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+. 5. 关于点()m n ,对称()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式. 十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离2214b acAB x x a-=-=. ② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >;2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;例1.已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是例2.如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )y y y y1 10 x o-1 x 0 x 0 -1 x A B C D 例3.已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。

二次函数知识点总结

二次函数知识点总结

二次函数知识点总结二次函数是数学中一个重要的函数类型,它在许多领域都有广泛的应用。

二次函数的一般形式为 f(x) = ax^2 + bx + c,其中 a、b、c 是常数,且a ≠ 0。

以下是二次函数的主要知识点总结:1. 定义:二次函数是最高次项为二次的多项式函数。

2. 标准形式:二次函数的标准形式是 y = ax^2 + bx + c,其中 a、b、c 是常数,且a ≠ 0。

3. 系数意义:系数 a 决定了抛物线的开口方向和宽度,b 和 c 决定了抛物线的位置。

4. 开口方向:当 a > 0 时,抛物线向上开口;当 a < 0 时,抛物线向下开口。

5. 顶点:二次函数的顶点是抛物线的最值点,其坐标可以通过公式(-b/2a, f(-b/2a)) 计算得出。

6. 对称轴:二次函数的对称轴是一条垂直于 x 轴的直线,其方程为x = -b/2a。

7. 极值:当 a > 0 时,抛物线有最小值;当 a < 0 时,抛物线有最大值。

8. 零点:二次函数的零点是函数图像与 x 轴的交点,可以通过求解方程 ax^2 + bx + c = 0 得到。

9. 判别式:二次方程 ax^2 + bx + c = 0 的判别式为Δ = b^2 -4ac,它决定了方程的根的性质。

- 当Δ > 0 时,方程有两个不相等的实数根。

- 当Δ = 0 时,方程有两个相等的实数根。

- 当Δ < 0 时,方程没有实数根。

10. 应用:二次函数在物理、工程、经济学等领域有广泛应用,如抛体运动、最优化问题等。

11. 图像特征:二次函数的图像是一个抛物线,其形状和位置由系数a、b、c 共同决定。

12. 函数性质:二次函数具有连续性、可导性等性质,其导数为 f'(x) = 2ax + b。

13. 函数图像绘制:通过确定顶点、对称轴和零点,可以绘制出二次函数的图像。

14. 函数变换:通过对二次函数进行平移、伸缩等变换,可以得到新的二次函数图像。

二次函数知识点汇总(全)

二次函数知识点汇总(全)

二次函数知识点(第一讲)、二次函数概念:1. 二次函数的概念:一般地,形如y=aχ2∙bx ∙c ( a , b , C是常数,a =O )的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数 a = 0 ,而b ,c可以为零•二次函数的定义域是全体实数.2. 二次函数y =aχ2∙bx C的结构特征:⑴ 等号左边是函数,右边是关于自变量X的二次式,X的最高次数是2 .⑵a ,b ,c是常数,a是二次项系数,b是一次项系数,C是常数项.二、二次函数的基本形式1. 二次函数基本形式:y =aχ2的性质:a的绝对值越大,抛物线的开口越小。

2. y =aχ2 C的性质:(上加下减)23. y =a (x —h )的性质:(左加右减)a 的符号 开口方向顶点坐 标 对称 轴性质a >0向上(h ,0) X=hx>h 时,y 随X 的增大而增大;Xeh 时,y 随X 的增大而减小;X = h 时,y 有最小值0 .a cθ向下(h ,0) X=hx>h 时,y 随X 的增大而减小;XVh 时,y 随X 的增大而增大;X = h 时,y 有最大值0 .24. y=a(x —h)+k 的性质:a 的符号 开口方向顶点坐 标 对称 轴性质a >0向上(h, k ) X=hx>h 时,y 随X 的增大而增大;XCh 时,y 随X 的增大而减小;x=h 时,y 有最小值k .a v0向下 (h, k ) X=hXAh 时,y 随X 的增大而减小;XVh 时,y 随X 的增大而增大;X = h 时,y 有最大值k .三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式 y =a X -∙h j 亠k ,确定其顶点坐标 h , k ; ⑵ 保持抛物线y =aχ2的形状不变,将其顶点平移到h ,k 处,具体平移方法如下:2. 平移规律在原有函数的基础上 h 值正右移,负左移;k 值正上移,负下移”概括成八个字“左加右减, 上加下减”.y=ax 2* y=ax 2+k向上(k>0)【或下(k<0)] y=a (x-h)2向右(h>0)【或左(h<0)] 平移|k|个单位y=a(x-h)2+k向上(k>0)【或向下(k<0)】平移Ikl 个单位向上(k>0)【或下(k<0)]平移|k 个单位向右(h>0)【或左(h<0)] 平移Kl 个单位向右(h>0)【或左(*0)] 平移Ikl 个单位平移∣k ∣个单位方法二:⑴y = ax 2 bx c 沿y 轴平移:向上(下)平移 m 个单位,y = ax 2 ∙ bx ∙ c 变成2 卜 2y = ax bx C m (或 y = ax bx c - m )⑵y =ax 2 ∙ bx C 沿轴平移:向左(右)平移 m 个单位,y = ax 2 bx C 变成2 卜 2y = a(x m) b(x m) c (或 y = a(x _ m) b(x _ m) c )四、二次函数y =a X _h i 亠k 与y =aχ2 bx c 的比较2从解析式上看,y =a X _h ]亠k 与y =aχ2 ∙ bx C 是两种不同的表达形式,后者通过配方可以得到五、二次函数y =aχ2 bx c 图象的画法五点绘图法:利用配方法将二次函数y =aχ2 bx C 化为顶点式y=a(x-h)2 ∙k ,确定其开口方 向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图 •一般我们选取的五点为: 顶点、与y 轴的交点O, c 、以及O,c 关于对称轴对称的点 2h ,C 、与X 轴的交点x 1, 0,X 2,O (若与X 轴没有交点,则取两组关于对称轴对称的点)画草图时应抓住以下几点:开口方向,对称轴,顶点,与 X 轴的交点,与y 轴的交点•六、二次函数y =ax 2 bx c 的性质随X 的增大而增大;当 ^-―时,y 随X 的增大而减小;当X b 时,2a2a七、二次函数解析式的表示方法1. 一般式: y =ax bx c ( a , b , C 为常数,a =O );2.顶点式: y =a(x-h) k ( a , h , k 为常数,a =O );3.两根式: y =a(x -x ι)(x -X 2) ( a =O , X i , X 2是抛物线与X 轴两交点的横坐标)前者,即y =a,其中Ta24ac — b 4a1.当a O 时,抛物线开口向上,对称轴为X b,顶点坐标为2ab 4ac-b 2— ,2a 4a当X 时,y 随X 的增大而减小;当X^ 时,2a2a最小值4ac "2 .4ay随X 的增大而增大;当X=E 时,y 有2.当a :::0时,抛物线开口向下, X =-b,顶点坐标为( b 4ac-b 2•当X ::」时,I ■—, 2a2a 4a2ay 有最大值4ac - b 2 4a对称轴为 y注意:任何二次函数的解析式都可以化成一般式或顶点式, 但并非所有的二次函数都可以写成交点式,只有抛物线与X 轴有交点,即b 2_4ac_o 时,抛物线的解析式才可以用交点式表示.二次函数 解析式的这三种形式可以互化•八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数y =aχ2 ∙ bx ∙ c 中,a 作为二次项系数,显然 a 厂0 .⑴当a 0时,抛物线开口向上,a 的值越大,开口越小,反之 a 的值越小,开口越大; ⑵ 当a :::0时,抛物线开口向下,a 的值越小,开口越小,反之 a 的值越大,开口越大. 总结起来,a 决定了抛物线开口的大小和方向, a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴在a 0的前提下,当b 0时,一卫:::0 ,即抛物线的对称轴在 y 轴左侧;2a当b =0时,一丄=0 ,即抛物线的对称轴就是 y 轴;2a当b <0时,—b .0,即抛物线对称轴在 y 轴的右侧.2a⑵ 在a <0的前提下,结论刚好与上述相反,即当b 0时,—卫∙0 ,即抛物线的对称轴在 y 轴右侧;2a当b =0时,—b =O ,即抛物线的对称轴就是 y 轴;2a当b <0时,一P ::: 0 ,即抛物线对称轴在 y 轴的左侧.2a总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.Kab 的符号的判定:对称轴X —在y 轴左边则ab • 0,在y 轴的右侧则ab ::: 0 ,概括的说就2a是“左同右异” 总结: 3. 常数项C总结起来,C 决定了抛物线与y 轴交点的位置.总之,只要a, b , C 都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法•用待定系数法求二次函数的解析式必 须根据题目的特点,选择适当的形式,才能使解题简便•一般来说,有如下几种情况:⑴当C 0时,抛物线与 y 轴的交点在X 轴上方,即抛物线与 y 轴交点的纵坐标为正; ⑵当C =0时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0 ; ⑶当C <0时,抛物线与 y 轴的交点在X 轴下方,即抛物线与 y 轴交点的纵坐标为负.1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与X轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. 关于X轴对称y = aX ∙ bx关于X轴对称后,得到的解析式是y - -aχ2 -bx -C ;2 2y=ax-h]亠k关于X轴对称后,得到的解析式是y - -a X -h k ;2. 关于y轴对称^aX bx关于y轴对称后,得到的解析式是y =aχ2 -bx ∙ c ;2 2y=ax-h「k关于y轴对称后,得到的解析式是y = a X^i ^k ;3. 关于原点对称y = ax2 bx C关于原点对称后,得到的解析式是y =-aχ2∙ bx-c ;2 2y = a X- h ■关于原点对称后,得到的解析式是y - -a X ∙ h k ;4.关于顶点对称(即:抛物线绕顶点旋转180°)y=aX ∙ bx关汙顶点对称后,得到的解析式是y»bx c 卫;2a2y =a x-h k关于顶点对称后,得到的解析式是2y = -a X - h j 亠k •5. 关于点m, n对称2 2y =a X -h i亠k关于点m , n 对称后,得到的解析式是y = -a x ■ h —2m i亠2n —k根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a永远不变•求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与X轴交点情况):一元二次方程ax2 bx C 0是二次函数y=aχ2 bx G当函数值y =O时的特殊情况• 图象与X轴的交点个数:①当厶-b2 -4ac 0时,图象与X轴交于两点Axl,0 , B X2 , 0 (X^-X2),其中的X i,X2是一元次方程ax2 bx C =0 a十0的两根.这两点间的距离②当=0时,图象与X轴只有一个交点;③当.—::0时,图象与X轴没有交点•1'当a 0时,图象落在X轴的上方,无论X为任何实数,都有y ∙0 ;2'当a :::0时,图象落在X轴的下方,无论X为任何实数,都有y:::0 .2.抛物线y =aχ2 bx C的图象与y轴一定相交,交点坐标为(0,C);3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与X轴的交点坐标,需转化为一元二次方程;⑵求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数y =aχ2∙ bx ∙ c中a,b,C的符号,或由二次函数中a,b,C的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与X轴的一个交点坐标,可由对称性求出另一个交点坐标⑸ 与二次函数有关的还有二次三项式,二次三项式ax2 bx C(^--=0)本身就是所含字母X的二次函数;下面以a 0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:Δ>0抛物线与X轴有两个交点二次三项式的值可正、可零、可负一元二次方程有两个不相等实根A =0抛物线与X轴只有一个交点二次三项式的值为非负一元二次方程有两个相等的实数根A <0抛物线与X轴无交占二次三项式的值恒为正一元二次方程无实数根.AB = X2 - X i I =b 4ac二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以X为自变量的二次函数y = (m「2)x2∙ m2「m「2的图像经过原点,则m的值是___________2 .综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数y =kx ∙ b的图像在第一、二、三象限内,那么函数3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:5已知一条抛物线经过(0,3) , (4,6)两点,对称轴为X ,求这条抛物线的解析式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学过关练习 5.29
1 2 3 4 5 6 7 8 9 10
一、 选择答案:(每题3分,共30分) 1.下列函数①121-=
x y ,②y=ax 2,③142
1
2+-=x x y ,④)2(-=x x y ,⑤22)1(x x y --=中,是二次函数的有( )
A .1个 B.2个 C.3个 D .4个 2.顶点坐标为(-3,0),且开口方向、形状与函数2
3
1x y =
的图象相同的抛物线是( ). A .2)3(31-=x y B .2)3(31+=x y C .2)3(31--=x y D .2
)3(3
1+-=x y
3.若1x 、2x 是一元二次方程2x 2-3x+1=0的根,则21x +2
2x =( )
A .
45 B.49 C.4
11
D.7 4.若方程02=++c bx ax )0(≠a 中,c b a ,,满足0=++c b a 和0=+-c b a ,
则方程的根是( )
(A )1,0 (B )-1,0 (C )1,-1 (D )无法确定
5.二次函数y=-x 2
+2x+4的最大值为( )
A .3
B .4
C .5
D .6
6.若二次函数y=ax 2
图象经过点P (-2,4),则该图象必经过点( )
A .(2,4)
B .(-2,-4)
C .(-4,2)
D .(4,-2)
7.若一次函数y=ax+b (a ≠0)的图象与x 轴的交点坐标为(﹣2,0),则抛物线y=ax 2
+bx 的对称轴为( ) A .x=1 B .x=﹣2 C .x=﹣1 D .x=﹣4
8.若抛物线y=x 2
-2x+c 与y 轴的交点为(0,﹣3),则下列说法不正确的是( )
A .抛物线开口向上
B .抛物线的对称轴是x=1
C .当x=1时,y 的最大值为﹣4
D .抛物线与x 轴的交点为(-1,0),(3,0)
9.在同一坐标系中,一次函数y=ax+2与二次函数y=x 2
+a 的图象可能是( )
A .
B .
C .
D .
10.如图,一根长为5米的竹竿AB 斜立于墙MN 的右侧,底端B 与墙角N 的距离为3米,当竹竿顶端A 下滑x 米时,底端B 便随着向右滑行y 米,反映y 与x 变化关系的大致图象是
A B C D
二、填空题(共24分,每小题3分)
11. 已知
7
m
2
x )3m (y --=是y 关于x 的二次函数,m 的值
12.已知点A (x 1,y 1)、B (x 2,y 2)在二次函数y =(x 1)2+1的图象上,若x 1>x 2>1,
则y 1 y 2(填“>”“=”或“<”).
13.已知抛物线y =kx 2+2x -5与x 轴两个交点的横坐标之和为6,则它们的积为___
14.若关于x 的方程062
=++kx x 的根是整数,则k 的值可以是
15.某一型号飞机着陆后滑行的距离y (单位:m )与滑行时间x (单位:s )之间的函数表达式是
y =60x 1.5x 2,该型号飞机着陆后需滑行 m 才能停下来 16. 二次函数y =x 2-2x -3的图象如图所示 当y <0时,自变量x 的取值范围是___________
17.若抛物线y=ax 2-3ax+a 2-2a 经过的原点,则a 的值为
18.如图,在平面直角坐标系中,点A 在抛物线y =x 2
﹣2x +2上运动. 过点A 作AC ⊥x 轴于点C ,以AC 为对角线作矩形ABCD ,连结BD , 则对角线BD 的最小值为
三、 解答题(共46分)
19. 已知022
=--x x ,求代数式)1)(1()12(-+--x x x x 的值
20.已知等腰三角形底边长为8,腰长是方程02092
=+-x x 的一个根,求这个三角形的面积。

N
M
B
A
21.如图,一块长和宽分别为60厘米和40厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体水槽,使它的底面积为800平方厘米.求截去正方形的边长.
22.已知关于x 的一元二次方程2630x x k -++=有两个不相等的实数根
(1)求k 的取值范围;
(2)若k 为大于3的整数,且该方程的根都是整数,求k 的值.
23.已知二次函数2
5y ax x c =-+的图像如图所示. (1)求这个二次函数的解析式和它的最值;
(2)x 取何值时,y 随x 的增大而增大?x 取何值时,y 随x 的增大而减小?
24.求直线4x 3y +=与抛物线2
x y =的交点坐标,并求出两交点与原点所围成的三角形的面积。

25.在平面直角坐标系xOy 中,抛物线()210y ax bx a =++≠过点()1,0A -,()1,1B ,与y 轴交
于点C .
(1)求抛物线()2
10y ax bx a =++≠的函数表达式;并画出函数图像。

(2)若点D 在抛物线()2
10y ax bx a =++≠的对称轴上,当ACD △的周长最小时,求点D 的
坐标;。

相关文档
最新文档