数学统筹与最优化课件2020年四年级奥数
四年级高思奥数之统筹与对策含答案

第16 讲统筹与对策内容概述生活中的统筹规划问题,包括合理安排顺序、选择最短或最长路线、人员分配、货物调度等,一般采用枚举、比较和逐步调整的方法. 各种游戏对策问题,在必胜方案中通常要占据关键位置或选取特殊数值,分析对一般从简单情形出发进行逆推.典型问题1.妈妈让冬冬给客人烧水沏茶.洗开水壶要用1分钟,烧开水要用15分钟,洗茶壶要用1分钟,洗茶杯要用1分钟,拿茶叶要用2分钟.冬冬估算了一下,完成这些工作要花20分钟. 为了尽快给客人沏茶,你认为最合理的安排,最少需要多少分钟?2.理发店里同时来了A、B、C三个顾客,A理板寸需要7分钟,B理光头需要10分钟,C烫卷发需要40分钟.请问:如何安排这三个人的理发顺序才能使得他们三人所花的时间总和最短?这个最短的时间是多少?3.西点店里卖的面包都是5个一袋或3个一袋的,不拆开零售.已知5个一袋的售价是8元,3个一袋的售价是5元,要给47位同学每人发1个面包最少要花多少钱?4.如图16-1的方格屏幕上,每个小方格的边长是1厘米,一条贪吃蛇从左下角出发,沿着格线爬行,如果它想吃掉图中的3个“★”,最少要爬多远?请画出路线.5.如图16-2所示,一条环形公路上有A、B、C、D四个仓库.A仓库存盐40吨,B仓库存盐5吨,C仓库存盐35吨,D仓库没有盐.现在要调整存放数量,计划A、B、C、D每个仓库各存盐20吨.已知每吨盐运l千米需要运费2元.试问:为完成上述调运计划,最少需要多少元运费?(图16-2中公路旁的数字表示相邻仓库间的里程数,单位为千米)6.2008个小方格从左到右排成一行,甲、乙两人轮流在空格内放棋子,每人每次放一枚.规定如下:每个空格至多放一枚棋子;当甲放好一枚棋子后,乙必须在紧挨着这枚棋子的空格内放;而当乙放好棋子后,甲必须隔一个位子放;谁放不了就判谁输.如果乙一开始在左数第一个方格内放了一枚棋子,谁将有必胜策略?7.有9根火柴,甲、乙两人轮流取,规定每次可以取1根或者2根火柴,以取走最后一根火柴的人为胜者.试问:如果甲先取,谁有必胜的策略?8.有100根火柴,甲、乙两人轮流取,规定每次可以取1根、2根、3根或4根火柴,谁取到最后一根火柴谁输.甲先取.问:谁有必胜的策略?9.黑板上写有l,2,3,4,5,…,2009这些自然数,甲先乙后,两人轮流擦去一个自然数.如果最后剩下的两个自然数奇偶性不同,那么甲就胜,否则乙胜.请问:谁有必胜的策略,具体的策略是怎样的?10.两人轮流往一个圆桌面上放同样大小的硬币,规则是:每人每次只能放一枚,硬币不许重叠,谁放完最后一枚硬币而使对方再也无处可放,谁就获胜.问:先放者如何取胜?拓展篇1.小悦中午做烧豆腐,共需要七道工序,每道工序的时间如下:切豆腐2分钟,切肉片2分钟,准备葱姜蒜3分钟,准备佐料1分钟,烧热锅2分钟,烧热油2分钟,炒菜4分钟.那么小悦烧好这道菜最短需要多少分钟?2.小杂货店里有一位售货员卖货,同时来了A、B、C、D、E五个顾客.A买糖果需要2分钟;B买大米需要6分钟;C买香烟和啤酒需要4分钟;D买水果需要3分钟;E买蔬菜需要5分钟.请问:售货员应该如何安排五个人的顺序,使得这五个人排队等候的时间总和最短?这个最短的时问是多少?(只计算每个人排队的时间,不计算买东西的时间.)3.有47位小朋友,老师要给每人发1支红笔和1支蓝笔.商店中每种笔都是5支一包或3支一包,不能打开零售.5支一包的红笔61元,蓝笔70元,3支一包的红笔40元,蓝笔47元.老师买所需要的笔最少要花多少元?4.图16-3是一张道路图,每段路旁标注的数值表示小悦走这段路所需的分钟数.问:小悦从A出发走到B最快需要多少分钟?5.如图16-4,一条路上从西向东有A、B、C、D、E五所学校,分别有200人、300 人、400人、500人、600人.任意相邻的两所学校之间的距离都是100米,现在要在某所学校的门口修建一个公共汽车站,要使所有人到达车站的距离之和最小,车站应该建在什么地方?距离的总和最少是多少?6.北京和上海分别制成同样型号的车床10台和6台,这些车床准备分配给武汉11台、西安5台,每台车床的运费如图16-5所示,单位为百元.那么总运费最少是多少元?7.甲拿若干枚黑棋子,乙拿若干枚白棋子,他们轮流向如图16-6所示的3×3的方格中放棋子,每次放1枚,谁的棋子中有3枚连成一条线(横、竖、斜均可),谁就获胜.如果甲首先占据了中问位置,乙要想不败,第1枚棋子应该放在哪里?8.有12枚棋子,甲、乙两人轮流取,规定每次至少取1枚,最多取3枚,以取走最后一枚棋子者为胜者.如果甲先取,那么谁有必胜策略?如果取走最后一枚棋子者为败者,并且仍然是甲先取,那么谁有必胜策略?9.现有2008根火柴,甲、乙两个人轮流从中取出火柴.每次最少从中取出2根,最多取出4根.谁无法再次取出火柴谁就赢.如果甲先取,请问谁有必胜的策略?10.甲、乙两人玩一个游戏:有两堆小球,甲、乙两人轮流从中取球,每次只能从同一堆中取,个数不为零即可,规定取到最后一个球的人赢,现在甲先取球.(1)如果开始时两堆球数分别是两个和两个,那么谁有必胜策略?请说明理由;(2)如果开始时两堆球数分别是两个和三个,那么谁有必胜策略?请说明理由;(3)如果开始时两堆球数分别是五个和八个,那么谁有必胜策略?请说明理由.11.如图16-7,方格A中放有一枚棋子,甲先乙后轮流移动这枚棋子,只能向上、向右或向右上方沿450角走1步,最终将棋子走到方格B的人获胜.请问:谁有必胜策略,策略是什么?如果每次允许往同一方向(上、右或右上)走任意多步,结果又如何呢?12.桌上有一块巧克力,它被直线划分成3行7列的21个小方块,如图16-8所示.现在让你和对手进行一种两人轮流切巧克力的游戏,规则如下:①每次只许沿一条直线把巧克力切成两块;②拿走其中一块,把另一块留给对手再切;③谁能留给对手恰好是一个小方块,谁就取胜.如果请你首先切巧克力,那么你第一次应该切走多少个小方块,才能使你最后获胜?超越篇1.甲、乙、丙三名车工准备在同样效率的三个车床上车出七个零件,加工各零件所需要的时间分别为4、5、6、6、8、9、9分钟.三人同时开始工作。
四年级数学优化(统筹方法)

1
2
3
1 1
1
2
3
2
1
2
2
3
1
2
3
3分钟
1
1
2
3
3分钟
1
1
2
3分钟
1
1
3
3
3
2
3分钟
3
1
3
3
2
1
3分钟 + 3分钟
3
ok
1
3分钟 + 3分钟
ok
3
ok
ok
1
3分钟 + 3分钟
3
1
1
ok
1
3分钟 + 3分钟
3
1
ok
3分钟 + 3分钟 + 3分钟
4
2张2张烙
5 先烙2张,再烙3张
6
2张2张烙
7 先2张2张烙,再烙3张
6 9
12 6+9=15
18 6+6+9=21
8
2张2张烙
9 先2张2张烙,再烙3张
10 2张2张烙
24 6+6+6+9=27
30
观察与思考:从表中你发现了哪些规律?
烙双数饼时,2张2张的烙最节省时间。烙单数饼时,先2 张2张的烙,最后剩3张按上面的最佳方法烙。
田忌 下等马 上等马 中等马
本场胜者
齐王 田忌 田忌
课外拓展
啊!妈妈下班回来了,要做晚饭
洗米
3分钟
1.你能让妈妈在最短的时间
煮饭
30分钟
内吃到饭吗?
四年级奥数讲义:统筹与安排

四年级奥数讲义:统筹与安排例1.妈妈让小明给客人烧水沏茶, 洗开水壶要1分钟, 烧开水要15分钟, 洗茶壶要1分钟, 洗茶杯要1分钟, 拿茶叶要2分钟。
小明估算了一下完成这些工作大约要20分钟。
为了让客人早点喝上茶, 按你认为最合理的安排, 多长时间就能让客人喝上茶?试一试, 用一只平底锅烙饼, 锅上只能放两块饼, 烙熟饼的一面需要2分钟, 两面共需要4分钟, 现在需要烙熟三块饼, 最少需要几分钟?•例2: 下图是一张道路图, 每段路旁标注的数值标示小王走这段路需要的分钟数。
问: 小王从A点出发走到B点至少需要多少分钟?/•试一试, 甲、乙、丙三名车工准备在同样功效的3个车床上车出7个零件, 加工各零件所需要的时间分别为4.5.6.6.8、9、9分钟。
三人同时开工, 问: 至少经过多少分钟可以车完所有的零件?例3, 甲、乙、丙、丁四个人过桥, 分别需要1.2.5.10分钟, 由于天黑需要借助手电筒过桥, 可是他们四人总共只有一个手电筒, 并且桥的载重能力有限, 每次最多只能承受两个人的重量, 也就是说、每次最多过两个人。
现在希望用最短的时间过桥, 怎样安样才能最短?是多少分钟?试一试, 小明骑在牛背上赶牛过河, 共有甲、乙、丙、丁四头牛, 甲牛过河需要1分钟, 乙牛过河需要2分钟, 丙牛过河需要5分钟, 丁牛过河需要6分钟, 小明每次只能骑一头牛, 赶一头牛。
小明怎样安样才能使四头牛过河的时间最短?是多少分钟?例4,如图所示5所学校A.B.C.D.E之间有公路相通, 图中标出了各段公路的千米数, 现在想在某学校召开一次学生代表大会, 出席会议的学生代及A.B.C.D.E校分别有6.4.8、7、10人, 为使参加会议的代表所走的路程总和最少, 会议应选在那个学校举行。
/试一试, 甲、乙、丙、丁四人同时到二个水龙头处用水, 甲洗拖布需要3分钟, 乙洗抹布需要分2钟, 丙用桶接水需要1分钟, 丁洗衣服需要10分钟, 怎样安排四个人的用水顺序。
四年级高思奥数之统筹与对策含答案

第16 讲统筹与对策内容概述生活中的统筹规划问题,包括合理安排顺序、选择最短或最长路线、人员分配、货物调度等,一般采用枚举、比较和逐步调整的方法. 各种游戏对策问题,在必胜方案中通常要占据关键位置或选取特殊数值,分析对一般从简单情形出发进行逆推.典型问题1.妈妈让冬冬给客人烧水沏茶.洗开水壶要用1分钟,烧开水要用15分钟,洗茶壶要用1分钟,洗茶杯要用1分钟,拿茶叶要用2分钟.冬冬估算了一下,完成这些工作要花20分钟. 为了尽快给客人沏茶,你认为最合理的安排,最少需要多少分钟?2.理发店里同时来了A、B、C三个顾客,A理板寸需要7分钟,B理光头需要10分钟,C烫卷发需要40分钟.请问:如何安排这三个人的理发顺序才能使得他们三人所花的时间总和最短?这个最短的时间是多少?3.西点店里卖的面包都是5个一袋或3个一袋的,不拆开零售.已知5个一袋的售价是8元,3个一袋的售价是5元,要给47位同学每人发1个面包最少要花多少钱?4.如图16-1的方格屏幕上,每个小方格的边长是1厘米,一条贪吃蛇从左下角出发,沿着格线爬行,如果它想吃掉图中的3个“★”,最少要爬多远?请画出路线.5.如图16-2所示,一条环形公路上有A、B、C、D四个仓库.A仓库存盐40吨,B仓库存盐5吨,C仓库存盐35吨,D仓库没有盐.现在要调整存放数量,计划A、B、C、D每个仓库各存盐20吨.已知每吨盐运l千米需要运费2元.试问:为完成上述调运计划,最少需要多少元运费?(图16-2中公路旁的数字表示相邻仓库间的里程数,单位为千米)6.2008个小方格从左到右排成一行,甲、乙两人轮流在空格内放棋子,每人每次放一枚.规定如下:每个空格至多放一枚棋子;当甲放好一枚棋子后,乙必须在紧挨着这枚棋子的空格内放;而当乙放好棋子后,甲必须隔一个位子放;谁放不了就判谁输.如果乙一开始在左数第一个方格内放了一枚棋子,谁将有必胜策略?7.有9根火柴,甲、乙两人轮流取,规定每次可以取1根或者2根火柴,以取走最后一根火柴的人为胜者.试问:如果甲先取,谁有必胜的策略?8.有100根火柴,甲、乙两人轮流取,规定每次可以取1根、2根、3根或4根火柴,谁取到最后一根火柴谁输.甲先取.问:谁有必胜的策略?9.黑板上写有l,2,3,4,5,…,2009这些自然数,甲先乙后,两人轮流擦去一个自然数.如果最后剩下的两个自然数奇偶性不同,那么甲就胜,否则乙胜.请问:谁有必胜的策略,具体的策略是怎样的?10.两人轮流往一个圆桌面上放同样大小的硬币,规则是:每人每次只能放一枚,硬币不许重叠,谁放完最后一枚硬币而使对方再也无处可放,谁就获胜.问:先放者如何取胜?拓展篇1.小悦中午做烧豆腐,共需要七道工序,每道工序的时间如下:切豆腐2分钟,切肉片2分钟,准备葱姜蒜3分钟,准备佐料1分钟,烧热锅2分钟,烧热油2分钟,炒菜4分钟.那么小悦烧好这道菜最短需要多少分钟?2.小杂货店里有一位售货员卖货,同时来了A、B、C、D、E五个顾客.A买糖果需要2分钟;B买大米需要6分钟;C买香烟和啤酒需要4分钟;D买水果需要3分钟;E买蔬菜需要5分钟.请问:售货员应该如何安排五个人的顺序,使得这五个人排队等候的时间总和最短?这个最短的时问是多少?(只计算每个人排队的时间,不计算买东西的时间.)3.有47位小朋友,老师要给每人发1支红笔和1支蓝笔.商店中每种笔都是5支一包或3支一包,不能打开零售.5支一包的红笔61元,蓝笔70元,3支一包的红笔40元,蓝笔47元.老师买所需要的笔最少要花多少元?4.图16-3是一张道路图,每段路旁标注的数值表示小悦走这段路所需的分钟数.问:小悦从A出发走到B最快需要多少分钟?5.如图16-4,一条路上从西向东有A、B、C、D、E五所学校,分别有200人、300 人、400人、500人、600人.任意相邻的两所学校之间的距离都是100米,现在要在某所学校的门口修建一个公共汽车站,要使所有人到达车站的距离之和最小,车站应该建在什么地方?距离的总和最少是多少?6.北京和上海分别制成同样型号的车床10台和6台,这些车床准备分配给武汉11台、西安5台,每台车床的运费如图16-5所示,单位为百元.那么总运费最少是多少元?7.甲拿若干枚黑棋子,乙拿若干枚白棋子,他们轮流向如图16-6所示的3×3的方格中放棋子,每次放1枚,谁的棋子中有3枚连成一条线(横、竖、斜均可),谁就获胜.如果甲首先占据了中问位置,乙要想不败,第1枚棋子应该放在哪里?8.有12枚棋子,甲、乙两人轮流取,规定每次至少取1枚,最多取3枚,以取走最后一枚棋子者为胜者.如果甲先取,那么谁有必胜策略?如果取走最后一枚棋子者为败者,并且仍然是甲先取,那么谁有必胜策略?9.现有2008根火柴,甲、乙两个人轮流从中取出火柴.每次最少从中取出2根,最多取出4根.谁无法再次取出火柴谁就赢.如果甲先取,请问谁有必胜的策略?10.甲、乙两人玩一个游戏:有两堆小球,甲、乙两人轮流从中取球,每次只能从同一堆中取,个数不为零即可,规定取到最后一个球的人赢,现在甲先取球.(1)如果开始时两堆球数分别是两个和两个,那么谁有必胜策略?请说明理由;(2)如果开始时两堆球数分别是两个和三个,那么谁有必胜策略?请说明理由;(3)如果开始时两堆球数分别是五个和八个,那么谁有必胜策略?请说明理由.11.如图16-7,方格A中放有一枚棋子,甲先乙后轮流移动这枚棋子,只能向上、向右或向右上方沿450角走1步,最终将棋子走到方格B的人获胜.请问:谁有必胜策略,策略是什么?如果每次允许往同一方向(上、右或右上)走任意多步,结果又如何呢?12.桌上有一块巧克力,它被直线划分成3行7列的21个小方块,如图16-8所示.现在让你和对手进行一种两人轮流切巧克力的游戏,规则如下:①每次只许沿一条直线把巧克力切成两块;②拿走其中一块,把另一块留给对手再切;③谁能留给对手恰好是一个小方块,谁就取胜.如果请你首先切巧克力,那么你第一次应该切走多少个小方块,才能使你最后获胜?超越篇1.甲、乙、丙三名车工准备在同样效率的三个车床上车出七个零件,加工各零件所需要的时间分别为4、5、6、6、8、9、9分钟.三人同时开始工作。
四年级上册奥数讲义 第03讲 统筹规划

第03讲统筹规划一、知识点1、合理安排:2、最短路线:3、合理调运:安排合理:要考虑以下几个问题:(1)要做哪几件事:(2)做每件事需要的时间;(3)要弄清所做事的程序,即先做什么,后做什么,哪些事可以同时做。
在学习、生产和工作中,只有尽可能地节省时间、人力和物力,才能发挥出更大的效率。
(别闲着)最短路线:找到最近的路合理调运:最先满足花钱最少的地方。
二,典型例题例1.明明早晨起来要完成以下几件事情:洗水壶1分钟,烧开水12分钟,把水灌入水瓶要2分钟,吃早点要8分钟,整理书包2分钟。
应该怎样安排时间最少?最少要几分钟?思路导航:经验表明:能同时做的事尽量要同时去做,这样节省时间。
水壶不洗,不能烧开水,因而洗水壶不能和烧开水同时进行;而吃早点和整理书包可以和烧开水同时进行。
这一过程可用方框图表示:练习一1、妈妈让小明给客人烧水沏茶.洗开水壶要用1分钟,烧开水要用15分钟.洗茶壶要用1分钟,洗茶杯要用1分钟,拿茶叶要用2分钟.小明估算了一下,完成这些工作要20分钟.为了使客人早点喝上茶,按你认为最合理的安排,多少分钟就能沏茶了?2、红红早晨起来刷牙洗脸要4分钟,读书要8分钟,烧开水要10分钟,冲牛奶1分钟,吃早饭5分钟。
红红应怎样合理安排?起床多少分钟就能上学了?3、小芳为家里做饭,她择菜需要8分钟,洗菜5分钟,放水3分钟,洗米3分钟,煮饭10分钟,切菜4分钟,炒菜6分钟。
若小芳家使用的是单火煤气灶,她怎样安排做饭顺序最省时合理?若小芳家使用的是双火眼煤气灶,又将怎样安排才合理?最省时间分别是多少?例2、一只平底锅上能煎两只饼,用它煎1只饼需要2分钟(正面、反面各1分钟)。
问煎三只饼需几分钟?怎样煎?练习二1、一只平底锅上一次只能煎两只饼,用它煎1只饼的正面、反面各需要3分钟。
问煎21只饼至少需要几分钟?2、用一只平底锅煎饼,每次能同时两个饼。
如果煎一个饼需要4分钟(假设正、反面各需2分钟),问煎8个饼至少需要几分?3、用一只平底锅煎饼,每次能同时放两个饼。
新版四年级奥数数学统筹与最优化课件

知识链接
中心靠拢原则
例题四(★★★)
在一条公路上,每隔10千米有一座仓库(如图),共有五座,图中数字表 示各仓库库存货物的重量。现在要把所有的货物集中存放在一个仓库里, 如果每吨货物运输1千米需要运费0.9元,那么集中到哪个仓库运费最少?
由于10+30+20<10+60,确定D点作为仓库最合理。 运费最小为: (10×30+30×20+20×10+60×10)×0.9=1530(元)
知识链接
小往大靠 ——拨河原则
例题六(★★★)
某乡共有六块甘蔗地,每块地的产量如下图所示。现 在准备建设一座糖厂,问糖厂建于何处总运费最省?
D处7吨下移至C进入主干道,此时C处2+7=9,根据 小往大靠的原则,A处3吨右移至B后跟B处的4吨 一同移至C处,此时C处9+3+4>5+6, 因此,将糖厂建于C处运费最省。
统筹与最优化
四年级 第23课
例题一(★★)
5个人各拿一个水桶在自来水龙头前等候打水,他们打水所需的时 间分别为1分钟、2分钟、3分钟、4分钟和5分钟。如果只有一个水龙 头,试问怎样适当安排他们的打水顺序,才能使所有人排队和打水 时间的总和最小?并求出最小值。
5人排队和打水时间总和的最小值是 1×5+2×4+3×3+4×2+5×1=35(分钟)
知识链接
短时优先原则
例题二(★★★)
车间里有五台车床同时出现故障,已知第一台到第五台修复时间依次为18, 30,17,25,20分钟,每台车床停产一分钟造成经济损失5元。 现有两名工作效率相同的修理工, ⑴ 怎样安排才能使得经济损失最少? ⑵ 怎样安排才能使从开始维修到维修结束历时最短?
四年级数学统筹与最优化知识点分析与例题解析讲课稿

四年级数学统筹与最优化主要内容及解题思路一、时间统筹1、排队问题:等候最短,先快后慢2、过河问题:1)快的来回走;2)接近的一起走二、地点统筹1、人数相同1)奇数点,中间点2)偶数点,中间段2、人数不同两头相比较,小的往大靠三、调运问题1、无冲突,直接运2、有冲突,比较差值例题:1、车间里有五台车床同时出现故障,已知第一台到第五台修复时间依次为18,30,17,25,20分钟,每台车床停产一分钟造成经济损失5元。
1)现有一名工作效率相同的修理工,问怎样安排才能使得经济损失最少,最少为多少元?2)现有两名工作效率相同的修理工,问怎样安排才能使得经济损失最少,最少为多少元?解题思路:本题是排队问题,应采用先快后慢的方式,才能使等候时间最短。
1)第一步:排序,17,18,20,25,30第二步:采用由快到慢的方式修理机器,并且计算其它机器的等待时间(包括自身等待)。
17×5+18×4+20×3+25×2+30×1=85+72+60+50+30=297(分钟)第三步:计算损失297×5=1485(元)2)第一步:排序,17,18,20,25,30第二步:采用由快到慢的方式修理机器,并且计算其它机器的等待时间(包括自身等待)。
甲17,乙18,甲20,乙25,甲30,即甲:17,20,30乙:18,25甲修机器等待时间17×3+20×2+30甲修机器等待时间18×2+25即:17×3+(20+18)×2+25+30=51+76+25+30=182(分钟)第三步:计算损失182×5=910(元)2、小明骑在牛背上赶牛过河。
共有甲乙丙丁4头牛,甲牛过河需要1分钟,乙牛过河需要2分钟,丙牛过河需要5分钟,丁牛过河需要6分钟。
每次只能赶两头牛过河,那么小明要把这4头牛都赶到对岸,最少要用多少分钟?解题思路:本题是过河问题,应采用1)快的来回走;2)接近的一起走。
四年级奥数统筹规划最优解

统筹规划知识框架统筹学是一门数学学科,但它在许多的领域都在使用,在生活中有很多事情要去做时,科学的安排好先后顺序,能够提高我们的工作效率.我国著名数学家华罗庚教授生前十分重视数学的应用,并亲自带领小分队推广优选法、统筹法,使数学直接为国民经济发展服务,他在中学语文课本中,曾有一篇名为《统筹原理》的文章详,细介绍了统筹方法和指导意义.运筹学是利用数学来研究人力、物力的运用和筹划,使它们能发挥最大效率的科学。
它包含的内容非常广泛,例如物资调运、场地设置、工作分配、排队、对策、实验最优等等,每类问题都有特定的解法。
运筹学作为一门科学,要运用各种初等的和高等的数学知识及方法,但是其中分析问题的某些朴素的思想方法,如高效率优先的原则、调整比较的思想、尝试探索的方法等,都是我们小学生能够掌握的。
这些来源于生活实际的问题,正是启发同学们学数学、用数学最好的思维锻炼题目。
本讲主要讲统筹安排问题、排队问题、最短路线问题、场地设置问题等。
这些都是人们日常生活、工作中经常碰到的问题,怎样才能把它们安排得更合理,多快好省地办事,就是这讲涉及的问题。
“节省跑空车的距离”是物资调运问题的一个原则。
“发生对流的调运方案”不可能是最优方案。
“小往大靠,支往干靠”。
例题精讲一、合理安排时间【例 1】星期天妈妈要做好多事情。
擦玻璃要20分钟,收拾厨房要15分钟,洗脏衣服的领子、袖口要10分钟,打开全自动洗衣机洗衣服要40分钟,晾衣服要10分钟。
妈妈干完所有这些事情最少用多长时间?【考点】统筹规划【难度】2星【题型】解答【解析】如果按照题目告诉的几件事,一件一件去做,要95分钟。
要想节约时间,就要想想在哪段时间里闲着,能否利用闲着的时间做其它事。
最合理的安排是:先洗脏衣服的领子和袖口,接着打开全自动洗衣机洗衣服,在洗衣服的40分钟内擦玻璃和收拾厨房,最后晾衣服,共需60分钟(见下图)。
【答案】60分钟【巩固】妈妈让小明给客人烧水沏茶。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识链接
小往大靠 ——拨河原则
例题六(★★★)
某乡共有六块甘蔗地,每块地的产量如下图所示。现 在准备建设一座糖厂,问糖厂建于何处总运费最省?
D处7吨下移至C进入主干道,此时C处2+7=9,根据 小往大靠的原则,A处3吨右移至B后跟B处的4吨 一同移至C处,此时C处9+3+4>5+6, 因此,将糖厂建于C处运费最省。
例题二(★★★)
车间里有五台车床同时出现故障,已知第一台到第五台修复时间依次为 18,30, 17,25,20分钟,每台车床停产一分钟造成经济损失5元。 现有两名工作效率相同的修理工, ⑴ 怎样安排才能使得经济损失最少? ⑵ 怎样安排才能使从开始维修到维修结束历时最短?
(2)因为(18+30+17+25+20)÷2=55(分)
知识链接
小往大靠 ——拨河原则
例题四(★★★)
A、B、C、D 四人带着一个手电筒,要通过一个黑暗的只容 2 人走的隧道,
每次先让 2 人带着手电筒通过,再由一人送回手电筒,又由 2 人带着手电筒通过…。
若 A、B、C、D 四人单独通过隧道分别需要 2,
3,5,6 分钟,则他们 4 人通过隧道至少需要 分钟。
分两种情况讨论: 第一种:A和B过,A回,A和C过,A回,A和D过,
共用3+2+5+2+6=18(分钟)。 第二种:A和B过,A回,C和D过,B回,A和B过,
共用3+2+6+3+3=17(分钟);
知识链接
优劣比较原则
知识链接
短时优先原则 中心靠拢原则 小往大靠原则 优劣比较原则
以下赠品教育通用模板
设立与CD之间及楼C、D均可。
例题三(★★★★)
⑶有1993名少先队员分散在一条公路上执勤宣传交通法规,问完 成任务后应该在公路的什么地点集合,可以使他们从各自的宣传 岗位沿公路走到集合地点的路程总和最小?
本题有1993=2×996+1(奇数)个人, 因此集合地点应选择在从某一端数 起第997个岗位处。
您的内容打在这里,或者通过复制您的文本后, 在此框中选择粘贴,并选择只保留文字。在此录 入上述图表的综合描述说明。
前言
您的内容打在这里,或者通过复制您的文本后,在此框中选择粘贴,并 选择只保留文字。在此录入上述图表的综合描述说明。您的内容打在这 里,或者通过复制您的文本后,在此框中选择粘贴,并选择只保留文字。 在此录入上述图表的综合描述说明。 您的内容打在这里,或者通过复制您的文本后,在此框中选择粘贴,并 选择只保留文字。在此录入上述图表的综合描述说明。您的内容打在这 里,或者通过复制您的文本后。
知识链接
短时优先 与排队原则
例题三(★★★★)
⑴如图,在街道上有 A、B、C、D、E 五栋居民楼,现在
设立一个公交站,为使这五栋楼到车站的距离之和最短, 车站应立于何处?
车站应立于c处。Βιβλιοθήκη 例题三(★★★★)⑵如图,在街道上有 A、B、C、D、E、F 六栋居民
楼,现在设立一个公交站,要想每栋楼到达车站的 距离之和最短,车站应该设在何处?
目录
01
单击添加标题
02
单击添加标题
03
单击添加标题
04
单击添加标题
01 点击添加文字
点击此处添加标题
您的内容打在这里,或者通过复制您的文本后, 在此框中选择粘贴,并选择只保留文字。在此录 入上述图表的综合描述说明。
点击此处添加标题
您的内容打在这里,或者通过复制您的文本后, 在此框中选择粘贴,并选择只保留文字。在此录 入上述图表的综合描述说明。
知识链接
短时优先原则
例题二(★★★)
车间里有五台车床同时出现故障,已知第一台到第五台修复时间依次为18, 30,17,25,20分钟,每台车床停产一分钟造成经济损失5元。 现有两名工作效率相同的修理工, ⑴ 怎样安排才能使得经济损失最少? ⑵ 怎样安排才能使从开始维修到维修结束历时最短?
(1)一人修17、20、30,另一个人修18、最少的经济 损失为:5×(17×3+20×2+30+18×2+25)=910(元)
您的内容打在这里,或者通过复制您的文本后,在此框中选择粘贴,并 选择只保留文字。在此录入上述图表的综合描述说明。
您的内容打在这里,或者通过复制您的文本后,在此框中选择粘贴,并 选择只保留文字。在此录入上述图表的综合描述说明。
01 点击此处添加标题 02 点击此处添加标题 03 点击此处添加标题
您的内容打在这里,或者通过复制您的文本后, 在此框中选择粘贴,并选择只保留文字。在此录 入上述图表的综合描述说明。
知识链接
中心靠拢原则
例题四(★★★)
在一条公路上,每隔10千米有一座仓库(如图),共有五座,图中数字表 示各仓库库存货物的重量。现在要把所有的货物集中存放在一个仓库里, 如果每吨货物运输1千米需要运费0.9元,那么集中到哪个仓库运费最少?
由于10+30+20<10+60,确定D点作为仓库最合理。 运费最小为: (10×30+30×20+20×10+60×10)×0.9=1530(元)
统筹与最优化
四年级 第23课
例题一(★★)
5个人各拿一个水桶在自来水龙头前等候打水,他们打水所需的时 间分别为1分钟、2分钟、3分钟、4分钟和5分钟。如果只有一个水龙 头,试问怎样适当安排他们的打水顺序,才能使所有人排队和打水 时间的总和最小?并求出最小值。
5人排队和打水时间总和的最小值是 1×5+2×4+3×3+4×2+5×1=35(分钟)
点击此处添加标题
您的内容打在这里,或者通过复制您的文本后, 在此框中选择粘贴,并选择只保留文字。在此录 入上述图表的综合描述说明。
点击此处添加标题
您的内容打在这里,或者通过复制您的文本后, 在此框中选择粘贴,并选择只保留文字。在此录 入上述图表的综合描述说明。
您的内容打在这里,或者通过复制您的文本后,在此框中选择粘贴,并 选择只保留文字。在此录入上述图表的综合描述说明。
知识链接
小往大靠—— 拔河原则
例题五(★★★)
下图是 A,B,C,D,E 五个村之间的道路示意图,○中数字是各村要上学的学生人数,道 路上的数表示两村之间的距离(单位:千米)。现在要在五村之中选一个村建立一所小学。为 使所有学生到学校的总距离最短,试确定最合理的方案
但移到D点后50+35>40+20+20, 因此将小学建在D村最合理。