高考数学总复习 课时作业30 等比数列及其前n项和试题

合集下载

高考数学复习课时作业30 等比数列及其前n项和

高考数学复习课时作业30 等比数列及其前n项和

课时作业(三十) 等比数列及其前n 项和A 级1.若数列{a n }的前n 项和S n =3n -a ,数列{a n }为等比数列,则实数a 的值是( ) A .3 B .1 C .0D .-12.设数列{a n }满足:2a n =a n +1(n ∈N *),且前n 项和为S n ,则S 4a 2的值为( )A.152 B .154C .4D .23.已知函数f (x )=log a x ,且所有项为正数的无穷数列{a n }满足log a a n +1-log a a n =2,则数列{a n }( )A .一定是等比数列B .一定是等差数列C .既是等差数列又是等比数列D .既不是等差数列又不是等比数列4.(2012·威海模拟)在由正数组成的等比数列{a n }中,若a 3a 4a 5=3π,则sin(log 3a 1+log 3a 2+…+log 3a 7)的值为( )A.12 B .32 C .1D .-325.已知数列{a n }的前n 项和S n =2n -1,则数列{a n }的奇数项的前n 项和为( ) A.2n +1-13B .2n +1-23C.22n -13D .22n -236.已知各项不为0的等差数列{a n },满足2a 3-a 27+2a 11=0,数列{b n }是等比数列,且b 7=a 7,则b 6b 8=________.7.(2013·南京模拟)等比数列{a n }中,S n 表示前n 项和,a 3=2S 2+1,a 4=2S 3+1,则公比q 为________.8.(2012·江西卷)等比数列{a n }的前n 项和为S n ,公比不为1.若a 1=1,则对任意的n ∈N *,都有a n +2+a n +1-2a n =0,则S 5=________.9.(2013·潍坊模拟)已知函数f (x )=2x +3,数列{a n }满足:a 1=1且a n +1=f (a n )(n ∈N *),则该数列的通项公式a n =________.10.S n 是无穷等比数列{a n }的前n 项和,且公比q ≠1,已知1是12S 2和13S 3的等差中项,6是2S 2和3S 3的等比中项.(1)求S 2和S 3;(2)求此数列{a n }的前n 项和公式.11.已知在正项数列{a n }中,a 1=2,点A n (a n ,a n +1)在双曲线y 2-x 2=1上,数列{b n }中,点(b n ,T n )在直线y =-12x +1上,其中T n 是数列{b n }的前n 项和.(1)求数列{a n }的通项公式; (2)求证:数列{b n }是等比数列.B 级1.(2013·武汉模拟)等比数列{a n }的公比为q ,则“a 1>0,且q >1”是“对于任意正整数n ,都有a n +1>a n ”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件2.已知各项都为正数的等比数列{a n }中,a 2·a 4=4,a 1+a 2+a 3=14,则满足a n ·a n +1·a n+2>19的最大正整数n 的值为________. 3.数列{a n }的前n 项和为S n ,S n =2a n -n (n ∈N *). (1)求证:数列{a n +1}成等比数列; (2)求数列{a n }的通项公式;(3)数列{a n }中是否存在连续三项可以构成等差数列?若存在,请求出一组适合条件的三项;若不存在,请说明理由.详解答案课时作业(三十)A 级1.B 可用特殊值法,由S n =3n -a 得a 1=3-a ,a 2=6,a 3=18, 由等比数列的性质可知a =1.2.A 由题意知,数列{a n }是以2为公比的等比数列,故S 4a 2=a 1(1-24)1-2a 1×2=152,选A.3.A 由log a a n +1-log a a n =2得log aa n +1a n =2=log a a 2.故a n +1a n=a 2,又a >0且a ≠1,所以数列{a n }为等比数列.故选A.4.B 因为a 3a 4a 5=3π=a 34,所以a 4=3π3, log 3a 1+log 3a 2+…+log 3a 7=log 3(a 1a 2…a 7)=log 3a 74=7log 33π3=7π3, 所以sin(log 3a 1+log 3a 2+…+log 3a 7) =32. 5.C 依题意,当n ≥2时,a n =S n -S n -1=2n -1;当n =1时,a 1=S 1=2-1=1,a n =2n-1也适合a 1.因此,a n =2n -1,a n +1a n=2,数列{a n }是等比数列,数列{a n }的奇数项的前n 项和为1×(1-22n )1-22=22n -13,选C.6.解析: 由题意可知,b 6b 8=b 27=a 27=2(a 3+a 11)=4a 7,∵a 7≠0,∴a 7=4,∴b 6b 8=16. 答案: 167.解析: 由a 3=2S 2+1,a 4=2S 3+1得a 4-a 3=2(S 3-S 2)=2a 3, ∴a 4=3a 3,∴q =a 4a 3=3.答案: 38.解析: 由题意知a 3+a 2-2a 1=0,设公比为q ,则a 1(q 2+q -2)=0.由q 2+q -2=0解得q =-2或q =1(舍去),则S 5=a 1(1-q 5)1-q=1-(-2)53=11.答案: 119.解析: 由题意知a n +1=2a n +3,∴a n +1+3=2(a n +3), ∴数列{a n +3}是以a 1+3=4为首项,以2为公比的等比数列. ∴a n +3=4×2n -1=2n +1,∴a n =2n +1-3.答案: 2n +1-310.解析: (1)根据已知条件⎩⎪⎨⎪⎧12S 2+13S 3=2,(2S 2)(3S 3)=36.整理得⎩⎪⎨⎪⎧ 3S 2+2S 3=12,(3S 2)(2S 3)=36.解得3S 2=2S 3=6,即⎩⎪⎨⎪⎧S 2=2,S 3=3.(2)∵q ≠1,则⎩⎪⎨⎪⎧a 1(1+q )=2,a 1(1+q +q 2)=3.可解得q =-12,a 1=4. ∴S n =4⎣⎡⎦⎤1-⎝⎛⎭⎫-12n 1+12=83-83⎝⎛⎭⎫-12n .11.解析: (1)由已知点A n 在y 2-x 2=1上知,a n +1-a n =1, ∴数列{a n }是一个以2为首项,以1为公差的等差数列, ∴a n =a 1+(n -1)d =2+n -1=n +1.(2)证明:∵点(b n ,T n )在直线y =-12x +1上,∴T n =-12b n +1,①∴T n -1=-12b n -1+1(n ≥2),②①②两式相减得b n =-12b n +12b n -1(n ≥2),∴32b n =12b n -1,∴b n =13b n -1(n ≥2). 令n =1,得b 1=-12b 1+1,∴b 1=23,∴{b n }是一个以23为首项,以13为公比的等比数列.B 级1.A 易知,当a 1>0且q >1时,a n >0,所以a n +1a n =q >1,表明a n +1>a n ;若对任意自然数n ,都有a n +1>a n 成立, 当a n >0时,同除a n 得q >1, 但当a n <0时,同除a n 得0<q <1. 也可举反例,如a n =-12n .2.解析: 因为a 2·a 4=4=a 23,且a 3>0,所以a 3=2, 又a 1+a 2+a 3=2q 2+2q +2=14,所以1q =-3(舍)或1q =2,即q =12,a 1=8.又a n =a 1q n -1=8·⎝⎛⎭⎫12n -1=⎝⎛⎭⎫12n -4, 所以a n ·a n +1·a n +2=⎝⎛⎭⎫123n -9>19,即23n -9<9,∴3n -9<log 29即n <3+log 239 而3+log 239>3+log 238=4,∴n 的最大值为4. 答案: 43.解析: (1)证明:由S n =2a n -n 及S n +1=2a n +1-(n +1)⇒a n +1=2a n +1. 又∵a 1=2a 1-1,∴a 1=1,a 1+1≠0,∴a n +1+1a n +1=2.∴{a n +1}成等比数列.(2)由(1)知,a n +1=(a 1+1)·2n -1,故a n =2n -1,n ∈N *.(3)假设存在k ∈N *,使得a k ,a k +1,a k +2成等差数列,则2a k +1=a k +a k +2, 即2(2k +1-1)=(2k -1)+(2k +2-1)⇒2k =0.因k ∈N *,所以2k ≠0,∴不存在{a n }中的连续三项使得它们可以构成等差数列.。

高考数学专题《等比数列及其前n项和》习题含答案解析

高考数学专题《等比数列及其前n项和》习题含答案解析

专题7.3 等比数列及其前n 项和1.(2021·全国高考真题(文))记n S 为等比数列{}n a 的前n 项和.若24S =,46S =,则6S =( )A .7B .8C .9D .10【答案】A 【解析】根据题目条件可得2S ,42S S -,64S S -成等比数列,从而求出641S S -=,进一步求出答案.【详解】∵n S 为等比数列{}n a 的前n 项和,∴2S ,42S S -,64S S -成等比数列∴24S =,42642S S -=-=∴641S S -=,∴641167S S =+=+=.故选:A.2.(2021·山东济南市·)已知S n 是递增的等比数列{a n }的前n 项和,其中S 3=72,a 32=a 4,则a 5=( )A .116B .18C .8D .16【答案】C 【解析】设等比数列的公比为q ,根据题意列方程,解出1a 和q 即可.【详解】解:设递增的等比数列{a n }的公比为q ,且q >1,∵S 3=72,234a a =,∴1a (1+q +q 2)=72,21a q 4=1a q 3,解得1a =12,q =2;1a =2,q =12(舍去).练基础则5a =4122⨯==8.故选:C .3.(2021·重庆高三其他模拟)设等比数列{}n a 的前n 项和为271,8,4n S a a =-=,则6S =( )A .212-B .152C .212D .632【答案】C 【解析】设等比数列{}n a 公比为q ,由572a a q =结合已知条件求q 、1a ,再利用等比数列前n 项和公式求6S .【详解】设等比数列{}n a 公比为q ,则572a a q =,又2718,4a a =-=,∴12q =-,故116a =,又1(1)1-=-nn a q S q ,即666311616[1()]216421321()22S ⨯⨯--===--.故选:C4.(2021·合肥市第六中学高三其他模拟(理))若等比数列{}n a 满足12451,8a a a a +=+=,则7a =( )A .643B .643-C .323D .323-【答案】A 【解析】设等比数列{}n a 的公比为q ,根据等比数列的通项公式建立方程组,解之可得选项.【详解】设等比数列{}n a 的公比为q ,则345128a a q a a +==+,所以2q =,又()11121+11,3a a a a q =+==,所以6671123643a a q ==⨯⨯=,故选:A.5.(2020·河北省曲阳县第一高级中学高一期末)中国古代数学著作《算法统宗》中记载了这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:有一个人走了378里路,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地,问此人第二天走了( )A .6里B .24里C .48里D .96里【答案】D 【解析】根据题意,记每天走的路程里数为,可知是公比的等比数列,由,得,解可得,则;即此人第二天走的路程里数为96;故选:D .6.(2021·江苏南通市·高三其他模拟)已知等比数列{}n a 的公比为q ,前n 项和为n S ,则“1q >”是“112n n n S S S -++>”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】D 【解析】由112n n n S S S -++>可得出1n n a a +>,取10a <,由101n n q a a +<⇔,进而判断可得出结论.【详解】若112n n n S S S -++>,则11n n n n S S S S +-->-,即1n n a a +>,所以,数列{}n a 为递增数列,若10a <,101n n q a a +<<⇔>,所以,“1q >”是“112n n n S S S -++>”的既不充分也不必要条件.故选:D.7.(2021·黑龙江大庆市·大庆实验中学高三其他模拟(文))在数列{}n a 中,44a =,且22n n a a +=,则{}n a {}n a 12q =6378S =6161[1()]2378112-==-a S 1192a =211192962a a q =⨯=⨯=21nni a==∑___________.【答案】122n +-【解析】由44a =,22n n a a +=,得到22a =且22n na a +=,得出数列{}2n a 构成以2为首项,以2为公比的等比数列,结合等比数列的求和公式,即可求解.【详解】由22n n a a +=,可得22n na a +=,又由44a =,可得4224a a ==,所以22a =,所以数列{}2n a 构成以2为首项,以2为公比的等比数列,所以1212(12)2212n nn n i a +=-==--∑.故答案为:122n +-.8.(2021·浙江杭州市·杭州高级中学高三其他模拟)已知数列{}n a 满足21n n S a =-,则1a =_____,n S =_______.【答案】1 21n -【解析】利用1n n n a S S -=-求通项公式,再求出n S .【详解】对于21n n S a =-,当n =1时,有1121S a =-,解得:1a =1;当2n ≥时,有1121n n S a --=-,所以()112121=n n n n n a S S a a ----=--,所以1=2nn a a -,所以数列{}n a 为等比数列,111=2n n n a a q--=,所以122112nn n S -==--.故答案为:1,21n -.9.(2021·浙江杭州市·杭州高级中学高三其他模拟)已知数列{}n a 满足21n n S a =-,则3a =________,n S =________.【答案】4 21n -【解析】根据11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,求出数列的通项公式,再代入求出n S .【详解】解:因为21n n S a =-当1n =时,1121S a =-,解得11a =;当2n …时,1121n n S a --=-,所以111(21)(21)22n n n n n n n a S S a a a a ---=-=---=-,即12n n a a -=于是{}n a 是首项为1,公比为2的等比数列,所以12n n a -=.所以34a =,11212212n nn n S a -=-⨯-==-故答案为:4;21n -;10.(2018·全国高考真题(文))等比数列{a n }中,a 1=1 , a 5=4a 3.(1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m .【答案】(1)a n =(―2)n―1或a n =2n―1 .(2)m =6.【解析】(1)设{a n }的公比为q ,由题设得a n =q n―1.由已知得q 4=4q 2,解得q =0(舍去),q =―2或q =2.故a n =(―2)n―1或a n =2n―1.(2)若a n =(―2)n―1,则S n =1―(―2)n3.由S m =63得(―2)m =―188,此方程没有正整数解.若a n =2n―1,则S n =2n ―1.由S m =63得2m =64,解得m =6.综上,m =6.1.(辽宁省凌源二中2018届三校联考)已知数列为等比数列,且,则( )A.B.C.D. 【答案】B【解析】由等比数列的性质可得: ,,结合可得: ,结合等比数列的性质可得: ,即:本题选择B 选项.2.(2021·全国高三其他模拟(文))如图,“数塔”的第i 行第j 个数为12j -(其中i ,*j N ∈,且i j ≥).将这些数依次排成一列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,记作数列{}n a ,设{}n a 的前n 项和为n S .若1020n S =,则n =()A .46B .47C .48D .49【答案】C 【解析】{}n a 2234764a a a a =-=-46tan 3a a π⎛⎫⋅= ⎪⎝⎭32343364,4a a a a a ==-∴=-4730a a q =<2764a =78a =-463732a a a a ==463222tan tan tan 10tan 3333a a πππππ⎛⎫⎛⎫⎛⎫⋅==+== ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭练提升根据“数塔”的规律,可知第i 行共有i 个数,利用等比数列求和公式求出第i 行的数字之和,再求出前m 行的和,即可判断1020n S =取到第几行,再根据每行数字个数成等差数列,即可求出n ;【详解】解:“数塔”的第i 行共有i 个数,其和为211212222112i i i --++++==-- ,所以前m 行的和为()()()123121222222212m m m m m m +-++++-=-=-+- 故前9行所有数学之和为102111013-=,因此只需要加上第10行的前3个数字1,2,4,其和为10131241020+++=,易知“数塔”前m 行共有()12m m +个数,所以9103482n ⨯=+=故选:C3.(2021·江苏高三其他模拟)已知数列{}n a 满足11a =,()1lg 1091n an a +=++,其前n 项和为n S ,则下列结论中正确的有( )A .{}n a 是递增数列B .{}10n a +是等比数列C .122n n n a a a ++>+D .(3)2n n n S +<【答案】ACD 【解析】将递推公式两边同时取指数,变形得到1110109n n a a +-=+,构造等比数列可证{}1010n a+为等比数列,求解出{}n a 通项公式则可判断A 选项;根据()()()2132101010a a a ++≠+判断B 选项;根据{}n a 的通项公式以及对数的运算法则计算()122n n n a a a ++-+的正负并判断C 选项;将{}n a 的通项公式放缩得到()lg 2101n n a n <⨯<+,由此进行求和并判断D 选项.【详解】因为()1lg 1091n an a +=++,所以()11lg 109n an a +-=+,从而1110109n n a a +-=+,110101090n n a a +=⨯+,所以()11010101010n n a a ++=⨯+,所以11010101010n na a ++=+,又1101020a +=,{}1010n a +是首项为20,公比为10的等比数列,所以110102010210n a n n -+=⨯=⨯,所以1021010n a n =⨯-,即()lg 21010nn a =⨯-,又因为21010n y =⨯-在[)1,,*n n N ∈+∞∈时单调递增,lg y x =在定义域内单调递增,所以{}n a 是递增数列,故A 正确;因为1231011,10lg19010lg1911,10lg199010lg19911a a a +=+=+=++=+=+,所以()()()()()222213101010lg191111lg19911lg 1922lg1911lg199a a a +-++=+-+=+-,所以()()()2222213361101010lg 1911lg1911lg199lg 1911lg0199a a a +-++=+-=+>,所以()()()2132101010a a a ++≠+,所以{}10n a +不是等比数列,故B 错误.因为()()()()121222lg 21010lg 21010lg 21010n n n n n n a a a ++++-+=⨯--⨯--⨯-()()()()()()2211211210102101 lglg210102101021012101n n n n n n +++-+⨯-⨯-=⨯-⨯-⨯-⨯-=,而()()()211221121012101210141041014102102101n n n nnn n n -++-⨯--⨯-⨯-=⨯-⨯+-⨯+⨯+⨯-20100.21041016.2100nnnn=⨯+⨯-⨯=⨯>,从而()()()211210121012101nn n -+⨯->⨯-⋅⨯-,于是,122n n n a a a ++>+,故C 正确.因为()()lg 21010lg 210lg 21nnn n a n =⨯-<⨯=+<+,所以()()21322nn n n n S +++<=,故D 正确.故选:ACD.4. (2019·浙江高三期末)数列的前n 项和为,且满足,Ⅰ求通项公式;Ⅱ记,求证:.【答案】Ⅰ;Ⅱ见解析【解析】Ⅰ,当时,,{}n a n S 11a =()11.n n a S n N ++=+∈()n a ()12111n n T S S S =++⋯+31222n n T -≤<(1) 2n n a -=()(1)1n n a S +=+Q ①∴2n ≥11n n a S -=+②得,又,,数列是首项为1,公比为2的等比数列,;证明:Ⅱ,,时,,,同理:,故:.5.(2021·河北衡水中学高三三模)已知数列{}n a 的前n 项和为n S ,且满足13a =,()122n n a xa n n -=+-≥,其中x ∈R .(1)若1x =,求出n a ;(2)是否存在实数x ,y 使{}n a yn +为等比数列?若存在,求出n S ,若不存在,说明理由.【答案】(1)2382n n n a -+=;(2)存在,()21242n n n n S ++=--.【解析】(1)将1x =代入,由递推关系求出通项公式,并检验当1n =时是否满足,即可得到结果;(2)先假设存在实数x ,y 满足题意,结合已知条件求出满足数列{}n a yn +是等比数列的实数x ,y 的值,运用分组求∴-①②()122n n a a n +=≥2112a S =+=Q 212a a ∴=∴{}n a 12n n a -∴=(1)2nn a += 21n n S ∴=-2n ≥Q 111122n n n S -≤≤1121111113142112212n n n n T S S S -⎛⎫- ⎪⎝⎭∴=++⋯+≥+=--11111221221212n n n T -⎛⎫- ⎪⎝⎭≤+=-<-31222n n T -≤<和法求出n S 的值.【详解】(1)由题可知:当1x =时有:12n n a a n --=-,当2n ≥时,()()()()()()121321213012232n n n n n a a a a a a a a n ---=+-+-+⋅⋅⋅+-=++++⋅⋅⋅+-=+,又13a =满足上式,故()()22138322nn n n n a ---+=+=.(2)假设存在实数x ,y 满足题意,则当2n ≥时,由题可得:()()111n n n n a yn x a y n a xa xy y n xy --+=+-⇔=+--⎡⎤⎣⎦,和题设12n n a xa n -=+-对比系数可得:1xy y -=,22xy x -=-⇔=,1y =.此时121n n a na n -+=+-,114a +=,故存在2x =,1y =使得{}n a yn +是首项为4,公比为2的等比数列.从而()()1112121224122nn n n n n nn n a n a n S a a a ++-++=⇒=-⇒=++⋅⋅⋅+=--.所以()21242n n n n S ++=--.6.(2021·辽宁本溪市·高二月考)已知数列{}n a ,满足11a =,121n n a a n +=+-,设n n b a n =+,n n c a n λ=+(λ为实数).(1)求证:{}n b 是等比数列;(2)求数列{}n a 的通项公式;(3)若{}n c 是递增数列,求实数λ的取值范围.【答案】(1)证明见解析;(2)2nn a n =-;(3)()1,-+∞.【解析】(1)由121n n a a n +=+-,变形为()11222n n n a n a n a n +++=+=+,再利用等比数列的定义证明;(2)由(1)的结论,利用等比数列的通项公式求解;(3)根据{}n c 是递增数列,由10n n c c +->,*n N ∈恒成立求解.【详解】(1)因为121n n a a n +=+-,所以()11222n n n a n a n a n +++=+=+,即12n n b b +=,又因为11120b a =+=≠,所以0n b ≠,所以12n nb b +=,所以{}n b 是等比数列.(2)由1112b a =+=,公比为2,得1222n n n b -=⋅=,所以2nn n a b n n =-=-.(3)因为()21nn n c a n n λλ=+=+-,所以()()11211n n c n λ++=+-+,所以1122121n n n n n c c λλ++-=-+-=+-,因为{}n c 是递增数列,所以*10,n n c c n N +->∈成立,故210n λ+->,*n N ∈成立,即12n λ>-,*n N ∈成立,因为{}12n-是递减数列,所以该数列的最大项是121-=-,所以λ的取值范围是()1,-+∞.7.(2021·河南商丘市·高二月考(理))在如图所示的数阵中,从任意一个数开始依次从左下方选出来的数可组成等差数列,如:2,4,6,8,…;依次选出来的数可组成等比数列,如:2,4,8,16,….122344468858121616记第n 行第m 个数为(),f n m .(Ⅰ)若3n ≥,写出(),1f n ,(),2f n ,(),3f n 的表达式,并归纳出(),f n m 的表达式;(Ⅱ)求第10行所有数的和10S .【答案】(Ⅰ)(),1f n n =,()(),221f n n =-,()(),342f n n =-,()()12,1m m m f n n --+=;(Ⅱ)102036=S .【解析】(I )由数阵写出(),1f n n =,()(),221f n n =-,()(),342f n n =-,由此可归纳出()()12,1m m m f n n --+=.(II )()()()()1010,110,210,310,10S f f f f =++++ 291029282 1 =+⨯+⨯++⨯ ,利用错位相减法求得结果.【详解】(Ⅰ)由数阵可知:(),1f n n =,()(),221f n n =-,()(),342f n n =-,由此可归纳出()()12,1m m m f n n --+=.(Ⅱ)()()()()1010,110,210,310,10S f f f f =++++ 291029282 1 =+⨯+⨯++⨯ ,所以231010220292821S =+⨯+⨯++⨯ ,错位相减得291010102222S =-+++++ ()102121012-=-+-2036=.8.(2021·山东烟台市·高三其他模拟)已知数列{}n a 的前n 项和为n S ,且满足11a =,12n n S na +=,*n ∈N .(1)求{}n a 的通项公式;(2)设数列{}n b 满足11b =,12nn n b b +=,*n ∈N ,按照如下规律构造新数列{}n c :123456,,,,,,a b a b a b ,求{}n c 的前2n 项和.【答案】(1)n a n =,*n ∈N ;(2)数列{}n c 的前2n 项和为1222++-n n .【解析】(1)由()12n n n a S S n -=-≥可得1(2)1n na a n n n+=≥+可得答案;(2)由12nn n b b +=得1122n n n b b +++=,两式相除可得数列{}n b 的偶数项构成等比数列,再由(1)可得数列{}n c 的前2n 项的和.【详解】(1)由12n n S na +=,12(1)(2)n n S n a n -=-≥,得12(1)n n n a na n a +=--,所以1(2)1n na a n n n +=≥+.因为122S a =,所以22a =,所以212n a an ==,(2)n a n n =≥.又当1n =时,11a =,适合上式.所以n a n =,*n ∈N .(2)因为12nn n b b +=,1122n n n b b +++=,所以*22()n nb n b +=∈N ,又122b b =,所以22b =.所以数列{}n b 的偶数项构成以22b =为首项、2为公比的等比数列.故数列{}n c 的前2n 项的和()()21321242n n n T a a a b b b -=+++++++ ,()122212(121)22212nn n n n T n +-+-=+=+--所以数列{}n c 的前2n 项和为1222++-n n .9.(2019·浙江高考模拟)已知数列中,, (1)令,求证:数列是等比数列;{}n a ()110,2*n n a a a n n N +==+∈+11n n n b a a =-+{}n b(2)令 ,当取得最大值时,求的值.【答案】(I )见解析(2)最大,即【解析】(1)两式相减,得 ∴即:∴ 数列是以2为首项,2为公比的等比数列(2)由(1)可知, 即也满足上式令,则 ,3nn n a c =n c n 3,n n c =3k =121221n n n n a a n a a n +++=+=++Q ,211221n n n n a a a a +++-=-+()211121n n n n a a a a +++-+=-+12n nb b +=21120a b ==≠Q 又,{}n b 2nn b =121nn n a a +-=-2121a a -=-23221a a -=-⋅⋅⋅⋅⋅⋅()11212n n n a a n ---=-≥()211222121n n n a a n n -∴-=++⋅⋅⋅+--=--2,21n n n a n ∴≥=--11,0n a ∴==21n n a n ∴=--111212233n n n n n n n n c c +++----=∴=11112221212333n n nn n n n n n n n c c ++++----+-∴-=-=()212nf n n =+-()11232n f n n ++=+-()()122n f n f n ∴+-=-∴ 最大,即10.(2021·浙江高三其他模拟)已知数列{}n a 满足112a =,123n n a a ++=,数列{}n b 满足11b =,()211n n nb n b n n +-+=+.(1)数列{}n a ,{}n b 的通项公式;(2)若()1n n n n c b b a +=-,求使[][][][]1222021n c c c c +++⋅⋅⋅+≤成立([]n c 表示不超过n c 的最大整数)的最大整数n 的值.【答案】(1)112nn a ⎛⎫=+- ⎪⎝⎭,2n b n =;(2)最大值为44.【解析】(1)由题得数列{}1n a -是等比数列,即求出数列{}n a 的通项;由题得{}n b n 是一个以111b=为首项,以1为公差的等差数列,即得数列{}n b 的通项公式;(2)先求出[]()*1,16,2,2,21,21,22n n n c k N n n k n n k =⎧⎪=⎪=∈⎨=+⎪⎪+=+⎩,再求出[][][][]()2*12221,1,3,2,231,2122n n c c c c n n n k k N n n n k ⎧⎪=⎪⎪++++=+=∈⎨⎪⎪+-=+⎪⎩即得解.【详解】解:(1)由123n n a a ++=得()11112n n a a +-=--,所以数列{}1n a -是等比数列,公比为12-,()()()()()()12,234f f f f f f n ∴=>>>⋅⋅⋅>()()()()1210,310,3,0f f f n f n ==>=-<∴≥<Q 123345...c c c c c c ∴>,3,n n c =3k =解得112nn a ⎛⎫=+- ⎪⎝⎭.由()211n n nb n b n n +-+=+,得111n nb b n n+-=+,所以{}n b n 是一个以111b=为首项,以1为公差的等差数列,所以1(1)1n bn n n=+-⨯=,解得2n b n =.(2)由()1n n n n c b b a +=-得()12121121(1)22n nn n n c n n ⎛⎫+⎛⎫=++-=++- ⎪ ⎪ ⎪⎝⎭⎝⎭,记212n n n d +=,1112321120222n n n n n n n nd d +++-++-=-=<,所以{}n d 为单调递减且132d =,254d =,3718d =<,所以[]()*1,16,2,2,21,21,22n n n c k N n n k n n k =⎧⎪=⎪=∈⎨=+⎪⎪+=+⎩,因此[][][][]()2*12221,1,3,2,231,2122n n c c c c n n n k k N n n n k ⎧⎪=⎪⎪++++=+=∈⎨⎪⎪+-=+⎪⎩,当2n k =时,2320212n n +≤的n 的最大值为44;当2+1n k =时,231202122n n +-≤的n 的最大值为43;故[][][][]1222021n c c c c +++⋅⋅⋅+≤的n 的最大值为44.1.(2021·全国高考真题(理))等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则()A .甲是乙的充分条件但不是必要条件练真题B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件【答案】B 【解析】当0q >时,通过举反例说明甲不是乙的充分条件;当{}n S 是递增数列时,必有0n a >成立即可说明0q >成立,则甲是乙的必要条件,即可选出答案.【详解】由题,当数列为2,4,8,--- 时,满足0q >,但是{}n S 不是递增数列,所以甲不是乙的充分条件.若{}n S 是递增数列,则必有0n a >成立,若0q >不成立,则会出现一正一负的情况,是矛盾的,则0q >成立,所以甲是乙的必要条件.故选:B .2.(2020·全国高考真题(文))记S n 为等比数列{a n }的前n 项和.若a 5–a 3=12,a 6–a 4=24,则nnS a =( )A .2n –1B .2–21–n C .2–2n –1D .21–n –1【答案】B 【解析】设等比数列的公比为q ,由536412,24a a a a -=-=可得:421153111122124a q a q q a a q a q ⎧-==⎧⎪⇒⎨⎨=-=⎪⎩⎩,所以1111(1)122,21112n nn n n n n a q a a qS q ----=====---,因此1121222n n n n n S a ---==-.故选:B.3.(2019·全国高考真题(文))已知各项均为正数的等比数列的前4项和为15,且,则( ){}n a 53134a a a =+3a =A .16B .8C .4D .2【答案】C 【解析】设正数的等比数列{a n }的公比为,则,解得,,故选C .4.(2019·全国高考真题(文))记S n 为等比数列{a n }的前n 项和.若,则S 4=___________.【答案】.【解析】设等比数列的公比为,由已知,即解得,所以.5.(2020·海南省高考真题)已知公比大于1的等比数列{}n a 满足24320,8a a a +==.(1)求{}n a 的通项公式;(2)求112231(1)n n n a a a a a a -+-+⋯+-.【答案】(1)2nn a =;(2)2382(1)55n n +--【解析】(1) 设等比数列{}n a 的公比为q (q >1),则32411231208a a a q a q a a q ⎧+=+=⎨==⎩,整理可得:22520q q -+=,11,2,2q q a >== ,q 2311114211115,34a a q a q a q a q a q a ⎧+++=⎨=+⎩11,2a q =⎧⎨=⎩2314a a q ∴==13314a S ==,58q 223111314S a a q a q q q =++=++=2104q q ++=12q =-441411()(1)521181()2a q S q ---===---数列的通项公式为:1222n n n a -=⋅=.(2)由于:()()()1121111122112n n n n n n n n a a --++-+=-⨯⨯=--,故:112231(1)n n n a a a a a a -+-+⋯+-35791212222(1)2n n -+=-+-+⋯+-⋅()()3223221282(1)5512n n n +⎡⎤--⎢⎥⎣⎦==----.6.(2021·浙江高考真题)已知数列{}n a 的前n 项和为n S ,194a =-,且1439n n S S +=-.(1)求数列{}n a 的通项;(2)设数列{}n b 满足*3(4)0()n n b n a n N +-=∈,记{}n b 的前n 项和为n T ,若n n T b λ≤对任意N n *∈恒成立,求实数λ的取值范围.【答案】(1)33(4nn a =-⋅;(2)31λ-≤≤.【解析】(1)由1439n n S S +=-,结合n S 与n a 的关系,分1,2n n =≥讨论,得到数列{}n a 为等比数列,即可得出结论;(2)由3(4)0n n b n a +-=结合(1)的结论,利用错位相减法求出n T ,n n T b λ≤对任意N n *∈恒成立,分类讨论分离参数λ,转化为λ与关于n 的函数的范围关系,即可求解.【详解】(1)当1n =时,1214()39a a a +=-,229272749,4416a a =-=-∴=-,当2n ≥时,由1439n n S S +=-①,得1439n n S S -=-②,①-②得143n na a +=122730,0,164n n n a a a a +=-≠∴≠∴=,又213,{}4n a a a =∴是首项为94-,公比为34的等比数列,1933(3(444n n n a -∴=-⋅=-⋅;(2)由3(4)0n n b n a +-=,得43(4)(34n n n n b a n -=-=-,所以234333333210(4)44444nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯⨯++-⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎝+⎭⎭ ,2413333333321(5)(4)444444n n n T n n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯++-⋅+-⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ ,两式相减得234113333333(4)4444444n n n T n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯++++--⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1193116493(4)34414n n n -+⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=-+-- ⎪⎝⎭-111993334(4)44444n n n n n +++⎛⎫⎛⎫⎛⎫=-+---⋅=-⋅ ⎪⎪⎪⎝⎭⎝⎭⎝⎭,所以134()4n n T n +=-⋅,由n n T b λ≤得1334((4)(44n nn n λ+-⋅≤-⋅恒成立,即(4)30n n λ-+≥恒成立,4n =时不等式恒成立;4n <时,312344n n n λ≤-=----,得1λ≤;4n >时,312344n n n λ≥-=----,得3λ≥-;所以31λ-≤≤.。

2021年高考数学理新课标A版一轮总复习开卷速查必修部分30等比数列及其前n项和

2021年高考数学理新课标A版一轮总复习开卷速查必修部分30等比数列及其前n项和

2021年高考数学理新课标A版一轮总复习开卷速查必修部分30等比数列及其前n项和1.已知等比数列{a n}的公比q=2,且2a4,a6,48成等差数列,则{a n}的前8项和为( )A.127 B.255C.511 D.1 023解析:∵2a4,a6,48成等差数列,∴2a6=2a4+48,∴2a1q5=2a1q3+48,又∵q=2,∴a1=1,∴S8=1×1-281-2=255.答案:B2.已知各项不为0的等差数列{a n}满足a4-2a27+3a8=0,数列{b n}是等比数列,且b7=a7,则b2b8b11等于( )A.1 B.2C.4 D.8解析:∵a4-2a27+3a8=0,∴2a27=a4+3a8,即2a27=4a7,∴a7=2,∴b7=2,故b2b8b11=b1qb1q7b1q10=b31q18=(b7)3=8.答案:D3.设等比数列{a n }的前n 项和为S n ,若S m -1=5,S m =-11,S m +1=21,则m =( )A .3 B.4 C .5 D.6解析:由已知得,S m -S m -1=a m =-16,S m +1-S m =a m +1=32,故公比q =a m +1a m=-2,又S m =a 1-a m q1-q=-11,故a 1=-1,又a m =a 1·q m -1=-16,故(-1)×(-2)m-1=-16,求得m =5. 答案:C4.已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S na n =( )A .4n -1 B.4n -1 C .2n -1 D.2n -1 解析:∵⎩⎪⎨⎪⎧a 1+a 3=52,a 2+a 4=54,∴⎩⎪⎨⎪⎧a 1+a 1q 2=52,①a 1q +a 1q 3=54,②由①除以②可得1+q 2q +q 3=2,解得q =12,代入①得a 1=2,∴a n=2×⎝ ⎛⎭⎪⎫12n -1=42n .∴S n=2×⎣⎢⎡⎦⎥⎤1-⎝⎛⎭⎪⎫12n1-12=4⎝⎛⎭⎪⎫1-12n.∴Snan=4⎝⎛⎭⎪⎫1-12n42n=2n-1,选D.答案:D5.等比数列{a n}的各项均为正数,且a5a6+a4a7=18,则log3a1+log3a2+…+log3a10=( )A.12 B.10C.8 D.2+log35解析:由题意可知a5a6=a4a7,又a5a6+a4a7=18得a5a6=a4a7=9,而log3a1+log3a2+…+log3a10=log3(a1.a2 (10)=log3(a5a6)5=log395=log3310=10.答案:B6.已知各项均为正数的等比数列{a n}中,a4与a14的等比中项为22,则2a7+a11的最小值为( )A.16 B.8C.2 2 D.4解析:由题意知a 4>0,a 14>0,a 4·a 14=8,a 7>0,a 11>0,则2a 7+a 11≥22a 7·a 11=22a 4·a 14=216=8,当且仅当⎩⎨⎧a 7·a 11=8,2a 7=a 11,即a 7=2,a 11=4时取等号,故2a 7+a 11的最小值为8,故选B.答案:B7.在各项均为正数的等比数列{a n }中,a 1=2,a 2+a 3=12,则该数列的前4项和为__________.解析:设等比数列{a n }的公比为q ,由a 1=2,a 2+a 3=12,则a 1q +a 1q 2=12,解得q =2,故S 4=2×1-241-2=30.答案:308.若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =________,前n 项和S n =________.解析:由题意知q =a 3+a 5a 2+a 4=4020=2. 由a 2+a 4=a 2(1+q 2)=a 1q (1+q 2)=20,∴a 1=2.∴S n =21-2n 1-2=2n +1-2.答案:2 2n +1-29.在等比数列{a n }中,若a 7+a 8+a 9+a 10=158,a 8·a 9=-98,则1a 7+1a 8+1a 9+1a 10=__________.解析:∵1a7+1a10=a7+a10a7a10,1a8+1a9=a8+a9a8a9,而a8a9=a7a10,∴1a7+1a8+1a9+1a10=a7+a8+a9+a10a7a10=158-98=-53.答案:-5 310.已知公差不为0的等差数列{a n}的前n项和为S n,S3=a4+6,且a1,a4,a13成等比数列.(1)求数列{a n}的通项公式;(2)设b n=2a n+1,求数列{b n}的前n项和.解析:(1)设等差数列{a n}的公差为d(d≠0).因为S3=a4+6,所以3a1+3×2d2=a1+3d+6.所以a1=3.因为a1,a4,a13成等比数列,所以a1(a1+12d)=(a1+3d)2,即3(3+12d)=(3+3d)2.解得d=2.所以a n=2n+1.(2)由题意b n=22n+1+1,设数列{b n}的前n项和为T n,c n=22n+1,c n+1 cn =22n+1+122n+1=4(n∈N*),所以数列{c n}为以8为首项,4为公比的等比数列.所以T n=81-4n1-4+n=22n+3-83+n.B级能力提升练11.已知数列{a n}是首项为a1,公差为d(0<d<2π)的等差数列,若数列{cos a n}是等比数列,则其公比为( )A.1 B.-1C.±1 D.2解析:因为数列{cos a n}是等比数列,所以cos2(a1+d)=cos a1·cos(a1+2d),cos2(a1+d)=cos(a1+d-d)·cos(a1+d+d)=cos2(a1+d)cos2d-sin2(a1+d)sin2d,所以sin2d[cos2(a1+d)+sin2(a1+d)]=0,所以sin2d=0,sin d=0,因为0<d<2π,所以d=π.公比q=cos a1+dcos a1=cos a1+πcos a1=-1.答案:B12.已知等比数列{a n}的公比为q,记b n=a m(n-1)+1+a m(n-1)+2+…+a m(n-1)+m,c n =a m(n-1)+1·a m(n-1)+2·…·a m(n-1)+m(m,n∈N*),则以下结论一定正确的是( ) A.数列{b n}为等差数列,公差为q mB.数列{b n}为等比数列,公比为q2mC.数列{c n}为等比数列,公比为qm2D.数列{c n}为等比数列,公比为qm m解析:∵{a n}是等比数列,∴amn+mam n-1+m=q mn+m-m(n-1)-m=q m.∴cn+1cn=amn+1·a mn+2·…·a mn+mam n-1+1·a m n-1+2·…·a m n-1+m=(q m)m=qm2.答案:C13.[xx·唐山市一中期中考试]在数列{a n}中,已知a1=1,a n+1=2a n-n+1,n∈N*.(1)求证:{a n-n}是等比数列;(2)令b n=an2n,S n为数列{b n}的前n项和,求S n的表达式.解析:(1)证明:由a1=1,a n+1=2a n-n+1,n∈N*,可得an+1-(n+1)=2(a n-n),a1-1=-2≠0,所以数列{a n-n}是以-2为首项,以2为公比的等比数列.(2)由(1)得:a n -n =-2×2n -1=-2n,所以a n =n -2n,b n =n2n -1,所以S n =b 1+b 2+…+b n =⎝ ⎛⎭⎪⎫12-1+⎝ ⎛⎭⎪⎫222-1+…+⎝ ⎛⎭⎪⎫n 2n -1=⎝ ⎛⎭⎪⎫12+222+…+n 2n -n .令T n =12+222+…+n2n ,则12T n =122+223+…+n 2n +1, 两式相减得12T n =12+122+123+…+12n -n 2n +1=1-12n -n 2n +1 所以T n =2-n +22n,即S n =2-n +22n-n .14.[xx·贵州七校第一次联考]已知{a n }是等差数列,{b n }是等比数列,S n为数列{a n }的前n 项和,a 1=b 1=1,且b 3S 3=36,b 2S 2=8(n ∈N *).(1)求a n 和b n ;(2)若a n <a n +1,求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1的前n 项和T n .解析:(1)由题意得⎩⎨⎧q23+3d =36q2+d=8,解得⎩⎨⎧d =2q =2或⎩⎨⎧d =-23q =6,∴⎩⎨⎧a n =2n -1b n =2n -1,或⎩⎨⎧a n =135-2nb n=6n -1.(2)若a n <a n +1,由(1)知a n =2n -1,∴1a n a n +1=12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1, ∴T n =12⎝⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1=n 2n +1.x34360 8638 蘸 23282 5AF2 嫲O39718 9B26 鬦32127 7D7F 絿20964 51E4 凤 Z39548 9A7C 驼39102 98BE 颾w。

高考数学总复习 课时作业(三十)第30讲 等比数列及其前n项和 理

高考数学总复习 课时作业(三十)第30讲 等比数列及其前n项和 理

课时作业(三十)第30讲等比数列及其前n项和基础热身1.已知2是a与2-的等比中项,则a=()A.2-B.4(2-)C.2+D.4(2+)2.在等比数列{a n}中,a3=4,a6=,则公比q=()A. B.-C.2D.-23.[2017·常德一模]已知各项均为正数的等比数列的前n项和为S n,且S3=14,a3=8,则a6=()A.16B.32C.64D.1284.在等比数列中,公比q=,a3a5a7=64,则a4= .5.[2017·太原质检]设S n是等比数列的前n项和,若S2=2,S6=4,则S4= .能力提升6.[2017·绍兴柯桥区二模]已知等比数列的前n项和为S n,且满足a5=2S4+3,a6=2S5+3,则此数列的公比为()A.2B.3C.4D.57.[2017·衡阳联考]已知数列为等比数列,且a3=-4,a7=-16,则a5=()A.8B.-8C.64D.-648.已知等比数列满足log2a3+log2a10=1,且a5a6a8a9=16,则数列的公比为 ()A.2B.4C.±2D.±49.[2017·泉州模拟]已知数列为等比数列,a4+a7=2,a5·a6=-8,则a1+a10的值为 ()A.7B.5C.-7D.-510.已知各项均为正数的等比数列{a n}满足a7=a6+2a5,若存在两项a m,a n使得=4a1,则+的最小值为()A. B.C. D.11.[2017·大连模拟]已知等差数列{a n}的公差d≠0,且a3,a5,a15成等比数列,若a1=3,S n为数列{a n}的前n项和,则a n·S n的最小值为()A.0B.-3C.-20D.912.[2017·榆林一模]在等比数列{a n}中,a1=4,公比为q,前n项和为S n,若数列{S n+2}也是等比数列,则q= .13.已知是正项等比数列,a2=3,a6=,则a1a2+a2a3+…+a100a101= .14.(10分)[2017·上饶六校联考]已知数列的前n项和为S n,且a n+1=1+S n对一切正整数n恒成立.(1)试求当a1为何值时,数列是等比数列,并求出它的通项公式;(2)在(1)的条件下,当n为何值时,数列的前n项和T n取得最大值.15.(13分)[2018·广西钦州月考]已知数列的前n项和为S n,且S n=λ+(n-1)·2n,又数列满足a n·b n=n.(1)求数列的通项公式.(2)当λ为何值时,数列是等比数列?此时数列的前n项和为T n,若存在m∈N*,使得m<T n成立,求m的最大值.难点突破16.(12分)[2017·泸州诊断]设等比数列{a n}的前n项和为S n,已知a3=,S3=.(1)求数列{a n}的通项公式;(2)设b n=log2,T n为数列{b n}的前n项和,求使T n=+105成立的n的值.课时作业(三十)1.D[解析] 由题意,得(2-)a=22,解得a=4(2+),故选D.2.A[解析] 由题意得,q3===,则q=,故选A.3.C[解析] 设等比数列{a n}的公比为q(q>0),由S3=14,a3=8,得可得a1=2,q=2,所以a6=a1q5=2×25=64,故选C.4.8[解析] 因为a3a5a7=64,所以=64,解得a5=4,故a4==8.5.1+[解析] 由等比数列的性质知S2,S4-S2,S6-S4也成等比数列,所以(S4-S2)2=S2·(S6-S4),即(S4-2)2=2·(4-S4),解得S4=1+或S4=1-(舍).6.B[解析] 由a5=2S4+3,a6=2S5+3可得a6-a5=2a5,则=3,故选B.7.B[解析] 设等比数列{a n}的公比为q.∵数列{a n}为等比数列,且a3=-4,a7=-16,∴=a3·a7=(-4)×(-16)=64,又a5=a3q2=-4q2<0,∴a5=-8.故选B.8.A[解析] 设等比数列{a n}的公比为q.由log2a3+log2a10=1得log2a3a10=1,即a3a10=2.∵a5a6a8a9=16,∴(a5a8)(a6a7)q2=16,∴q2=4.由真数大于零得q>0,∴q=2.故选A.9.C[解析] 由等比数列的性质可知a5·a6=a4·a7=-8,又a4+a7=2,故a4,a7是一元二次方程x2-2x-8=0的两个根,解得a4=-2,a7=4或a4=4,a7=-2,故a1=1,q3=-2,a10=-8或a1=-8,q3=-,a10=1,所以a1+a10=-7.10.A[解析] 由各项均为正数的等比数列{a n}满足a7=a6+2a5,可得a1q6=a1q5+2a1q4,∴q2-q-2=0,∴q=2.∵=4a1,∴q m+n-2=16,∴2m+n-2=24,∴m+n=6,∴+=(m+n)+=5++≥(5+4)=,当且仅当=时等号成立,故+的最小值等于.11.B[解析] ∵等差数列{a n}的公差d≠0,且a3,a5,a15成等比数列,a1=3,∴(3+4d)2=(3+2d)(3+14d),解得d=-2或d=0,∵d≠0,∴d=-2,则a n=3+(n-1)×(-2)=5-2n,S n=3n+×(-2)=4n-n2,a n·S n=(5-2n)(4n-n2)=2n3-13n2+20n.设f(x)=2x3-13x2+20x,则f'(x)=6x2-26x+20,令f'(x)=0,得x1=1,x2=,则f(x)在1,上单调递减,在,+∞上单调递增.结合f(x)的单调性可知,当n=3时,a n·S n取得最小值2×33-13×32+20×3=-3.故a n·S n的最小值为-3.故选B.12.3[解析] 由数列{S n+2}也是等比数列可得S1+2,S2+2,S3+2成等比数列,则(S2+2)2=(S1+2)(S3+2),即(4+4q+2)2=(4+2)(4+4q+4q2+2),解得q=3或q=0(舍去).13.24(1-4-100)[解析] 由题得等比数列的公比q===,所以a1=6,显然数列也是等比数列,其首项为a1a2=18,公比q'==q2==,于是a1a2+a2a3+…+a100a101==24(1-4-100).14.解:(1)由a n+1=1+S n得当n≥2时,a n=1+S n-1,两式相减得a n+1=2a n.因为数列{a n}是等比数列,所以a2=2a1,又因为a2=1+S1=1+a1,所以a1=1,则a n=2n-1.(2)易得数列是一个递减数列,所以lg>lg>lg>…>lg>0>lg>…由此可知当n-1=8,即n=9时,数列的前n项和T n取得最大值.15.解:(1)当n=1时,a1=S1=λ.当n≥2 时,a n=S n-S n-1=(n-1)·2n-(n-2)·2n-1=n·2n-1.故数列的通项公式为a n=(2)由a n·b n=n,可得b n=因为数列为等比数列,所以首项b1=满足n≥2的情况,故λ=1.则T n=b1+b2+…+b n==21-.因为T n+1-T n=>0,所以T n是递增的,故T n≥1且T n<2.又存在m∈N*,使得m<T n成立,则m的最大值为1.16.解:(1)设等比数列{a n}的公比为q,由a3=,S3=,得a1q2=,a1(1+q+q2)=,解得a1=6,q=-或a1=,q=1.则数列{a n}的通项公式为a n=或a n=6×.(2)当a n=时,b n=log2=log2=2,所以T n=2n.由T n=+105,得2n=+105,所以n=70.当a n=6×时,b n=log2=log2=2n,故数列{b n}是首项为2,公差为2的等差数列,所以T n=n2+n.由T n=+105,得n2+n=+105,所以n=10或n=-(舍).综上知,n=70或10.。

【精编】高考数学一轮复习课时规范练30等比数列及其前n项和

【精编】高考数学一轮复习课时规范练30等比数列及其前n项和

课时规范练30 等比数列及其前n项和一、基础巩固组1.已知等比数列{a n}满足a1=,a3a5=4(a4-1),则a2=()A.2B.1C.D.2.在正项等比数列{a n}中,a2,a48是方程2x2-7x+6=0的两个根,则a1·a2·a25·a48·a49的值为()A. B.9 C.±9 D.353.(2017安徽黄山市二模,理3)已知数列{a n}的前n项和为S n,且a1=2,a n+1=S n+1(n∈N*),则S5=()A.31B.42C.37D.474.设首项为1,公比为的等比数列{a n}的前n项和为S n,则()A.S n=2a n-1B.S n=3a n-2C.S n=4-3a nD.S n=3-2a n5.(2017全国Ⅲ,理9)等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}前6项的和为()A.-24B.-3C.3D.86.(2017辽宁鞍山一模,理4)已知数列{a n}满足=a n-1·a n+1(n≥2),若a2=3,a2+a4+a6=21,则a4+a6+a8=()A.84B.63C.42D.21 〚导学号21500732〛7.设数列{a n}是首项为a1,公差为-1的等差数列,S n为其前n项和.若S1,S2,S4成等比数列,则a1的值为.8.(2017北京,理10)若等差数列{a n}和等比数列{b n}满足a1=b1=-1,a4=b4=8,则= .9.(2017江苏,9)等比数列{a n}的各项均为实数,其前n项和为S n.已知S3=,S6=,则a8= .10.(2017安徽池州模拟)设数列{a n}的前n项和为S n,a1=1,且数列{S n}是以2为公比的等比数列.(1)求数列{a n}的通项公式;(2)求a1+a3+…+a2n+1.二、综合提升组11.(2017四川广元二诊,理6)已知数列{a n}的前n项和为S n,且对任意正整数n都有a n=S n+2成立.若b n=log2a n,则b1 008=()A.2 017B.2 016C.2 015D.2 01412.(2018河南南阳期末,理5)已知各项均为正数的等比数列{a n},a3·a5=2,若f(x)=x(x-a1)(x-a2)·…·(x-a7),则f'(0)=()A.8B.-8C.128D.-12813.已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=,a n b n+1+b n+1=nb n.(1)求{a n}的通项公式;(2)求{b n}的前n项和.三、创新应用组14.已知数列{a n}的前n项和S n满足S n=2a n+(-1)n.(1)求数列{a n}的前三项a1,a2,a3;(2)求证:数列为等比数列,并求出{a n}的通项公式.〚导学号21500733〛课时规范练30等比数列及其前n项和1.C∵a3a5=4(a4-1),=4(a4-1),解得a4=2.又a4=a1q3,且a1=,∴q=2,∴a2=a1q=2.B∵a2,a48是方程2x2-7x+6=0的两个根,∴a2·a48=3.又a1·a49=a2·a48==3,a25>0,∴a1·a2·a25·a48·a49==93.D∵a n+1=S n+1(n∈N*),∴S n+1-S n=S n+1(n∈N*),∴S n+1+1=2(S n+1)(n∈N*),∴数列{S n+1}是首项为3,公比为2的等比数列.则S5+1=3×24,解得S5=47.4.D S n==3-2a n,故选D.5.A设等差数列的公差为d,则d≠0,=a2·a6,即(1+2d)2=(1+d)(1+5d),解得d=-2,所以S6=6×1+(-2)=-24,故选A.6.C=a n-1·a n+1(n≥2),∴数列{a n}是等比数列,设其公比为q,∵a2=3,a2+a4+a6=3+3q2+3q4=21,即q4+q2-6=0,解得q2=2或q2=-3(舍去),∴a4+a6+a8=a2q2+a4q2+a6q2=2(a2+a4+a6)=42,故选C.7.-由已知得S1=a1,S2=a1+a2=2a1-1,S4=4a1+(-1)=4a1-6,而S1,S2,S4成等比数列,∴(2a1-1)2=a1(4a1-6),整理,得2a1+1=0,解得a1=-8.1设等差数列{a n}的公差为d,等比数列{b n}的公比为q,由题意知-1+3d=-q3=8,即解得故=1.9.32设该等比数列的公比为q,则S6-S3==14,即a4+a5+a6=14.①∵S3=,∴a1+a2+a3=由①得(a1+a2+a3)q3=14,∴q3==8,即q=2.∴a1+2a1+4a1=,a1=,∴a8=a1·q7=27=32.10.解 (1)∵S1=a1=1,且数列{S n}是以2为公比的等比数列,∴S n=2n-1,又当n≥2时,a n=S n-S n-1=2n-2(2-1)=2n-2.当n=1时,a1=1,不适合上式.∴a n=(2)a3,a5,…,a2n+1是以2为首项,4为公比的等比数列,∴a3+a5+…+a2n+1=∴a1+a3+…+a2n+1=1+11.A在a n=S n+2中,令n=1得a1=8,∵a n=S n+2成立,∴a n+1=S n+1+2成立,两式相减得a n+1-a n=a n+1,∴a n+1=4a n,又a1≠0,∴数列{a n}为等比数列,∴a n=8·4n-1=22n+1,∴b n=log2a n=2n+1,∴b1 008=2 017,故选A.12.B13.解 (1)由已知,得a1b2+b2=b1,因为b1=1,b2=,所以a1=2.所以数列{a n}是首项为2,公差为3的等差数列,通项公式为a n=3n-1.(2)由(1)和a n b n+1+b n+1=nb n,得b n+1=,因此{b n}是首项为1,公比为的等比数列.记{b n}的前n项和为S n,则S n=14.(1)解在S n=2a n+(-1)n中分别令n=1,2,3,得解得(2)证明由S n=2a n+(-1)n(n∈N*)得S n-1=2a n-1+(-1)n-1(n≥2),两式相减,得a n=2a n-1-2(-1)n(n≥2).∴a n=2a n-1-(-1)n-(-1)n=2a n-1+(-1)n-1-(-1)n(n≥2),∴a n+(-1)n=2(n≥2).∴数列是以a1-为首项,以2为公比的等比数列.∴a n+(-1)n=2n-1.∴a n=(-1)n.。

复习课时提能演练 等比数列及其前n项和

复习课时提能演练 等比数列及其前n项和

课时提能演练(等比数列及其前n项和)1.设Sn 为等比数列{an}的前n项和,8a2-a5=0,则S4S2=( )(A)5 (B)8 (C)-8 (D)152.已知在等比数列{an }中,a1+a3=10,a4+a6=54,则等比数列{an}的公比q的值为( )(A)14 (B)12(C)2 (D)83.等比数列{an }中,若a4a7=1,a7a8=16,则a6a7等于( )(A)4 (B)-4 (C)±4(D)17 24.设{an }是由正数组成的等比数列,Sn为其前n项和.已知a2a4=1,S3=7,则S5=( )(A)152(B)314(C)334(D)1725.若数列{an }满足2n12naa=p(p为正常数,n∈N*),则称{an}为“等方比数列”.甲:数列{an }是等方比数列;乙:数列{an}是等比数列,则( )(A)甲是乙的充分条件但不是必要条件(B)甲是乙的充要条件(C)甲是乙的必要条件但不是充分条件(D)甲既不是乙的充分条件也不是乙的必要条件6.在公比q<1的等比数列{an }中,a2a8=6,a4+a6=5,则a5a7等于( )(A)56(B)65(C)23(D)327.已知等比数列{an }中,a2=12,a3=14,ak=164,则k=.8.等比数列{an }的公比q>0,已知a2=1,an+2+an+1=6an,则{an}的前4项和S4=.9.已知函数f(x)=2x+3,数列{an }满足:a1=1且an+1=f(an)(n∈N*),则该数列的通项公式an=.10.在数列{an }中,a1=-14,3an-an-1=4n(n≥2,n∈N*).(1)求证:数列{an-2n+1}是等比数列;(2)设数列{an }的前n项和为Sn,求Sn的最小值.11.成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{bn }中的b3、b4、b5.(1)求数列{bn}的通项公式;(2)数列{bn }的前n项和为Sn,求证:数列{Sn+54}是等比数列.答案解析1.【解析】选A.∵8a 2-a 5=0,∴8a 1q =a 1q 4, ∴q 3=8,∴q =2, ∴S 4S 2=1-q 41-q2=1+q 2=5. 2.【解析】选B.由a 1+a 3=10,a 4+a 6=54,得a 1(1+q 2)=10,a 1q 3(1+q 2)=54,两式相除,得q 3=18,∴q =12.3.【解析】选A.∵a 4a 7=1,a 7a 8=16, ∴q 4=16,∴q 2=4,∴a 6a 7=a 4a 7q 2=4.4.【解析】选B.设公比为q(q >0),则q ≠1,由题意知24121a q 1a (1q q )7⎧=⎪⎨++=⎪⎩,即⎩⎪⎨⎪⎧a 1q 2=1a 1(1+q +q 2)=7,解得⎩⎪⎨⎪⎧a 1=4q =12,∴S 5=4[1-(12)5]1-12=314.5. 【解析】选C.乙⇒甲,但甲乙,如数列2,2,-2,-2,-2,是等方比数列,但不是等比数列.6.【解题指南】a 5a 7=1q2,故只需求出q 2即可,利用a 2·a 8=a 4·a 6可先求出a 4·a 6再求q 2.【解析】选D.∵a 2a 8=a 4a 6=6,a 4+a 6=5, ∴a 4,a 6是方程x 2-5x +6=0的两实根. 又公比q <1,∴a 4=3,a 6=2, ∴q 2=23,∴a 5a 7=1q 2=32.7.【解析】设公比为q. ∵a 2=12,a 3=14,∴q =a 3a 2=12,a k =(12)k -1=164,解得k =7. 答案:78.【解析】∵a n +2+a n +1=a n q 2+a n q =6a n , ∴q 2+q -6=0,又q >0,∴q =2, 由a 2=a 1q =1得a 1=12,∴S 4=12(1-24)1-2=152.答案:1529.【解析】由题意知a n +1=2a n +3, ∴a n +1+3=2(a n +3),∴数列{a n +3}是以a 1+3=4为首项,以2为公比的等比数列. ∴a n +3=4×2n -1=2n +1,∴a n =2n +1-3.答案:2n +1-3【方法技巧】构造等比数列求通项公式递推关系为a n +1=qa n +b 的数列,在求其通项公式时,可将a n +1=qa n +b 转化为a n +1+a =q(a n +a)的形式,其中a 的值可由待定系数法确定,即qa n +b =a n +1=qa n +(q -1)a a =bq -1(q ≠1).10.【解析】(1)∵3a n -a n -1=4n(n ≥2,n ∈N *), ∴a n =13(a n -1+4n),∴a n +1-2(n +1)+1=13[a n +4(n +1)]-2(n +1)+1=13a n -2n 3+13 =13(a n -2n +1), 由a 1=-14知:当n =1时,a 1-2×1+1=-15≠0 ∴{a n -2n +1}是以-15为首项,13为公比的等比数列.(2)∵a n -2n +1=-15·(13)n -1,∴a n =-15·(13)n -1+2n -1,当n ≥2时,a n -a n -1=2+10·(13)n -2>0,∴数列{a n }是单调递增数列, ∵a 2<0,a 3>0,∴当且仅当n =2时,S n 取最小值,是S 2=a 1+a 2=-14+(-2)=-16.11.【解析】(1)设成等差数列的三个正数分别为a -d ,a ,a +d. 依题意得,a -d +a +a +d =15,解得a =5. 所以{b n }中的b 3,b 4,b 5依次为7-d,10,18+d. 依题意,有(7-d)(18+d)=100, 解得d =2或d =-13(舍去). 故{b n }的第3项为5,公比为2. 由b 3=b 1·22,即5=b 1·22,解得b 1=54.所以{b n }是以54为首项,2为公比的等比数列,其通项公式为:b n =54×2n -1= 5×2n -3.(2)数列{b n }的前n 项和S n =54(1-2n )1-2=5×2n -2-54,即S n +54=5×2n -2,所以S 1+54=52,n 1n5S 45S 4+++=n 1n 25252--⨯⨯=2. 因此数列{S n +54}是以52为首项,公比为2的等比数列.。

2021年高考数学考点30等比数列及其前n项和必刷题理含解析

2021年高考数学考点30等比数列及其前n项和必刷题理含解析

考点30 等比数列及其前n项和1.已知数列的前项和为,满足,则的通项公式()A. B. C. D.【答案】B【解析】当时,,当时,,因此,选B.2.已知数列为正数项的等比数列,是它的前项和,若,且,则()A. 34 B. 32 C. 30 D. 28【答案】C3.已知各项均不相等的等比数列成等差数列,设为数列的前n项和,则等于A. B. C. 3 D. 1【答案】A【解析】设等比数列{a n}的公比为q,∵3a2,2a3,a4成等差数列,∴2×2a3=3a2+a4,∴4a2q=3,化为q2﹣4q+3=0,解得q=1或3.q=1时,,q=2时,.故选:A.4.已知数列的前项和,则数列的前项和为()A. B. C. D.【答案】C5.已知等比数列的前项和,且,,则A. B. C. D.【答案】C【解析】由题得.故答案为:C6.已知等比数列中,,,为方程的两根,则()A. 32 B. 64 C. 256 D.【答案】B7.等比数列中,公比,记(即表示数列的前项之积),中值为正数的个数是A. B. C. D.【答案】B【解析】等比数列{a n}中a1>0,公比q<0,故奇数项为正数,偶数项为负数.∴Π11<0,Π10<0,Π9>0,Π8>0.故答案为:B8.已知等比数列的前n项和为,若,且,,成等差数列,则A. 10 B. 12 C. 18 D. 30【答案】A【解析】在等比数列中,由,得,即,又,,成等差数列,,即,联立得:舍或..则.故选:A.9.已知为正项等比数列,是它的前项和,若,且与的等差中项为,则的值是( )A. 29 B. 30 C. 31 D. 32【答案】C10.已知各项均为正数的等比数列的前项和为,且满足成等差数列,则 ( ) A. 3 B. 9 C. 10 D. 13【答案】C【解析】设各项均为正数的等比数列的公比为,满足成等差数列,,,解得,则,故选C.11.已知数列的前n项和为,.(Ⅰ)求数列的通项公式;(Ⅱ)设数列的前n项和为,,点在直线上,若存在,使不等式成立,求实数m的最大值.【答案】(Ⅰ)(Ⅱ)4③-④得,∴.∵.∴为递增数列,且,∴.∴,实数m的最大值为4.12.数列{a n}的前n项和为S n,且S n=n(n+1)(n∈N*).(1)求数列{a n}的通项公式;(2)若数列{b n}满足:,求数列{b n}的通项公式;(3)令(n∈N*),求数列{c n}的前n项和T n.【答案】(1);(2);(3) .(3)c n===n•3n+n,令数列{n•3n}的前n项和为A n,则A n=3+2×32+3×33+…+n•3n,∴3A n=32+2×33+…+(n﹣1)•3n+n•3n+1,∴﹣2A n=3+32+…+3n﹣n•3n+1=﹣n•3n+1,可得A n=.∴数列{c n}的前n项和T n=+.13.已知数列中,且.(Ⅰ)求,,并证明是等比数列;(Ⅱ)设,求数列的前项和.【答案】(1)见解析;(2),②①-②得所以,.14.已知α为锐角,且,函数,数列的首项,.(1)求函数的表达式;(2)求证:数列为等比数列;(3)求数列的前n项和.【答案】(1);(2) 见解析;(3).∴15.已知数列的前项和,.(1)求;(2)若,且数列的前项和为,求.【答案】(1);(2).16.在等差数列{a n}中,,其前n项和为,等比数列{b n}的各项均为正数,b1=1,公比为q,且b2+S2=12,.(Ⅰ)求a n与b n;(Ⅱ)求的取值范围.【答案】(Ⅰ);(Ⅱ)。

高考数学(理)一轮规范练【31】等比数列及其前n项和(含答案)

高考数学(理)一轮规范练【31】等比数列及其前n项和(含答案)

课时规范练31等比数列及其前n项和课时规范练第49页一、选择题1.在等比数列{a n}中,a1=1,公比|q|≠1.若a m=a1a2a3a4a5,则m等于( )A.9B.10C.11D.12答案:C解析:a m=a1a2a3a4a5=q·q2·q3·q4=q10=a1q10,所以m=11.2.在等比数列{a n}中,a2a6=16,a4+a8=8,则等于( )A.1B.-3C.1或-3D.-1或3答案:A解析:由a2a6=16,得=16⇒a4=±4,又a4+a8=8,可得a4(1+q4)=8,∵q4>0,∴a4=4.∴q2=1,=q10=1.3.等比数列{a n}的公比为q,则“a1>0,且q>1”是“对于任意正整数n,都有a n+1>a n”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:A解析:易知,当a1>0且q>1时,a n>0,所以=q>1,表明a n+1>a n;若对任意自然数n,都有a n+1>a n成立,当a n>0时,同除以a n得q>1,但当a n<0时,同除以a n得q<1.4.已知等比数列{a n}满足a n>0,n=1,2,…,且a5·a2n-5=22n(n≥3),则当n≥1时,log2a1+log2a3+…+log2a2n-1等于( )A.n(2n-1)B.(n+1)2C.n2D.(n-1)2答案:C解析:由a5·a2n-5=22n(n≥3),得=22n,∵a n>0,∴a n=2n.易得结论.5.各项均为正数的等比数列{a n}的前n项和为S n,若S n=2,S3n=14,则S4n等于( )A.80B.30C.26D.16答案:B解析:设S2n=a,S4n=b,由等比数列的性质知2(14-a)=(a-2)2,解得a=6或a=-4(舍去),同理(6-2)(b-14)=(14-6)2,所以b=S4n=30.6.在等比数列{a n}中,a1=2,其前n项和为S n,若数列{a n+1}也是等比数列,则S n等于( )A.2n+1-2B.3nC.2nD.3n-1答案:C解析:数列{a n}为等比数列,设其公比为q,则a n=2q n-1,∵数列{a n+1}也是等比数列,∴(a n+1+1)2=(a n+1)(a n+2+1).∴+2a n+1=a n a n+2+a n+a n+2.∴a n+a n+2=2a n+1.∴a n(1+q2-2q)=0,得q=1,即a n=2.∴S n=2n.二、填空题7.已知在等差数列{a n}中,n≥1时,都有a n>a n+1,且a2,a8是方程x2-12x+m=0的两根,前15项的和S15=m,则数列{a n}的公差为.答案:-2或-3解析:由题意得2a5=a2+a8=12,即a5=6.由S15=m,且S15=15a8,得a8=,将x1=a8=代入方程x2-12x+m=0,解得m=0或m=-45,即a8=0或-3.由3d=a8-a5=-6或-9,均小于0,得d=-2或-3.8.在等比数列{a n}中,若公比q=4,且前3项之和等于21,则该数列的通项公式a n=.答案:4n-1解析:由题意知a1+4a1+16a1=21,解得a1=1,所以通项公式为a n=4n-1.9.已知在△ABC中,内角A,B,C所对的边分别是a,b,c,且A,B,C成等差数列,三边a,b,c成等比数列,b=,则△ABC的面积是.1 / 2答案:解析:因为△ABC的内角A,B,C成等差数列,所以A+C=2B,B=.又因为三边a,b,c成等比数列,b=,所以ac=b2=3.于是S△ABC=ac sin B=.三、解答题10.在等差数列{a n}中,a1=1,a7=4,数列{b n}是等比数列,已知b2=a3,b3=,求满足b n<的最小自然数n的值.解:∵{a n}为等差数列,a1=1,a7=4,∴6d=3,d=,∴a n=.∵{b n}为等比数列,b2=2,b3=,q=,∴b n=6×.∵b n<,∴81<,即3n-2>81=34.∴n>6,从而可得n min=7.11.已知{a n}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.(1)求数列{a n}的通项;(2)求数列{}的前n项和S n.解:(1)由题设知公差d≠0.由a1=1,a1,a3,a9成等比数列,得,解得d=1,或d=0(舍去).所以{a n}的通项a n=1+(n-1)×1=n.(2)由(1)知=2n,由等比数列前n项和公式得S n=2+22+23+…+2n==2n+1-2.12.已知数列{a n}满足:a1=1,a2=a(a>0).数列{b n}满足b n=a n a n+1(n∈N*).(1)若{a n}是等差数列,且b3=12,求a的值及{a n}的通项公式;(2)若{a n}是等比数列,求{b n}的前n项和S n;(3)当{b n}是公比为q-1的等比数列时,{a n}能否为等比数列?若能,求出a的值;若不能,请说明理由.解:(1)∵{a n}是等差数列,a1=1,a2=a,∴a n=1+(n-1)(a-1).又∵b3=12,∴a3a4=12,即(2a-1)(3a-2)=12.解得a=2或a=-.∵a>0,∴a=2.∴a n=n.(2)∵数列{a n}是等比数列,a1=1,a2=a(a>0),∴a n=a n-1.∴b n=a n a n+1=a2n-1.∵=a2,∴数列{b n}是首项为a,公比为a2的等比数列.当a=1时,S n=n;当a≠1时,S n=.(3)数列{a n}不能为等比数列.∵b n=a n a n+1,∴.则=a-1.∴a3=a-1.假设数列{a n}能为等比数列.由a1=1,a2=a,得a3=a2.∴a2=a-1,此方程无解,故数列{a n}一定不能为等比数列.希望对大家有所帮助,多谢您的浏览!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时作业(三十) 等比数列及其前n 项和A 级1.若数列{a n }的前n 项和S n =3n-a ,数列{a n }为等比数列,则实数a 的值是( ) A .3 B .1 C .0D .-12.设数列{a n }满足:2a n =a n +1(n ∈N *),且前n 项和为S n ,则S 4a 2的值为( ) A.152B .154C .4D .23.已知函数f (x )=log a x ,且所有项为正数的无穷数列{a n }满足log a a n +1-log a a n =2,则数列{a n }( )A .一定是等比数列B .一定是等差数列C .既是等差数列又是等比数列D .既不是等差数列又不是等比数列4.(2012·威海模拟)在由正数组成的等比数列{a n }中,若a 3a 4a 5=3π,则sin(log 3a 1+log 3a 2+…+log 3a 7)的值为( )A.12 B .32 C .1D .-325.已知数列{a n }的前n 项和S n =2n-1,则数列{a n }的奇数项的前n 项和为( ) A.2n +1-13B .2n +1-23C.22n-13D .22n-236.已知各项不为0的等差数列{a n },满足2a 3-a 27+2a 11=0,数列{b n }是等比数列,且b 7=a 7,则b 6b 8=________.7.(2013·南京模拟)等比数列{a n }中,S n 表示前n 项和,a 3=2S 2+1,a 4=2S 3+1,则公比q 为________.8.(2012·江西卷)等比数列{a n }的前n 项和为S n ,公比不为1.若a 1=1,则对任意的n ∈N *,都有a n +2+a n +1-2a n =0,则S 5=________.9.(2013·潍坊模拟)已知函数f (x )=2x +3,数列{a n }满足:a 1=1且a n +1=f (a n )(n ∈N *),则该数列的通项公式a n =________.10.S n 是无穷等比数列{a n }的前n 项和,且公比q ≠1,已知1是12S 2和13S 3的等差中项,6是2S2和3S3的等比中项.(1)求S2和S3;(2)求此数列{a n}的前n项和公式.11.已知在正项数列{a n}中,a1=2,点A n(a n,a n+1)在双曲线y2-x2=1上,数列{b n}中,点(b n,T n)在直线y=-12x+1上,其中T n是数列{b n}的前n项和.(1)求数列{a n}的通项公式;(2)求证:数列{b n}是等比数列.B 级1.(2013·武汉模拟)等比数列{a n}的公比为q,则“a1>0,且q>1”是“对于任意正整数n,都有a n+1>a n”的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件2.已知各项都为正数的等比数列{a n}中,a2·a4=4,a1+a2+a3=14,则满足a n·a n+1·a n+2>19的最大正整数n 的值为________. 3.数列{a n }的前n 项和为S n ,S n =2a n -n (n ∈N *). (1)求证:数列{a n +1}成等比数列; (2)求数列{a n }的通项公式;(3)数列{a n }中是否存在连续三项可以构成等差数列?若存在,请求出一组适合条件的三项;若不存在,请说明理由.详解答案课时作业(三十)A 级1.B 可用特殊值法,由S n =3n-a 得a 1=3-a ,a 2=6,a 3=18, 由等比数列的性质可知a =1.2.A 由题意知,数列{a n }是以2为公比的等比数列,故S 4a 2=a 11-241-2a 1×2=152,选A. 3.A 由log a a n +1-log a a n =2得log aa n +1a n =2=log a a 2.故a n +1a n=a 2,又a >0且a ≠1,所以数列{a n }为等比数列.故选A.4.B 因为a 3a 4a 5=3π=a 34,所以a 4=3π3,log 3a 1+log 3a 2+…+log 3a 7=log 3(a 1a 2…a 7)=log 3a 74=7log 33π3=7π3,所以sin(log 3a 1+log 3a 2+…+log 3a 7) =32. 5.C 依题意,当n ≥2时,a n =S n -S n -1=2n -1;当n =1时,a 1=S 1=2-1=1,a n =2n -1也适合a 1.因此,a n =2n -1,a n +1a n=2,数列{a n }是等比数列,数列{a n }的奇数项的前n 项和为1×1-22n1-22=22n-13,选C.6.解析: 由题意可知,b 6b 8=b 27=a 27=2(a 3+a 11)=4a 7, ∵a 7≠0,∴a 7=4,∴b 6b 8=16. 答案: 167.解析: 由a 3=2S 2+1,a 4=2S 3+1得a 4-a 3=2(S 3-S 2)=2a 3, ∴a 4=3a 3,∴q =a 4a 3=3. 答案: 38.解析: 由题意知a 3+a 2-2a 1=0,设公比为q ,则a 1(q 2+q -2)=0.由q 2+q -2=0解得q =-2或q =1(舍去),则S 5=a 11-q 51-q =1--253=11.答案: 119.解析: 由题意知a n +1=2a n +3,∴a n +1+3=2(a n +3), ∴数列{a n +3}是以a 1+3=4为首项,以2为公比的等比数列. ∴a n +3=4×2n -1=2n +1,∴a n =2n +1-3.答案: 2n +1-310.解析: (1)根据已知条件⎩⎪⎨⎪⎧12S 2+13S 3=2,2S 23S 3=36.整理得⎩⎪⎨⎪⎧3S 2+2S 3=12,3S 22S 3=36.解得3S 2=2S 3=6,即⎩⎪⎨⎪⎧S 2=2,S 3=3.(2)∵q ≠1,则⎩⎪⎨⎪⎧a 11+q =2,a 11+q +q2=3.可解得q =-12,a 1=4.∴S n =4⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n 1+12=83-83⎝ ⎛⎭⎪⎫-12n.11.解析: (1)由已知点A n 在y 2-x 2=1上知,a n +1-a n =1, ∴数列{a n }是一个以2为首项,以1为公差的等差数列, ∴a n =a 1+(n -1)d =2+n -1=n +1.(2)证明:∵点(b n ,T n )在直线y =-12x +1上,∴T n =-12b n +1,①∴T n -1=-12b n -1+1(n ≥2),②①②两式相减得b n =-12b n +12b n -1(n ≥2),∴32b n =12b n -1,∴b n =13b n -1(n ≥2). 令n =1,得b 1=-12b 1+1,∴b 1=23,∴{b n }是一个以23为首项,以13为公比的等比数列.B 级1.A 易知,当a 1>0且q >1时,a n >0,所以a n +1a n=q >1, 表明a n +1>a n ;若对任意自然数n ,都有a n +1>a n 成立, 当a n >0时,同除a n 得q >1, 但当a n <0时,同除a n 得0<q <1. 也可举反例,如a n =-12n .2.解析: 因为a 2·a 4=4=a 23,且a 3>0,所以a 3=2, 又a 1+a 2+a 3=2q 2+2q+2=14,所以1q =-3(舍)或1q =2,即q =12,a 1=8.又a n =a 1qn -1=8·⎝ ⎛⎭⎪⎫12n -1=⎝ ⎛⎭⎪⎫12n -4,所以a n ·a n +1·a n +2=⎝ ⎛⎭⎪⎫123n -9>19,即23n -9<9,∴3n -9<log 29即n <3+log 239而3+log 239>3+log 238=4,∴n 的最大值为4. 答案: 43.解析: (1)证明:由S n =2a n -n 及S n +1=2a n +1-(n +1)⇒a n +1=2a n +1. 又∵a 1=2a 1-1,∴a 1=1,a 1+1≠0,∴a n +1+1a n +1=2.∴{a n +1}成等比数列. (2)由(1)知,a n +1=(a 1+1)·2n -1,故a n =2n-1,n ∈N *.(3)假设存在k ∈N *,使得a k ,a k +1,a k +2成等差数列,则2a k +1=a k +a k +2, 即2(2k +1-1)=(2k -1)+(2k +2-1)⇒2k=0.因k ∈N *,所以2k≠0,∴不存在{a n }中的连续三项使得它们可以构成等差数列.。

相关文档
最新文档