折叠共源共栅放大器的偏置电路
折叠式共源共栅电路结构

折叠式共源共栅电路结构1. 介绍折叠式共源共栅电路结构是一种常见的电路结构,广泛应用于集成电路设计中。
它具有很多优点,例如低功耗、高增益、高频特性稳定等。
本文将深入研究折叠式共源共栅电路结构的原理、特点及其在集成电路设计中的应用。
2. 折叠式共源共栅电路结构的原理折叠式共源共栅电路结构由两个互相折叠并串联的晶体管组成,其中一个晶体管作为放大器的输入端(即源极),另一个晶体管作为放大器的输出端(即漏极)。
两个晶体管之间通过一个无源负载进行连接。
这种连接方式使得输入和输出之间具有很高的耦合效率,从而提高了整个电路的增益。
3. 折叠式共源共栅电路结构的特点3.1 低功耗:由于折叠式共源共栅电路结构中使用了两个互相串联并通过无源负载连接,使得整个电路在工作时能够充分利用输入信号和输出信号之间的能量传递,从而减少了功耗。
3.2 高增益:折叠式共源共栅电路结构中的两个晶体管之间通过无源负载连接,使得输入信号能够得到充分放大,从而提高了整个电路的增益。
3.3 高频特性稳定:折叠式共源共栅电路结构中的两个晶体管之间通过无源负载连接,在高频信号传输中能够保持稳定的特性,从而提高了整个电路在高频工作时的性能。
4. 折叠式共源共栅电路结构在集成电路设计中的应用4.1 射频放大器:折叠式共源共栅电路结构由于其低功耗、高增益、高频特性稳定等特点,在射频放大器设计中得到了广泛应用。
射频放大器是无线通信系统中重要的组成部分,其主要作用是对输入信号进行放大,使其能够满足系统要求。
折叠式共源共栅电路结构可以有效地满足射频放大器对低功耗、高增益和稳定性能等方面的要求。
4.2 低噪声放大器:在集成电路设计中,低噪声是一个重要指标。
由于折叠式共源共栅电路结构具有高增益和低功耗的特点,因此在低噪声放大器的设计中得到了广泛应用。
低噪声放大器主要用于信号源和接收机之间,其主要作用是将输入信号进行放大,并尽可能地减少噪声的引入。
折叠式共源共栅电路结构能够有效地提高低噪声放大器的增益,并减少噪声的引入。
折叠式共源共栅运算放大器设计说明

折叠式共源共栅运算放大器目录一.摘要 (2)二.电路设计指标 (3)三.电路结构 (3)四.手工计算 (7)五.仿真验证 (10)六.结论 (12)七.收获与感悟 (12)八.参考文献 (13)摘要运算放大器在现代科技的各个领域得到了广泛的应用,针对不同的应用领域出现了不同类型的运放。
本文完成了一个由pmos作输入的放大器。
vdd为3.3v,负载电容为1pf,增益Av大于80dB,带宽GBM大于100MHz的放大器。
输出级采用共源级结构以提高输出摆幅及驱动能力,为达到较宽的带宽,本文详细分析推导了电路所存在的极零点,共源共栅镜像电流源产生Ibias。
选择P沟道晶体管的宽度和长度,使得它们的m g 和ds r 与N沟道晶体管的情况相匹配。
关键字:运算放大器、共源共栅级、极点AbstractOperation amplifiers are widely used in many field s nowadays。
All kinds of differential operation amplifiers appear f6r special application.One basic cell of which is fully differential operation amplifiers is designed in the thesis.Power Supply 3.3v,load capacitor 1pf,Gain>80dB,GBM>100MHz。
The output stage is common source amplifier for getting proper DC operation point,for the purpose of wider bandwidth,we carefully analysis the pole and zero in the circuit ,use common source common gate as current Ibias。
低电压高速CMOS全差分运算放大器设计双

运算放大器的设计首先要根据其用途选择一种合适 的电路结构,从运放的建立时问、开环增益、单位增益带 宽、相位裕度、输入共模范围、输出摆幅、功耗等方面性能 的限制进行结构设计。常见的全差分运算放大器有下面 几种类型:两级(two—stage)式、套筒共源共栅(telescopic) 式、折叠共源共栅(fold—cascade)式。
4‘结语
本文使用TSMC公司的CM025工艺
设计并实现了一个低压高速全差分运算放
大器。采用折叠共源共栅结构,在达到较高
的带宽同时,增大了输出摆幅。连续时间共
模反馈电路以及低压宽摆幅偏置电路,实现
(1)信置电路OO半电路小信号等效模型
图3偏置电路及半电路小信号等效模型
了电路的高稳定性。该运放在2.5 V电源 电压下,’单位增益带宽可以达到501 MHz, 直流增益71.6 dB,相位裕度51。,功耗
P。《P,,更接近于原点,因此P2为折叠共源共栅运放的 主极点,P。为次极点。
要提高开环增益A。,可以采取增加M8,M9的跨导和
1 5】
沟逝长度,但将引起其源极寄生电容的增加和漏源饱和电 正减小,从而降低运放的次极点频率。同样增加M10, M11的沟道长度,会使A。增加而次极点频率减小。考虑 到M4,M5,M6,M7不在信号通路上,因此可以增加其沟 道长度球增加输出阻抗,而不降低工作速度。
△gM9(r2//rlo)r9 R。。“M7一r4+r7[1+(gM7+gM7b)^]
△gM7 r7 r4 r为MOS管的小信号输出电阻。负载电容C。远大于MOS 管各端的寄生电容,CL△cD瞰+CD曲+CD酊。。
节点1对应的极点P。:
P-=一石万勿习丽i1冠i而△一等
节点2对应的极点P。:
一种低压低功耗CMOS折叠-共源共栅运算放大器的设计

一种低压低功耗CMOS折叠-共源共栅运算放大器的设计程春来,柴常春,唐重林【摘要】设计了一种低压低功耗CMOS折叠-共源共栅运算放大器。
该运放的输入级采用折叠-共源共栅结构,可以优化输入共模范围,提高增益;由于采用AB类推挽输出级,实现了全摆幅输出,并且大大降低了功耗。
采用TSMC 0.18 μm CMOS工艺,基于BSIM3V3 Spice模型,用HSpice对整个电路进行仿真,结果表明:与传统结构相比,此结构在保证增益、带宽等放大器重要指标的基础上,功耗有了显著的降低,非常适合于低压低功耗应用。
目前,该放大器已应用于14位∑-Δ模/数转换电路的设计中。
【期刊名称】现代电子技术【年(卷),期】2007(030)024【总页数】4【关键词】运算放大器;折叠-共源共栅;AB类输出;低压低功耗1 引言在生物科学、空间技术、电池供电设备以及各种高阻抗传感器的应用中,经常需要集成电路在低电压和弱电流的条件下工作[1]。
采用低电压供电的模拟电路不但能减少电路的功耗,而且能增强电路的稳定性[2]。
因此,低功耗乃至在微功耗芯片的研制和生产日益得到研究机构和生产部门的关注。
运算放大器是模拟电路中最重要和最通用的单元电路之一,同时也是许多模拟系统和数模混合信号系统中的一个完整模块[3]。
随着CMOS工艺的不断进步,电源电压和特征尺寸持续减小,运放的设计己经成为模拟IC设计中的制约因素之一,设计方法也面临着挑战。
为适应低压低功耗的设计要求,本文基于超深亚微米工艺,设计一个低压低功耗的CMOS折叠-共源共栅运算放大器单芯片,在讨论运放的工作原理及特点的基础上,采用TSMC 0.18 μm CMOS工艺,基于BSIM3V3 Spice模型,用HSpice对整个电路进行仿真。
结果表明:与传统结构相比,此结构在保证增益、带宽等放大器重要指标的基础上,功耗有了显著的降低,非常适合于低压低功耗应用。
目前,该放大器已在14位∑-Δ模/数转换电路的设计中得到应用。
一种折叠共源共栅运算放大器的设计

一种折叠共源共栅运算放大器的设计杨俊;卞兴中;王高峰【摘要】折叠共源共栅运放结构的运算放大器可以使设计者优化二阶性能指标,这一点在传统的两级运算放大器中是不可能的.特别是共源共栅技术对提高增益、增加PSRR值和在输出端允许自补偿是有很用的.这种灵活性允许在CMOS工艺中发展高性能无缓冲运算放大器.目前,这样的放大器已被广泛用于无线电通信的集成电路中.介绍了一种折叠共源共栅的运算放大器,采用TSMC 0.18混合信号双阱CMOS工艺库,用Hspice W-2005.03进行设计仿真,最后与设计指标进行比较.【期刊名称】《现代电子技术》【年(卷),期】2006(029)018【总页数】3页(P28-30)【关键词】CMOS;运算放大器;折叠共源共栅;Hspice W-2005.03【作者】杨俊;卞兴中;王高峰【作者单位】武汉大学,微电子与信息技术研究院,湖北,武汉,430072;武汉大学,物理科学与技术学院,湖北,武汉,430072;武汉大学,微电子与信息技术研究院,湖北,武汉,430072;武汉大学,物理科学与技术学院,湖北,武汉,430072;武汉大学,物理科学与技术学院,湖北,武汉,430072【正文语种】中文【中图分类】TN722.7+71 引言随着集成电路技术的不断发展,高性能运算放大器广泛应用于高速模/数转换器(ADC)、数/模转换器(DAC)、开关电容滤波器、带隙电压基准源和精密比较器等各种电路系统中,成为模拟集成电路和混合信号集成电路设计的核心单元电路,其性能直接影响电路及系统的整体性能。
高性能运算放大器的设计一直是模拟集成电路设计研究的热点之一,以折衷满足各种应用领域的需要。
许多现代集成CMOS运算放大器被设计成只驱动电容负载。
有了这样只有电容的负载,对于运算放大器,就没有必要使用电压缓存器来获得低输出阻抗。
因此,有可能设计出比那些需要驱动电阻负载的运算放大器具有更高速度和更大信号幅度的运算放大器。
折叠式共源共栅CMOS运算放大器的设计

密级:学校代码:10075分类号:学号:20101389工程硕士学位论文折叠式共源共栅CMOS运算放大器的设计与优化学位申请人:胡 洋指 导 教 师:郭宝增 教授学 位 类 别:工程硕士学 科 专 业:集成电路工程授 予 单 位:河北大学答 辩 日 期:二○一二年六月Classified Index: CODE:10075U.D.C:NO:20101389A Dissertation for the Degree of EngineeringDesign and Optimization of Folded Cascode CMOS Operational AmplifierCandidate:Hu YangSupervisor:Prof. Guo BaozengAcademic Degree Applied for:Master of EngineeringSpecialty :Integrated Circuit EngineeringUniversity:Hebei UniversityDate of Accomplishment:June,2012摘 要随着集成电路技术的不断发展,高性能运算放大器得到广泛应用,成为模拟集成电路和混合信号集成电路设计的核心单元电路。
集成运算放大器,简称运放,它在模拟运算、信号处理、D/A和A/D转换器以及有源滤波等很多方面得到广泛应用,被人们称为“万能的集成电路”。
本文将设计一种折叠式共源—共栅结构的CMOS运算放大器。
折叠式共源共栅电路不仅能提高增益,增加电源电压噪声抑制能力,而且在输出端允许自补偿。
相比套筒式结构,折叠式共源—共栅电路可以增大电路的输出摆幅,并且使得电路更适合做单位增益缓冲器。
本次设计中,我们通过对比套筒式、折叠式等几种运放结构与性质,首先确立了电路的基本结构,即折叠式共源共栅的放大器结构,通过两级运算放大器的级联实现了运算放大器的基本功能以及参数目标。
共源共栅放大器

共源共栅放大器姓名:郭佛威学号:2140320071共源共栅放大器源共栅放大器又称为级联放大器,是共源极和共栅极的级联。
由于共源放大级把电压信号转换为电流信号,而共栅放大级的输入信号为电流信号,故可把共源与共栅放大电路级联起来构成了共源共栅放大器,如右图所示。
M1产生正比于V in的小信号漏电流而M2电流流过R D,M1为输入器件,M2为级联器件,且M1与M2具有相同的电流。
偏置条件:M1和M2均工作在饱和区即V b≥ V in + V GS2 -V TH1;V out≥ V in-V TH1+V GS2-V TH21.共源共栅——大信号特性分析:输入—输出特性曲线1.1大信号特性:V in≤V TH1,M1,M2处于截止状态,V out=V DD,且V X≈ V b -V TH2 (忽略亚阈值导通);当Vin≥V TH1,M1产生电流,V out则降低,V GS2上升而V X下降。
V in>V TH1,开始出现电流,V out下降,V X下降,到一定值时M1或M2 进入线性区,增益(V out曲线的斜率)减小。
1.2输出摆幅:M1工作在饱和区:V A=V b-V GS2≥V ov1=V in-V t1V b≥V in+V GS2-V t1M2工作在饱和区:V out≥V b-V t2≥V in+V GS2-V t1-V t2=V ov1+V ov2为了使M4工作在饱和区:V out<V DD-|V GS4-V TH4|所以输出摆幅为:V on1+V on2<V out<V DD-|V GS4-V TH4|2.共源共栅级______小信号特性2.1增益:当两个晶体管工作在饱和区时;假设两个管子的λ均等于0,由于输入管产生的漏电流必定流过整个共源共栅级电路,所以A V=V out/V in=-g m1V1R D/V in,而V1= V in,所以A V=-g m1R D。
当忽略沟道长度调制效应时,共源共栅级放大器的电压增益与共源级放大器的电压增益相同。
折叠共源共栅放大器的偏置电路

折叠共源共栅放大器的偏置电路1. 引言折叠共源共栅放大器是一种常用的电路结构,用于放大电压信号。
偏置电路是该放大器的重要组成部分,其作用是确保放大器工作在合适的工作点,以提供稳定的放大功能。
本文将介绍折叠共源共栅放大器的偏置电路的原理、设计和优化方法。
2. 折叠共源共栅放大器的基本原理折叠共源共栅放大器是一种双管结构,由共源级和共栅级组成。
共源级负责放大信号,而共栅级则提供了对输入信号的反馈,以增加放大器的增益和稳定性。
该放大器的基本原理如下:•输入信号经过共源级放大,得到放大后的信号;•放大后的信号经过共栅级,进行反馈;•反馈信号与输入信号进行叠加,得到最终输出信号。
3. 折叠共源共栅放大器的偏置电路设计偏置电路的设计目的是为了确保放大器在工作时能够保持合适的工作点,以提供稳定的放大功能。
以下是折叠共源共栅放大器的偏置电路设计的基本步骤:3.1 确定工作点首先,需要确定放大器的工作点。
工作点的选择取决于应用需求和器件参数。
一般情况下,工作点应选择在晶体管的饱和区或放大区的中间位置,以保证放大器具有较大的增益和线性度。
3.2 选择偏置电流偏置电流决定了放大器的直流工作点,对放大器的增益和功率消耗有重要影响。
一般情况下,偏置电流应选取在晶体管的饱和区或放大区的较低位置,以保证放大器具有较低的功耗和较高的线性度。
3.3 设计偏置电路根据选择的工作点和偏置电流,设计偏置电路以提供所需的直流偏置电压和电流。
常用的偏置电路包括电流镜电路和电阻分压电路。
以下是一个简单的偏置电路示例:该偏置电路由一个电流镜电路和一个电阻分压电路组成。
电流镜电路通过将电流分流到两个晶体管上,提供了所需的偏置电流。
电阻分压电路通过将电流分压到合适的电压,提供了所需的偏置电压。
4. 偏置电路的优化方法为了提高折叠共源共栅放大器的性能,可以采用以下优化方法:4.1 温度补偿晶体管的参数受温度影响较大,因此在偏置电路中引入温度补偿电路,以保持放大器的工作点稳定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
折叠共源共栅放大器的偏置电路
折叠共源共栅放大器是一种常用的放大电路,用于放大低频信号。
其偏置电路的设计目标是保证输出信号的线性放大特性,同时使器件工作在合适的工作点。
偏置电路一般由电源,电阻和电容构成。
以下是折叠共源共栅放大器的一种常见的偏置电路设计示意图:
```
VDD
│
├─ R1 ─ Vbias
│
├─ M1 ──── M2 ─────
│ │ │
├─ R2 ─ R3 ─ RL
│ │
GND
```
其中,VDD是电源电压,Vbias是偏置电压。
具体偏置电路的设计步骤如下:
1. 选择偏置电压(Vbias):根据放大器工作要求确定合适的偏置电压。
2. 选择电流源电阻(R1):根据放大器的放大倍数要求,选
择合适的电流源电阻。
电流源电阻决定了静态工作电流(ID)的大小。
3. 确定静态工作电流(ID):根据放大器的工作点要求和
MOS管的参数,计算静态工作电流。
可以利用下面的公式计
算静态工作电流:
ID = (VDD - Vbias) / R1
4. 选择偏置电流(IB):确定M1和M2两个MOS管的偏置
电流。
一般可以选择IB = ID / 10。
5. 选择M1和M2的栅极电阻(R2和R3):根据MOS管的
参数和偏置电流确定合适的栅极电阻。
6. 确定负载电阻(RL):根据放大器的负载要求,选择合适
的负载电阻。
以上是一种常见的折叠共源共栅放大器的偏置电路设计步骤。
具体参数选择和设计过程需要根据实际应用场景和要求进行调整和优化。