【初中数学】初中数学2016年中考八大题型典中典专题复习(8份) 通用7
初中数学2016年中考八大题型典中典:初中数学2016年中考八大题型典中典专题复习(一)数学思想问题

专题复习(一)数学思想方法问题题型概述数学思想方法是把知识转化为能力的桥梁,是解题规律的总结,是达到以点带面、触类旁通、摆脱题海的有效之路。
因此我们应抓住临近中考的这段时间,去研究、归纳、熟悉那些常见的解题方法与技巧,从而为夺得中考高分搭起灵感和智慧的平台。
初中数学中的主要数学思想有整体思想、化归思想、分类讨论思想、数形结合思想、方程和函数思想等。
结合中考走向,我们重点就以下几种思想方法进行赏析强化。
【题型例析】类型1:整体思想整体思想就是考虑数学问题时,不是着眼与它的局部特征,而是把注意力和着眼点放在问题的整体结构上,通过对其全面深刻的观察,从宏观整体上认识问题的实质,把一些彼此独立但实质上又相互紧密的联系这的量作为整体来处理运用的思想方法。
【例题】.(1)(2015•湖南株洲,第13题3分)因式分解:2(2)16(2)x x x ---= 。
【解析】本题考点为:分解因式,首先提取整体公因式(2)x -,然后还要注意彻底分解, 2(16)x -仍可以利用平方差公式分解。
答案为:(2)(4)(4)x x x --+(2)(2015•广东梅州,第18题,7分)已知2-=+b a ,求代数式a b a b a 2)2()1(2+++-的值.考点:整式的混合运算—化简求值..专题:计算题.分析:原式利用完全平方公式及单项式乘以多项式法则计算,将已知等式代入计算即可求出值.解答:解:原式=a 2﹣2a +1+2ab +b 2+2a =(a +b )2+1,把a +b =﹣代入得:原式=2+1=3. 点评:此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则整体运用是解本题的关键.【变式练习】(1)(2015福建龙岩13,3分)若4a﹣2b=2π,则2a﹣b+π= 2π.考点:代数式求值.分析:根据整体代入法解答即可.解答:解:因为4a﹣2b=2π,所以可得2a﹣b=π,把2a﹣b=π代入2a﹣b+π=2π.点评:此题考查代数式求值,关键是根据整体代入法计算.(2)(2015•甘南州第23题 4分)已知a2﹣a﹣1=0,则a3﹣a2﹣a+2015= 2015 .考点:因式分解的应用.分析:首先根据a2﹣a﹣1=0得到a2﹣a=1,从而利用a3﹣a2﹣a+2015=a(a2﹣a)﹣a+2015代入求值即可.解答:解:∵a2﹣a﹣1=0,∴a2﹣a=1,∴a3﹣a2﹣a+2015=a(a2﹣a)﹣a+2015=a﹣a+2015=2015,故答案为:2015.点评:本题是一道涉及因式分解的计算题,考查了拆项法分解因式的运用,提公因式法的运用.类型2:分类讨论思想(1)代数问题中的分类讨论针对代数中的有些问题,需要对整体问题进行分解,从不同的角度、不同的范围和不同的思路进行分类,把问题既不重复,不遗漏的分成几种情况进行分析,化整为零,各个击破的解题策略,这样使问题得以轻松解决。
2016年中考数学最热8个知识点归纳

2016 年中考数学最热8 个知识点概括2016年中考数学最热8 个知识点概括知识点 1:一元二次方程的基本观点1.一元二次方程 3x2+5x-2=0 的常数项是 -2.2.一元二次方程 3x2+4x-2=0 的一次项系数为 4,常数项是 -2.3.一元二次方程 3x2-5x-7=0 的二次项系数为 3,常数项是 -7.4.把方程 3x(x-1)-2=-4x 化为一般式为 3x2-x-2=0.知识点 2:直角坐标系与点的地点1. 直角坐标系中,点 A(3 ,0) 在 y 轴上。
2. 直角坐标系中, x 轴上的随意点的横坐标为 0.3.直角坐标系中,点 A(1 ,1) 在第一象限。
4.直角坐标系中,点 A(-2 ,3) 在第四象限。
5.直角坐标系中,点 A(-2 ,1) 在第二象限。
知识点 3:已知自变量的值求函数值1.当 x=2 时,函数 y=的值为 1.2.当 x=3 时,函数 y=的值为 1.3.当 x=-1 时,函数 y=的值为 1.知识点 4:基本函数的观点及性质1.函数 y=-8x 是一次函数。
2.函数 y=4x+1 是正比率函数。
3.函数是反比率函数。
4.抛物线 y=-3(x-2)2-5 的张口向下。
5.抛物线 y=4(x-3)2-10 的对称轴是 x=3.6.抛物线的极点坐标是 (1,2) 。
7.反比率函数的图象在第一、三象限知识点 5:数据的均匀数中位数与众数1.数据 13,10,12,8,7 的均匀数是 10.2.数据 3,4,2,4,4 的众数是 4.3.数据 1, 2, 3,4, 5 的中位数是 3.知识点 6:特别三角函数值1.cos30° =。
2.sin260° +cos260°=1.3.2sin30° +tan45° =2.4.tan45° =1.5.cos60° +sin30° =1.知识点 7:圆的基天性质1.半圆或直径所对的圆周角是直角。
2016年中考数学基础知识归纳及典型例题分析

2016年中考数学总复习代数部分第一章:实数基础知识点:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成q p 的形式,其中p 、q 是互质的整数,这是有理数的重要特征。
2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如π、45sin °等。
3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。
二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。
(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a +b =02、倒数:(1)实数a (a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数 3、绝对值:(1)一个数a 的绝对值有以下三种情况: ⎪⎩⎪⎨⎧-==0,0,00, a a a a a a (2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。
(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。
4、n次方根叫a的平方根,a叫a的算术平方根。
(1)平方根,算术平方根:设a≥0,称a(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
(3)立方根:3a叫实数a的立方根。
(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。
三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。
原点、正方向、单位长度是数轴的三要素。
2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。
实数和数轴上的点是一一对应的关系。
初中数学中考八大题型点拨导练复习(一)数学思想问题

点拨复习(一)数学思想方法问题【专题点拨】数学思想方法是把知识转化为能力的桥梁,是解题规律的总结,是达到以点带面、触类旁通、摆脱题海的有效之路。
因此我们应抓住临近中考的这段时间,去研究、归纳、熟悉那些常见的解题方法与技巧,从而为夺得中考高分搭起灵感和智慧的平台。
初中数学中的主要数学思想有整体思想、化归思想、分类讨论思想、数形结合思想、方程和函数思想等。
结合中考走向,我们重点就以下几种思想方法进行赏析强化。
【典例赏析】【例题1】已知二次函数y = (x+m)2 - n的图象如图所示,则一次函数y = mx + n与反比例函数mnyx=的图象可能是()(第7题图) A. B. C. D.【分析】先根据二次函数的图象,确定m,n的符号,再根据m,n的符号判断一次函数y = mx + n与反比例函数mnyx=的图象经过的象限即可.【解答】解:由对称轴x=﹣m<0,可知m>0,由顶点在第二象限-n>0,n<0当x=1时,所以mn<0,反比例函数mnyx=图象经过二四象限,由于m>0,n<0,一次函数y = mx + n经过一三四象限,故选C.【点评】本题主要考查二次函数图象的性质、一次函数的图象的性质、反比例函数图象的性质,关键在于通过二次函数图象推出m,n的取值范围.【例题2】小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M处出发,向前走3米到达A 处,测得树顶端E 的仰角为30°,他又继续走下台阶到达C 处,测得树的顶端E 的仰角是60°,再继续向前走到大树底D 处,测得食堂楼顶N 的仰角为45°.已知A 点离地面的高度AB =2米,∠BCA =30°,且B 、C 、D 三点在同一直线上.(1)求树DE 的高度;(2)求食堂MN 的高度.【考点】TA :解直角三角形的应用﹣仰角俯角问题.【分析】(1)先求AC ,再求CE ,最后求DE(2)延长MN 交BD 于点G,先求BC 和CD,再求NG 和GD,最后求MN【解答】解:(1)在直角三角形ABC 中,AB=2米,∠BCA =30°∴AC=30sin AC =6米 ∵∠BCA =30°,∠ECD =60°∴∠ACE =90°∵∠BCA =30°,AE ∥BD∠CAF =30°∵∠EAF =30°∴∠EAC =60°∴CE=ACtan60°=36米在直角三角形CED 中,CE=36米,∠ECD=60°∴ED=CEsin60°=9米(2)在直角三角形ABC 中,AB=2米,∠BCA =30°∴BC=ABcot30°=32米在直角三角形CED中,CE=36米,∠ECD=60°∴CD=CEcos60°=33米延长MN交BD于点G∴MG=GD=GB+BC+CD=(3+35)米∴MN=MG-MG=(1+35)米【例题3】某新建成学校举行美化绿化校园活动,九年级计划购买A,B两种花木共100棵绿化操场,其中A花木每棵50元,B花木每棵100元.(1)若购进A,B两种花木刚好用去8000元,则购买了A,B两种花木各多少棵?(2)如果购买B花木的数量不少于A花木的数量,请设计一种购买方案使所需总费用最低,并求出该购买方案所需总费用.【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用..【分析】(1)设购买A种花木x棵,B种花木y棵,根据“A,B两种花木共100棵、购进A,B两种花木刚好用去8000元”列方程组求解可得;(2)设购买A种花木a棵,则购买B种花木(100﹣a)棵,根据“B花木的数量不少于A花木的数量”求得a的范围,再设购买总费用为W,列出W关于a的解析式,利用一次函数的性质求解可得.【解答】解:(1)设购买A种花木x棵,B种花木y棵,根据题意,得:,解得:,答:购买A种花木40棵,B种花木60棵;(2)设购买A种花木a棵,则购买B种花木(100﹣a)棵,根据题意,得:100﹣a≥a,解得:a≤50,设购买总费用为W,则W=50a+100(100﹣a)=﹣50a+10000,∵W随a的增大而减小,∴当a=50时,W取得最小值,最小值为7500元,答:当购买A种花木50棵、B种花木50棵时,所需总费用最低,最低费用为7500元.【点评】本题主要考查二元一次方程组、一元一次不等式及一次函数的性质,理解题意找到题目蕴含的相等关系列出方程和函数解析式,熟练掌握一次函数性质是解题的关键.【能力检测】1.小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器.然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部.则下面可以近似地刻画出容器最高..水位h与注水时间之间的变化情况的是()A.B.C.D.【分析】根据题意判断出h随t的变化趋势,然后再结合选项可得答案.【解答】解:空玻璃杯注满前,水位越来越高;空玻璃注满后很长时间高度不变;当容器和空玻璃杯水位相同时,水位继续升高。
【初中数学】初中数学2016年中考八大题型典中典专题复习(8份) 通用3

专题复习(二)——规律猜想问题题型概述给出一列数字、等式或者一组图形,通过观察、分析、猜想、探索归纳其规律的一类题目就是规律与猜想的探究性试题,这类问题要求大家都有较为敏锐的观察思考、分析、推理、演绎、归纳能力,从具体、特殊的事实中探究其存在的规律,把潜在的表面现象中的本质挖掘出来,是一种发现、创新。
题型例析类型1:数字规律数字变化类的问题,一般在解答时先从数阵前面简单的情形入手,通过观察同一行、同一列的数据排列关系,同时注意这个数据艘所在行数序号之间有何深层次的变化规律,发现这个规律问题就等于解决了。
【例题】(2015•山东泰安,第18题3分)下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x的值为()A.135 B.170 C.209 D.252考点:规律型:数字的变化类..分析:首先根据图示,可得第n个表格的左上角的数等于n,左下角的数等于n+1;然后根据4﹣1=3,6﹣2=4,8﹣3=5,10﹣4=6,…,可得从第一个表格开始,右上角的数与左上角的数的差分别是3、4、5、…,n+2,据此求出a的值是多少;最后根据每个表格中右下角的数等于左下角的数与右上角的数的积加上左上角的数,求出x的值是多少即可.解答:解:∵a+(a+2)=20,∴a=9,∵b=a+1,∴b=a+1=9+1=10,∴x=20b+a=20×10+9=200+9=209故选:C.点评:此题主要考查了探寻数字规律问题,注意观察总结出规律,并能正确的应用规律.【变式练习】(1)(2015湖北荆州第10题3分)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现有等式A m=(i,j)表示正奇数m是第i组第j个数(从左往右数),如A7=(2,3),则A2015=()A.(31,50)B.(32,47)C.(33,46)D.(34,42)考点:规律型:数字的变化类.分析:先计算出2015是第1008个数,然后判断第1008个数在第几组,再判断是这一组的第几个数即可.解答:解:2015是第=1008个数,设2015在第n组,则1+3+5+7+…+(2n﹣1)≥1008,即≥1008,解得:n≥,当n=31时,1+3+5+7+…+61=961;当n=32时,1+3+5+7+…+63=1024;故第1008个数在第32组,第1024个数为:2×1024﹣1=2047,第32组的第一个数为:2×962﹣1=1923,则2015是(+1)=47个数.故A2015=(32,47).故选B.点评:此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.(2)(2015•甘肃武威,第18题3分)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数,…依此类推,那么第9个三角形数是,2016是第个三角形数.考点:数字的变化类.专题:规律型:分析:根据所给的数据发现:第n个三角形数是1+2+3+…+n,由此代入分别求得答案即可.解答:第9个三角形数是1+2+3+4+5+6+7+8+9=45,1+2+3+4+…+n=2016,n(n+1)=4032,解得:n=63.故答案为:45,63.点评:此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.类型2:图形规律对于图形的问题,要注意仔细观察,找到图形之间能够相互循环的关键点,然后把每一个循环组看作一个整体再来研究就可以了。
2016年中考数学热点小专题复习试题(8个附答案)

2016年中考数学热点小专题复习试题(8个附答案)热点小专题 (八) [统计与概率有关的图表信息题] 类型一与统计图表有关的信息题 1.[2014•甘孜州] 为了了解某地初三学生参加消防知识竞赛的成绩(均为整数),从中抽取了1%的同学的竞赛成绩,整理后绘制成如图Z8-1的频数直方图.请结合图形解答下列问题: (1)指出这个问题中的总体; (2)求竞赛成绩在84.5~89.5这一小组的频率; (3)如果竞赛成绩在90分以上(含90分)的同学可以获得奖励,请估计该地初三学生中有多少人获得奖励.2.[2015•西安] 某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育教师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x),现在我们将这些同学的测试结果分为四个等级:优秀(x≥44)、良好(36≤x≤43)、及格(25≤x≤35)和不及格(x≤24),并将统计结果绘制成如下两幅不完整的统计图.请你根据以上信息,解答下列问题: (1)补全条形统计图和扇形统计图; (2)被测试女生1分钟“仰卧起坐”个数的中位数落在________等级;(3)若该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐”个数达到优秀的人数.3.[2015•河北] 某厂生产A,B两种产品,其单价随市场变化而做相应调整,营销人员根据前三次单价变化的情况,绘制了如下统计表及不完整的折线图:第一次第二次第三次 A产品单价 (元/件) 6 5.2 6.5 B产品单位(元/件) 3.5 4 3 图Z8-3 并求得了A产品三次单价的平均数和方差: xA=5.9;sA2=13[(6-5.9)2+(5.2-5.9)2+(6.5-5.9)2]=43150. (1)补全图Z8-3中B产品单价变化的折线图,B产品第三次的单价比上次的单价降低了________%; (2)求B产品三次单价的方差,并比较哪种产品的单价波动小; (3)该厂决定第四次调价,A 产品的单价仍为6.5元/件,B产品的单价比3元/件上调m%(m>0),使得A产品这四次单价的中位数是B产品四次单价中位数的2倍少1,求m的值.类型二统计与概率的综合 4.[2015•安庆二模] 2015年安徽省中考体育考试方案出台,体育总分由2014年的40分增加到45分,考试项目分为必考项目和选考项目. 男生的必考项目是1000米跑,女生的必考项目是800米跑;选考项目为立定跳远、1分钟跳绳和坐位体前屈. 某校为了解毕业班学生对选考项目的喜爱程度,以便进行有针对性的训练,对本校九年级部分学生进行了一次随机问卷调查,图Z8-4是采集数据后绘制的两幅不完整的统计图(A:立定跳远;B:1分钟跳绳;C:坐位体前屈). 请你根据图中提供的信息解答以下问题:图Z8-4 (1) 填写扇形统计图中缺失的数据,并把条形图补充完整;(2) 2015年该校九年级共有学生200人,按此调查,估计2015年该校九年级学生中喜爱1分钟跳绳的学生人数; (3) 安徽省教育厅规定:各地市可在选考项目中确定两项作为本地市中考体育考试项目,那么该校所在地市确定的中考体育项目中含有“1分钟跳绳”的概率是多少?5.[2015•合肥瑶海区模拟] 中学生综合素质评价为A,B,C,D,E五个等次,评价小组根据每一个学生的表现予以评定.某班50名同学参加综合素质评价,获得各等次的频数分布和部分频数直方图如下:图Z8-5 等次频数(人数) A 12 B 20 C 10 D 5 E a(1)求表中的a值; (2)请将频数直方图补齐; (3)考评结束后,从该班任意抽取一个学生进行评定结果的调查,求抽到的学生的评定等次为A或B的概率P.6.[2014•宁夏] 如图Z8-6是银川市6月1日至15日的空气质量指数趋势折线统计图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气质量重度污染.某人随机选择6月1日至6月14日中的某一天到达银川,共停留2天. (1)求此人到达当天空气质量优良的天数; (2)求此人在银川停留2天期间只有一天空气质量是重度污染的概率; (3)由折线统计图判断从哪天开始连续三天的空气质量指数方差最大(只写结论).参考答案 1.解:(1)这个问题的总体是某地全体初三学生参加消防知识竞赛的成绩. (2)164+10+16+13+7=0.32. 故竞赛成绩在84.5~89.5这一小组的频率为0.32. (3)13+74+10+16+13+7×[(4+10+16+13+7)÷1%]=0.4×5000=2000(人).故估计该地初三学生中有2000人获得奖励. 2.解:(1)良好人数13÷26%×40%=20(人);及格所占百分比为12÷(13÷26%)×100%=24%. 补全统计图,如图所示.图①图② (2)“良好” (3)650×26%=169(人).∴若该年级有650名女生,则估计该年级女生中1分钟“仰卧起坐”个数达到优秀的人数为169人. 3.解:(1)补全折线图如图所示,B产品单价降低了25%. A,B产品单价变化折线图 (2)xB�啵�133.5+4+3=3.5, sb2=13[(3.5-3.5)2+(4-3.5)2+(3-3.5)2]=16. ∵16<43150,∴B产品的单价波动小. (3)第四次调价后,对于A产品,这四次单价的中位数为6+6.52=254,对于B产品,∵m>0,∴第四次单价大于3. 又∵3.5+42×2-1=132>254,∴第四次单价小于4,∴31+m%+3.52×2-1=254,解得m=25. 4.解: (1)由条形统计图中A对应的数据和扇形统计图中A对应的百分比可知,抽取的样本容量为8÷20%=40,故喜爱B项目的人数为40-8-18=14(人),所占百分比为14÷40=35%;喜爱C项目的人数所占百分比为1-20%-35%=45%或18÷40=45%.填写扇形统计图和补全条形统计图如下: (2) 由(1)可知,样本中喜爱B项目占样本容量的35%,故据此可估计该校九年级学生中喜爱1分钟跳绳的学生有200×35%=70(人). (3)画树状图如下:由图可知一共有6种等可能的情况,其中含有项目B的有4种情况,因此P(含有“1分钟跳绳”项目)=23. 5.解: (1)a=3. (2)略. (3)P(A或B)=20+1250=1625. 6.解:(1)此人到达当天空气质量优良的有1日、2日、3日、7日、12日,共5天. (2)此人在银川停留两天的空气质量指数是(86,25),(25,57),(57,143),(143,220),(220,158),(158,40),(40,217),(217,160),(160,128),(128,167),(167,75),(75,106),(106,180),(180,175),共14个停留时间段,期间只有一天空气质量重度污染的有(143,220),(220,158),(40,217),(217,160).因此,P(在银川停留2天期间只有一天空气质量重度污染)=414=27. (3)根据折线图可得5日、6日、7日三天数据波动最大,因此方差最大.所以从第5日开始的第5日、第6日、第7日连续三天的空气质量指数方差最大.。
【初中数学】初中数学2016年中考八大题型典中典专题复习(8份) 通用2

专题复习(三)——方案设计问题题型概述方案设计型问题是通过设置一个实际问题情景,给出若干信息,提出解决问题的要求,要求学生运用学过的技能和方法,进行设计和操作,寻求恰当的解决方案,有时也给出几个不同的解决方案,要求判断哪个方案较优。
它包括测量方案设计、作图方案设计和经济类方案设计等。
题型例析类型1:利用方程、不等式(组)进行方案设计这类问题往往列方程组或不等式(组)解应用题,但是列方程的关键又是找出题目中存在的的等量关系或不等式关系;对于设计方案题一般要根据题意列出不等式或不等式组,求不等式组的整数解(或者符合要求的解)。
【例题】(2015·四川甘孜、阿坝,第26题8分)一水果经销商购进了A,B两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:(1)如果甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱,请你计算出经销商能盈利多少元?(2)在甲、乙两店各配货10箱(按整箱配送),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?考点:一元一次不等式的应用.分析:(1)经销商能盈利=水果箱数×每箱水果的盈利;(2)设甲店配A种水果x箱,分别表示出配给乙店的A水果,B水果的箱数,根据盈利不小于110元,列不等式求解,进一步利用经销商盈利=A种水果甲店盈利×x+B种水果甲店盈利×(10﹣x)+A种水果乙店盈利×(10﹣x)+B种水果甲店盈利×x;列出函数解析式利用函数性质求得答案即可.解答:(1)经销商能盈利=5×11+5×17+5×9+5×13=5×50=250;(2)设甲店配A种水果x箱,则甲店配B种水果(10﹣x)箱,乙店配A种水果(10﹣x)箱,乙店配B种水果10﹣(10﹣x)=x箱.∵9×(10﹣x)+13x≥100,∴x≥2,经销商盈利为w=11x+17•(10﹣x)+9•(10﹣x)+13x=﹣2x+260.∵﹣2<0,∴w随x增大而减小,∴当x=3时,w值最大.甲店配A种水果3箱,B种水果7箱.乙店配A种水果7箱,B种水果3箱.最大盈利:﹣2×3+260=254(元).点评:此题考查一元一次不等式的运用,一次函数的实际运用,找出题目蕴含的不等关系与等量关系解决问题.【变式练习】(2015•四川泸州,第21题7分)某小区为了绿化环境,计划分两次购进A、B两种花草,第一次分别购进A、B两种花草30棵和15棵,共花费675元;第二次分别购进A、B两种花草12棵和5棵。
初中数学题经典题型

初中数学题经典题型一、代数式求值代数式求值是初中数学的基本题型之一,也是中考数学必考题型。
这类题主要考察学生的运算能力和对基本公式的掌握程度。
以下是一些典型的代数式求值题目:1. 求代数式(2x+3)/(x+1)的值,其中x=4。
2. 求代数式(2x+1)/(x+3)的值,其中x=2。
3. 求代数式(x^2-1)/(x+1)的值,其中x=3。
二、方程求解方程求解是初中数学中非常重要的一个知识点,也是中考数学必考题型。
这类题主要考察学生的运算能力和对方程的掌握程度。
以下是一些典型的方程求解题目:1. 求方程2x+3=7的解。
2. 求方程3x-2=5的解。
3. 求方程4x+2=7的解。
三、不等式求解不等式求解是初中数学中的一个重要知识点,也是中考数学必考题型。
这类题主要考察学生的运算能力和对不等式的掌握程度。
以下是一些典型的不等式求解题目:1. 求不等式5x+3>7的解集。
2. 求不等式2x-1<9的解集。
3. 求不等式4x-5>=0的解集。
四、函数与图像函数与图像是初中数学中的一个难点和重点,也是中考数学必考题型。
这类题主要考察学生的数形结合能力和对函数的掌握程度。
以下是一些典型的函数与图像题目:1. 已知函数y=2x-1,求当x=3时y的值。
2. 已知函数y=-x+4,求当y=3时x的值。
3. 已知函数y=x^2,求当y=4时x的值。
五、三角形与四边形三角形与四边形是初中数学中非常重要的一个知识点,也是中考数学必考题型。
这类题主要考察学生的空间思维能力和对几何图形的掌握程度。
以下是一些典型的三角形与四边形题目:1. 求等边三角形的边长为10厘米时,其面积和周长分别是多少?2. 一个矩形长为6厘米,宽为4厘米,求其对角线的长度是多少?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题复习(四)——开放研究问题题型概述开放研究型问题是相对于条件和结论明确的封闭试题而言的,是能引起同学们产生联想,并会自然而然的往深处想的一种试题类型,简单来说就是答案不唯一的,解题的方向不确定,条件或者结论不止一种情况的试题,解答此类试题时,需要对问题全方位、多层次、多角度思考审视,尽量找到解决问题的方法。
根据开放性的试题的特点,主要有如下几种类型:条件开放性、结论开放性、选择开放型、综合开放型。
题型例析类型1:条件开放性解决这种类型的开放性问题的一般思路是:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,结合图形挖掘条件,逆向追索,逐步探寻。
【例题】(2015•广东梅州,第12题,3分)已知:△ABC中,点E是AB边的中点,点F在AC边上,若以A,E, F为顶点的三角形与△ABC相似,则需要增加的一个条件是.(写出一个即可)考点:相似三角形的判定.专题:开放型.分析:根据相似三角形对应边成比例或相似三角形的对应角相等进行解答;由于没有确定三角形相似的对应角,故应分类讨论.解答:解:分两种情况:①∵△AEF∽△ABC,∴AE:AB=AF:AC,即1:2=AF:AC,∴AF=AC;②∵△AFE∽△ACB,∴∠AFE=∠ABC.∴要使以A、E、F为顶点的三角形与△ABC相似,则AF=AC或∠AFE=∠ABC.故答案为:AF=AC 或∠AFE=∠ABC.点评:本题很简单,考查了相似三角形的性质,在解答此类题目时要找出对应的角和边.【变式练习】(2014•齐齐哈尔,13题3分)如图,已知△ABC中,AB=AC,点D、E在BC上,要使△ABD ≌ACE,则只需添加一个适当的条件是BD=CE .(只填一个即可)考点:全等三角形的判定.专题:开放型分析:此题是一道开放型的题目,答案不唯一,如BD=CE,根据SAS推出即可;也可以∠BAD=∠CAE等.解答:BD=CE,理由是:∵AB=AC,∴∠B=∠C,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),故答案为:BD=CE.点评:本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目比较好,难度适中.类型2:结论开放性所谓结论性开放题就是给出问题的条件,让解题者根据条件找寻相应的结论,且符合条件的结论往往呈现出多样化,这类问题就是结论的开放性问题。
其解题思路是:从已知条件出发,沿着不同的方向、不同层次进行观察、分析、验证得到相应的结论。
【例题】(2015·四川甘孜、阿坝,第27题10分)已知E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F分别为边BC,CD的中点时,有:①AF=DE;②AF⊥DE成立.试探究下列问题:(1)如图1,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)(2)如图2,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;(3)如图3,在(2)的基础上,连接AE和BF,若点M,N,P,Q分别为AE,EF,FD,AD 的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.考点:四边形综合题.分析:(1)由四边形ABCD为正方形,CE=DF,易证得△ADF≌△DCE(SAS),即可证得AF=DE,∠DAF=∠CDE,又由∠ADG+∠EDC=90°,即可证得AF⊥DE;(2)由四边形ABCD为正方形,CE=DF,易证得△ADF≌△DCE(SAS),即可证得AF=DE,∠E=∠F,又由∠ADG+∠EDC=90°,即可证得AF⊥DE;(3)首先设MQ,DE分别交AF于点G,O,PQ交DE于点H,由点M,N,P,Q分别为AE,EF,FD,AD的中点,即可得MQ=PN=DE,PQ=MN=AF,MQ∥DE,PQ∥AF,然后由AF=DE,可证得四边形MNPQ是菱形,又由AF⊥DE即可证得四边形MNPQ是正方形.解答:(1)上述结论①,②仍然成立,理由为:∵四边形ABCD为正方形,∴AD=DC,∠BCD=∠ADC=90°,在△ADF和△DCE中,,∴△ADF≌△DCE(SAS),∴AF=DE,∠DAF=∠CDE,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF⊥DE;(2)上述结论①,②仍然成立,理由为:∵四边形ABCD为正方形,∴AD=DC,∠BCD=∠ADC=90°,在△ADF和△DCE中,,∴△ADF≌△DCE(SAS),∴AF=DE,∠E=∠F,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF⊥DE;(3)四边形MNPQ是正方形.理由为:如图,设MQ,DE分别交AF于点G,O,PQ交DE于点H,∵点M,N,P,Q分别为AE,EF,FD,AD的中点,∴MQ=PN=DE,PQ=MN=AF,MQ∥DE,PQ∥AF,∴四边形OHQG是平行四边形,∵AF=DE,∴MQ=PQ=PN=MN,∴四边形MNPQ是菱形,∵AF⊥DE,∴∠AOD=90°,∴∠HQG=∠AOD=90°,∴四边形MNPQ是正方形.点评:此题属于四边形的综合题,考查了正方形的判定与性质、全等三角形的判定与性质以及三角形中位线的性质.注意证得△ADF≌△DCE(SAS),掌握三角形中位线的性质是关键.【变式练习】(2014•山东威海)猜想与证明:如图1摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为DM=DE.(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.考点:四边形综合题分析:猜想:延长EM交AD于点H,利用△FME≌△AMH,得出HM=EM,再利用直角三角形中,斜边的中线等于斜边的一半证明.(1)延长EM交AD于点H,利用△FME≌△AMH,得出HM=EM,再利用直角三角形中,斜边的中线等于斜边的一半证明,(2)连接AE,AE和EC在同一条直线上,再利用直角三角形中,斜边的中线等于斜边的一半证明,解答:猜想:DM=ME证明:如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=EM,∴DM=HM=ME,∴DM=ME.(1)如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=EM,∴DM=HM=ME,∴DM=ME,故答案为:DM=ME.(2)如图2,连接AE,∵四边形ABCD和ECGF是正方形,∴∠FCE=45°,∠FCA=45°,∴AE和EC在同一条直线上,在RT△ADF中,AM=MF,∴DM=AM=MF,在RT△AEF中,AM=MF,∴AM=MF=ME,∴DM=ME.点评:本题主要考查四边形的综合题,解题的关键是利用正方形的性质及直角三角形的中线与斜边的关系找出相等的线段.类型3:选择开放型选择性开放题是指开放的区域是带有范围的选择,解答时应注意分析范围内所有的元素是否都能用。
【例题】(2015年浙江舟,19,6分)如图,正方形ABCD中,点E,F分别在AB,BC上,AF=DE,AF和DE相交于点G.(1)观察图形,写出图中所有与∠AED相等的角;(2)选择图中与∠AED 相等的任意一个角,并加以证明.【答案】解:(1)与∠AED 相等的角有,,DAG AFB CDE ∠∠∠ .(2)选择AED AFB ∠=∠:正方形ABCD 中,090,DAB B AD AB ∠=∠== , 又∵AF =DE ,∴()ADE ABF SAS ∆∆≌.∴AED AFB ∠=∠.【考点】开放型;正方形的性质;平行的性质;全等三角形的判定和性质. 【分析】(1)观察图形,可得 结果.(2)答案不唯一,若选择AED AFB ∠=∠,则由()ADE ABF SAS ∆∆≌可得结论;若选择AED CDE ∠=∠,则由正方形ABCD 得到AB ∥CD ,从而得到结论;, 若选择AED DAG ∠=∠,则一方面,由()ADE ABF SAS ∆∆≌可得AED AFB ∠=∠,另一方面,由正方形ABCD 得到AD ∥BC ,得到DAG AFB ∠=∠,进而可得结论【变式练习】(2014•山东烟台)在正方形ABCD 中,动点E ,F 分别从D ,C 两点同时出发,以相同的速度在直线DC ,CB 上移动.(1)如图①,当点E 自D 向C ,点F 自C 向B 移动时,连接AE 和DF 交于点P ,请你写出AE 与DF 的位置关系,并说明理由;(2)如图②,当E ,F 分别移动到边DC ,CB 的延长线上时,连接AE 和DF ,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明)(3)如图③,当E ,F 分别在边CD ,BC 的延长线上移动时,连接AE ,DF ,(1)中的结论还成立吗?请说明理由;(4)如图④,当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最小值.考点:全等三角形,正方形的性质,勾股定理,运动与变化的思想.分析:(1)AE=DF,AE⊥DF.先证得△ADE≌△DCF.由全等三角形的性质得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;(2)是.四边形ABCD是正方形,所以AD=DC,∠ADE=∠DCF=90°,DE=CF,所以△ADE ≌△DCF,于是AE=DF,∠DAE=∠CDF,因为∠CDF+∠ADF=90°,∠DAE+∠ADF=90°,所以AE⊥DF;(3)成立.由(1)同理可证AE=DF,∠DAE=∠CDF,延长FD交AE于点G,再由等角的余角相等可得AE⊥DF;(4)由于点P在运动中保持∠APD=90°,所以点P的路径是一段以AD为直径的弧,设AD的中点为O,连接OC交弧于点P,此时CP的长度最小,再由勾股定理可得OC的长,再求CP即可.解答:(1)AE=DF,AE⊥DF.理由:∵四边形ABCD是正方形,∴AD=DC,∠ADC=∠C=90°.∵DE=CF,∴△ADE≌△DCF.∴AE=DF,∠DAE=∠CDF,由于∠CDF+∠ADF=90°,∴∠DAE+∠ADF=90°.∴AE⊥DF;(2)是;(3)成立.理由:由(1)同理可证AE=DF,∠DAE=∠CDF延长FD交AE于点G,则∠CDF+∠ADG=90°,∴∠ADG+∠DAE=90°.∴AE⊥DF;(4)如图:由于点P在运动中保持∠APD=90°,∴点P的路径是一段以AD为直径的弧,设AD的中点为O,连接OC交弧于点P,此时CP的长度最小,在Rt△ODC中,OC=,∴CP=OC﹣OP=.点评:本题主要考查了四边形的综合知识.综合性较强,特别是第(4)题要认真分析.类型4:综合开放型这种综合开放性问题需要根据以给定的条件,经过适当的尝试,符合要求的答案定会产生。