高考数学解题技巧15篇

合集下载

高考数学解题技巧(每周一计整理版)

高考数学解题技巧(每周一计整理版)

高考数学解题技巧(每周一计.整理版) 每周一计第一计——恒成立问题的处理策略恒成立问题一直以来都有是数学中的一个重点、难点,这类问题也没有一个固定的思想方法去处理,各类考试以及高考中都屡见不鲜。

如何更好地简单,准确,快速解决这类问题并更好地认识把握,本文通过举例说明这类问题的一些常规处理。

一 转化为二次函数,利用分类讨论思想直接处理例1. 已知函数f(x)=x 2-2ax+4在区间[-1,2] 上都不小于2,求a 的值。

解:由函数f(x)=x 2-2ax+4的对称轴为x=a所以必须考察a 与-1,2的大小,显然要进行三种分类讨论 1.当a ≥2时f(x)在[-1,2]上是减函数此时min )(x f = f(2)=4-4a+42≥ 即a 23≤结合a ≥2,所以a 的解集为φ 2.当a 1-≤ 时 f(x)在[-1,2]上是增函数,min )(x f = f(-1)=1+2a+42≥结合a 1-≤ 即123-≤≤-a 3.当-1<a<2时 m i n )(x f = f(a)=a 2-2a 2+4 2≥ 即≤-2a 2≤所以21≤<-a综上1,2,3满足条件的a 的范围为:223≤≤-a 二 确定主元,构造函数,利用单调性简单处理例2.对于满足0≤a ≤4的所有实数a 求使不等式x 2+ax>4x+a-3都成立的x 的取值范围。

解:不等式变形为x 2+(x-1)a-4x+3>0设f(a)= (x-1)a+x 2-4x+3,则其是关于a 的一个一次函数:是单调函数结合题意有⎩⎨⎧>>0)0(0)4(f f 即 得1-<x 或3>x 三 利用不等式性质快速处理例3.若关于x 的不等式|x-2|+|x+3|≥a 恒成立,试求a 的范围解:由题意知只须min )32(++-≤x x a由5)3(232=+--≥++-x x x x 所以 5≤a四 构造新函数,利用导数求最值迂回处理。

高考数学答题技巧:选择题十大解法

高考数学答题技巧:选择题十大解法

2019年高考数学答题技巧:选择题十大解法查字典数学网整理了2019年高考数学答题技巧:选择题十大解法,帮助广大高中学生学习数学知识!高考数学选择题从难度上讲是比其他类型题目降低了,但知识覆盖面广,要求解题熟练、准确、灵活、快速。

选择题的解题思想,渊源于选择题与常规题的联系和区别。

它在一定程度上还保留着常规题的某些痕迹。

而另一方面,选择题在结构上具有自己的特点,即至少有一个答案(若一元选择题则只有一个答案)是正确的或合适的。

因此可充分利用题目提供的信息,排除迷惑支的干扰,正确、合理、迅速地从选择支中选出正确支。

选择题中的错误支具有两重性,既有干扰的一面,也有可利用的一面,只有通过认真的观察、分析和思考才能揭露其潜在的暗示作用,从而从反面提供信息,迅速作出判断。

由于我多年从事高考试题的研究,尤其对选择题我有自己的一套考试技术,我知道无论是什么科目的选择题,都有它固有的漏洞和具体的解决办法,我把它总结为:6大漏洞、8大法则。

6大漏洞是指:有且只有一个正确答案;不问过程只问结果;题目有暗示;答案有暗示;错误答案有严格标准;正确答案有严格标准;8大原则是指:选项唯一原则;范围最大原则;定量转定性原则;选项对比原则;题目暗示原则;选择项暗示原则;客观接受原则;语言的精确度原则。

经过我的培训,很多的学生的选择题甚至1分都不丢。

下面是一些实例:1.特值检验法:对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

例:△ABC的三个顶点在椭圆4x2+5y2=6上,其中A、B两点关于原点O对称,设直线AC的斜率k1,直线BC的斜率k2,则k1k2的值为A.-5/4B.-4/5C.4/5D.25/5解析:因为要求k1k2的值,由题干暗示可知道k1k2的值为定值。

题中没有给定A、B、C三点的具体位置,因为是选择题,我们没有必要去求解,通过简单的画图,就可取最容易计算的值,不妨令A、B分别为椭圆的长轴上的两个顶点,C为椭圆的短轴上的一个顶点,这样直接确认交点,可将问题简单化,由此可得,故选B。

高中数学学习方法15篇

高中数学学习方法15篇

高中数学学习方法15篇今年高考文理科的数学试卷总体难度不大,为师生所接受。

文科试卷难易程度适中,尤其是填空题和选择题难度不大,解答题难易程度和试题坡度安排都比较合理,有利于考生的发挥,也有利于指导以后的学习。

理科试卷容易题、中等题和难题比例恰当,注重逻辑思维能力和表达能力(运用数学符号)以及数形结合能力的考查,部分试题新而不难,开放题有所体现,把能力的考查落到实处。

但我个人认为,今年试卷对高中数学的主干知识的核心内容考查不到位,但不等于我们今后可以完全不重视。

抓基础:不变应万变把基础知识和基本技能落到实处。

唯有如此才能以不变应万变。

比如,文科第22题是一道经典题型,考查圆锥曲线上一点到定点距离,既考老师又考学生。

所谓考老师是说这样的题型你讲过没有,是怎么讲的?学生的典型错误(以定点为圆心作一个与椭圆相切的圆,再利用判别式等于0)是怎么纠正?正确解法(转化为二次函数在某个区间上的最值)是怎么想到的?只有经过这样的教学环节,学生才能真正理解。

所谓考学生是说你自己做错了,老师重点讲评了的经典问题,你掌握了没有?掌握的标准是能否顺利解答相应的变式问题。

由于第(3)含有参数,需要分类讨论,能有效甄别考生的思维水平和运算能力。

本题以椭圆(解析几何重点内容之一)为载体,考查把几何问题转化为代数问题的能力(这是解析几何的核心思想),以及含参数的二次函数求最值问题(也是代数中的重点和难点),一举多得。

当然,可能会有人认为这道题形式不新,其实,要求考题全新既无必要,也不可能,只要有利于高校选拔和中学教学就好,不必过分求新、求异。

理科的第22题相对较难,不少同学反映不好表述。

若能从集合的包含关系这个角度考虑,则容易表述,部分考生是直接对两个数列进行分类,由于要用到一些多数学生不熟悉的整除知识,因而感到困难,无法下手。

这就体现基础知识和基本技能的重要性。

尽管今年理科试卷在知识点分布上有些不尽如人意,但复习不能受此影响,仍然要全面、扎实复习,不能留下知识点的死角,相应的技能、技巧要牢固掌握,思想方法都要总结到位,这样才能“不管风吹浪打,胜似闲庭信步”。

高考数学解题思路及方法优选篇

高考数学解题思路及方法优选篇

高考数学解题思路及方法优选篇高考数学解题思路及方法 11.知:条件奠基细端详——条件是形成思路的基础条件信息须细审,认准对象及特征。

三方入手找关系,本义变意咋合成。

任何数学题都是由条件和结论两部分组成,并且条件是结论成立的基础。

条件确定后,才能有与它相应的结论,没有这个条件就没有这个结论。

条件改变了,则结论一般也随之改变。

所以要想求出或导出结论,就必须慎重地研究条件。

不研究条件就不可能形成解题思路,也就是说,研究条件是形成思路的基础。

如何研究条件呢?一般要从三方面入手,其一是理解每个条件的本身含义,其二是研究每个条件的变意,其三是掌握所有条件的联合作用。

要想理解条件的本身含义,应从条件结构出发,认准条件,搞清含义。

题目中的每个条件,都是由这个条件的对象和对象的特征两部分组成,没有无对象的条件,也没有只有对象而没有对象特征的条件。

我们既要认准条件的对象,又要把握对象的特征,才能真正的理解条件,掌握条件的`本意。

但是只掌握条件的本意往往还是不够的,因为解题思路的本质在于沟通条件与结论间的关系。

当条件的本意难以与结论沟通时,还需要挖掘它的各种变意,也就是把条件转化成与之等价的各种条件,以备更有效地与结论进行沟通。

对于多个条件的问题,不但要注意这些条件的主次,还要注意这些条件的关系,充分发挥每个条件的关系及作用,使之联合起来,把问题解决。

2.求:结论导向何处想——结论是形成思路的主攻方向解题须知主攻向,把握特征认对象。

理解本意挖变意,围绕目标善联想。

在认真研究了条件之后,还要研究结论,结论的构成与条件一样,它既有结论的对象又有结论对象的特征。

不过值得注意的是,条件中的对象和对象的特征这两方面是完备的。

而结论中的对象和对象特征这两方面有时并不完备,可以有对象,待研究对象的特征,也可以知其对象的特征,待确定对象。

如果一道题目的结论中的对象和对象特征都是明确的,这就是证明题了。

无论结论是上述哪种情况,通过研究结论必须搞清要解决的问题是什么,这是解题的主攻方向,也是形成解题思路的主要目标。

高考数学必考点解题方法秘籍 递推数列 理

高考数学必考点解题方法秘籍 递推数列 理

高考数学必考点解题方法秘籍 递推数列 理1 一阶递推数列我们首先回顾递推数列的定义,参见文献[1]。

定义1 对于任意+∈N n ,由递推关系),(,21n k n k n k n a a a f a -+-++=确定的数列{}n a 成为递推数列(或递归数列),k 为阶数。

若f 是线性的,则称此数列为线性递推数列,否则称为非线性递推数列。

本节通过分析几种一阶递推数列类型,给出其的求通项公式方法,并分析两种常见方法的区别和联系。

1.1 一阶线性递推数列本节主要讨论下面两种一阶线性递推数列。

等差数列、等比数列[2]作为最基本的一阶线性递推数列由于篇幅所限,在这里不再赘述。

1.1.1)(1n f a a n n +=+类这类递推数列的解题方法与等差数列求通项公式的方法一样,都是叠加法,下面就以高考题为例来说明其解题方法和过程。

例(2007北京高考理第15题) 数列{}n a 中,12a =,1n n a a cn +=+(c 是常数,),且123a a a ,,成公比不为1的等比数列.(I )求c 的值; (II )求{}n a 的通项公式.解(I )由题知:12a =,22a c =+,323a c =+,因为1a ,2a ,3a 成等比数列,所以2(2)2(23)c c +=+,解得0c =或2c =. 当0c =时,123a a a ==,不符合题意舍去,故2c =.(II )当2n ≥时,由于21a a c -=,322a a c -=,1(1)n n a a n c --=-,所以1(1)[12(1)]2n n n a a n c c --=+++-=.又12a =,2c =,故22(1)2(23)n a n n n n n =+-=-+=,,.当1n =时,上式也成立,所以22(12)n a n n n =-+=,,.1.1.2)0)1((,1≠-+=+p pq q pa a n n 类此类递推数列是高考最常见的一种,可以用两种方法进行解答,下面我们先来解出他的通项公式,然后通过典型例题运用两种方法来解析。

2023高考数学答题技巧(15篇)

2023高考数学答题技巧(15篇)

2023高考数学答题技巧(15篇)高考数学答题技巧1一、规范书写高考文科数学答题技巧之一就是规范书写,这一点是文理通用的技巧。

卷面评分标准就是规范度,这就要求不但要对、而且要全且规范。

会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。

因为字迹潦草,会使阅卷老师的第一印象不良,“感情分”也就相应低了,所以高考答题书写要工整,保证卷面能得分。

二、讲究策略对于高考文科数学题要力求做的对、全、得满分,高考文科数学有两种常用方法:1。

分步解答:对于疑难问题,考生可以将它划分为一系列的步骤,先解决问题的一部分,能解到几步就写几步,每进行一步就可得到这一步的分数,也可以把条件和目标译成数学表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。

从局部到整体,形成思路,获得解题成功。

在高考文科数学答题过程中尽量多的列举应用到的公式。

2。

跳步解答:当文科数学在解题的某一环节出现问题时,可以跳过这一步,写出后继各步,一直做到底;另外,若题目有两问,第一问做不上,可以第一问为“已知”,完成第二问,这都叫跳步解答。

也许后来由于解题的正迁移对中间步骤想起来了,或在时间允许的情况下,经努力而攻下了中间难点,可在相应题尾补上。

三、合理分配时间1、文科数学就是和时间的斗争。

高考文科数学试卷一发下来后,首先把全部问题看一遍。

找出其中看上去最容易解答的题,然后假定步骤,思考怎么样的顺序解题才最好。

2、切忌不看题目盲目背题,要仔细审题,清楚题目要求你解决什么问题,然后有条不紊迅速解题,提高准确率。

3、解题格式要规范,重点步骤要突出。

4、选择题时间控制在35分中以内。

小题小做、巧做、简单做,选择题和填空题要多用数形结合、特殊值验证法等技巧,节约时间。

5、保持心静,以不变应万变。

切莫因旁人的翻卷或其他行为干扰自己的解决思路。

这些都是高考文科数学应试答题高分技巧。

高考数学答题万能公式及解题技巧公式篇

高考数学答题万能公式及解题技巧公式篇

高考数学答题万能公式及解题技巧:公式篇1.诱导公式sin(-a)=-sin(a)cos(-a)=cos(a)sin(π2-a)=cos(a)cos(π2-a)=sin(a)sin(π2+a)=cos(a)cos(π2+a)=-sin(a)sin(π-a)=sin(a)cos(π-a)=-cos(a)sin(π+a)=-sin(a)cos(π+a)=-cos(a)2.两角和与差的三角函数sin(a+b)=sin(a)cos(b)+cos(α)sin(b)cos(a+b)=cos(a)cos(b)-sin(a)sin(b)sin(a-b)=sin(a)cos(b)-cos(a)sin(b)cos(a-b)=cos(a)cos(b)+sin(a)sin(b)tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b)tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b)3.和差化积公式sin(a)+sin(b)=2sin(a+b2)cos(a-b2)sin(a)−sin(b)=2cos(a+b2)sin(a-b2)cos(a)+cos(b)=2cos(a+b2)cos(a-b2)cos(a)-cos(b)=-2sin(a+b2)sin(a-b2)4.二倍角公式sin(2a)=2sin(a)cos(b)cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a)5.半角公式sin2(a2)=1-cos(a)2cos2(a2)=1+cos(a)2tan(a2)=1-cos(a)sin(a)=sina1+cos(a)6.万能公式sin(a)=2tan(a2)1+tan2(a2)cos(a)=1-tan2(a2)1+tan2(a2)tan(a)=2tan(a2)1-tan2(a2)7.其它公式(推导出来的 )a⋅sin(a)+b⋅cos(a)=a2+b2sin(a+c) 其中 tan(c)=baa⋅sin(a)+b⋅cos(a)=a2+b2cos(a-c) 其中 tan(c)=ab1+sin(a)=(sin(a2)+cos(a2))21-sin(a)=(sin(a2)-cos(a2))2公式分类公式表达式乘法与因式分解a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b)(a2+ab+b2) 三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a根与系数的关系X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+co sA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h 斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h' 正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*ra是圆心角的弧度数r >0扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L 注:其中,S'是直截面面积, L是侧棱长柱体体积公式V=s*h 圆柱一生受用的数学公式坐标几何一对垂直相交于平面的轴线,可以让平面上的任意一点用一组实数来表示。

高考数学答题技巧

高考数学答题技巧

高考数学答题技巧高考数学答题技巧15篇高考数学答题技巧1相比较而言,选择题和填空题应该算得上是数学学科的小题。

所占的分值大约是70分,高中语文。

虽然没有占大头,但是应该没有人会忽略这70分,因为数学成绩的好坏从某种角度上来说就是由这部分分数决定。

小题的解题策略实际上非常重要,一定要充分利用题目中给出的有效信息进行“巧算”。

倘若能够做到数形结合,这样将会更加巧妙,并使答题一目了然;倘若采取归纳类比、合情猜想的方法,那将会更快的梳理出解题思路;倘若你有能力采取特殊化方法的话,那你的优势势必会更加明显。

选择题从难度上讲是比其他类型题目降低了,但知识覆盖面广,要求解题熟练、准确、灵活、快速。

选择题的解题思想,渊源于选择题与常规题的联系和区别。

它在一定程度上还保留着常规题的某些痕迹。

而另一方面,选择题在结构上具有自己的特点,即至少有一个答案(若一元选择题则只有一个答案)是正确的或合适的。

因此可充分利用题目提供的信息,排除迷惑支的干扰,正确、合理、迅速地从选择支中选出正确支。

选择题中的错误支具有两重性,既有干扰的一面,也有可利用的一面,只有通过认真的观察、分析和思考才能揭露其潜在的暗示作用,从而从反面提供信息,迅速作出判断。

由于我多年从事高考试题的研究,尤其对选择题我有自己的一套考试技术,我知道无论是什么科目的选择题,都有它固有的漏洞和具体的解决办法,我把它总结为:6大漏洞、8大法则。

“6大漏洞”是指:有且只有一个正确答案;不问过程只问结果;题目有暗示;答案有暗示;错误答案有严格标准;正确答案有严格标准;“8大原则”是指:选项唯一原则;范围最大原则;定量转定性原则;选项对比原则;题目暗示原则;选择项暗示原则;客观接受原则;语言的精确度原则。

经过我的培训,很多的学生的选择题甚至1分都不丢。

高考数学答题技巧2一、“六先六后”,因人因卷制宜。

考生可依自己的解题习惯和基本功,选择执行“六先六后”的战术原则。

1.先易后难。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学解题技巧15篇高考数学解题技巧1古语云:授人以鱼,只供一饭。

授人以渔,则终身受用无穷。

学知识,更要学方法。

高考数学解题中,一个不小心,就会丢分。

__针对数学考试中出现的问题,进行了详细的讲解,希望帮助学生培养良好的学习习惯,使学生在学习中能够事半功倍。

学习数学就是学习解题。

搞题海战术的方法固然是不对的,但离开解题来学习数学同样也是错误的。

其中的关键在于对待题目的态度和解题的方式上。

同学们应该认识到数学学科的特点,在复习方法上和其他学科区别开来。

下面我们就来听听清华大学附属中小学校的老师对高考数学解题方法的一些建议:一.解题时需要注意的问题1.精选题目,避免题海战术只有解决质量高的、有代表性的题目才能达到事半功倍的效果。

然而绝大多数的同学还没有辨别、分析题目好坏的能力,这就需要在老师的指导下来选择复习的练习题,以了解高考题的形式、难度。

2.认真分析题目解答任何一个数学题目之前,都要先进行分析。

相对于比较难的题目,分析更显得尤为重要。

我们知道,解决数学问题实际上就是在题目的已知条件和待求结论中架起联系的桥梁,也就是在分析题目中已知与待求之间差异的基础上,消除这些差异。

当然在这个过程中也反映出对数学基础知识掌握的熟练程度、理解程度和数学方法的灵活应用能力。

3.做好题目总结解题不是目的,我们是通过解题来检验我们的学习效果,发现学习中的不足,以便改进和提高。

因此,解题后的总结至关重要,这正是我们学习的大好机会。

对于一道完成的题目,有以下几个方面需要总结:1)在知识方面。

题目中涉及哪些概念、定理、公式等基础知识,在解题过程中是如何应用这些知识的。

2)在方法方面。

如何入手的,用到了哪些解题方法、技巧,自己是否能够熟练掌握和应用。

3)能否归纳出题目的类型,进而掌握这类题目的解题方法。

二.数学解题的一些技巧1.思路思想提炼法催生解题灵感。

“没有解题思想,就没有解题灵感”。

但“解题思想”对很多学生来说是既熟悉又陌生的。

熟悉是因为教师每天挂在嘴边,陌生就是说不请它究竟是什么。

建议同学们在老师的指导下,多做典型的数学题目,则可以快速掌握。

2.典型题型精熟法抓准重点考点管理学的“二八法则”说:20%的重要工作产生80%的效果,而80%的`琐碎工作只产生20%的效果。

数学学习上也有同样现象:20%的题目(重点、考点集中的题目)对于考试成绩起到了80%的贡献。

因此,提高数学成绩,必须优先抓住那20%的题目。

针对许多学生“题目解答多,研究得不透”的现象,应当通过科学用脑,达到每个章节的典型题型都胸有成竹时,解题时就会得心应手。

3.逐步深入纠错法巩固薄弱环节管理学上的“木桶理论”说:一只水桶盛水多少由最短板决定,而不是由最长板决定。

学数学也是这样,数学考试成绩往往会因为某些薄弱环节大受影响。

因此,巩固某个薄弱环节,比做对一百道题更重要。

高考数学解题技巧2答题技巧是一门学问,心理准备、答题顺序、审题方式、遇到难题时的处理等,都大有讲究。

掌握这方面的技巧,充分发挥主观能动性,将记忆力、理解力、分析综合融为一体,对提高考试成绩将产生直接影响。

●调理个性品质,进入数学情境高考对个性品质的要求是:"克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神"由此可知,个性品质不仅包含了"智商",也强调"情商"。

所以,应在最后阶段优化考试心理,提高自己应对挑战的能力。

比如考前要摒弃杂念,排除干扰思绪,通过清点用具、暗示重要知识和方法、提醒常见解题误区等进行针对性自我安慰,从而以最佳竞技状态去克服慌乱急躁、紧张焦虑的情绪,增强信心。

●沉着应对考试,确保旗开得胜良好的开端是成功的一半,从考试心理角度来说,这确实是有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览全卷,摸透题情,然后选择好答题顺序,再稳操一两道易题熟题,让自己产生"旗开得胜"的快意,从而有一个良好的开端,以振奋精神,鼓舞士气,很快进入最佳思维状态,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。

●采取"六先六后",因人因卷制宜旗开得胜后,情绪趋于稳定,大脑趋于亢奋,思维趋于积极,之后便是临场解题的黄金季节了。

这时,考生可结合自己的解题习惯和基本功,结合整套试题的结构,采取"六先六后"的答题策略。

即①先易后难。

要力求有效,防浪费时间、伤害情绪;②先熟后生。

使思维流畅,可超常发挥;③先同后异。

避免跳跃过频,减轻大脑负担;④先小后大。

赢得宝贵时间,创造心理基础;⑤先点后面。

要步步为营,梯度分段得分明显;⑥先高后低。

同类试题,高分优先。

●解题一"慢"一"快",效果相得益彰有些考生在考场上一味求快,结果题意未清,条件未全,便急于解答,岂不知"欲速则不达",结果思路受阻或进入死胡同,导致失败。

所以我建议"审题要慢,解答要快",审题时整个解题过程的"基础工程",题目本事是怎样解题的信息源,必须充分弄懂题意,综合所有条件,提炼解题线索,形成整体认识,思路一旦出现,则尽量快速完成,防止"超时失分"(因答题时间不足而未做完试题失分)●力求运算准确,争取一次成功数学高考题时间短,容量大,不允许做大量细致的解后检查,所以要力求运算准确,争取一次成功。

解题速度是建立在解题准确度的基础上的,中间数据常常从数量、性质上影响后继各步的解答,因此在以快为上的前提下,还要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,或是丢掉重要的得分步骤。

●讲究规范书写,力争既对又全考试的有一个特点就是以卷面为依据,这就要求不但要会而且要对、对而且要全、全而且要规范。

会而不对,令人惋惜;对而不全,得分不高;表述不规范、书写不工整又是造成非智力性因素失分的主要原因之一,会影响阅卷老师的"感情分"。

●小题小做巧做,注重思想方法小题切勿大做,时间的把握很关键,一般来说以二本生为准应控制在45分钟左右做完,为后面的解答题争取更充足的时间,也有利于稳定情绪。

但是解小题(选择、填空)还有一项要求,就是既快又准,要达到这一点要求我们需结合试题特点,注重数学思想方法的运用,灵活机动的采用一些技巧解题,比如善于使用数形结合、特值(含特殊值、特殊位置、特殊图形)、排除、验证、转化、分析、估算、极限等方法,一旦思路清晰,就迅速作答。

不在一道题上纠缠,选择题即使是"蒙",也有25%的胜率。

●遇到难题不弃,寻求策略得分会做的题当然要做对、做全、得满分,而不会做的或是难题该怎样得分呢?首先遇到难题不要放弃,岂不知"易题得满分难,难题得小分易",一般的难题第一、二问都是能得分的,即使一点思路都没有,我们不妨罗列一些相关的重要步骤和公式,也许不觉中已找到了解题的思路。

再就是要学会"分段得分",高考数学解答题评分的总原则是"分段给分",即会多少知识给多少分,所以你可能前面某个地方卡住了,可以先跳过去,假定它是正确的,向后求解;或是前后两问无联系,只做其中某一问等等。

【对各类具体的题型,也有一些具体的对策,以最快最精确的解答。

】●选择题的解法:选择题得分关键是考生能否精确、迅速地解答。

数学选择题的求解有两种思路:一是从题干出发考虑,探求结果;二是题干和选择的分支联合考虑或从选择的分支出发探求是否满足题干条件,由于答案在四个中找一个,随机分一定要拿到。

选择题解题的基本原则是:"充分利用选择题的特点,小题尽量不要大做"。

●填空题的解法:填空题答案有着简短、明确、具体的要求,解题基本原则是小题大做别马虎,特别是解的个数和形式是否满足题意,有没有漏解和不满足题目要求的解要认真区别对待。

今年数学高考填空题的分值增加许多,其得分情况对高考成绩大有影响,所以答题时要给予足够的精力和时间,填空的解法主要有:直接求解法、特例求解法、数形结合法,解题时灵活应用。

●解答题的解法:解答题得分的关键是考生能否对所答题目的每个问题有所取舍,一般来说在解答题中总是有一定数量的数学难题(通常在每题的后半部分和最后一、两题中),如果不能判别出什么是自己能做的题,而在不会做的题上花太多的时间和精力,得分肯定不会高。

解答题解题时要注意:书写规范,各式各样的题型有各自不同的书写要求,答题的形式对了基本分也就得到了,立体几何题有规定的书写要求,解题时务必注意。

审题清晰,题读懂了解题才能得到分,要快速在短时间内审清题意,知道题目表达的意思,题目要解决的是什么问题,关键的字词是什么,特殊的情形有没有,不能一知半解,做了一半才发现漏了条件推翻重来,费了精力影响情绪。

压轴题一般有3问,这样的题目至少有两问的,第一问,其实不难,你要有信心做出来,一般也就是个简单的理论的应用,不会刁难你,所以,你要作出来。

如果有第三问,那么第二问多半是中继作用,就是利用第一问的结论,然后第三问有要用到它自己。

这一问,比较难一点,但是,如果你时间允许,还是可以做出来的。

第三问嘛,如果时间很紧张,我个人建议,放弃吧,回头检查你作的其他题目,效果更好。

解答题中,由于是按步给分,应特别注意过程步骤的严谨和规范,追求"表达的准确、考虑的周密、书写的规范、语言的科学",写清得分点,清楚地呈现自己的思维层次。

否则会做的题目若不注意准确表达和规范书写,常常会被"分段扣分",如解概率题,要给出适当的文字说明,不能只列几个式子或单纯的结论;立体几何证明题中注意定理使用的条件要缺一不可,不能疏漏等等。

解答题应注意"大题小做,大题细作"。

另外,注意 "快慢结合,合理把握时间"。

慢主要体现在审题方面,看题要清,审题要透彻,合理方面脚步,防止错看,漏看,从一定义上说:"成在审题,败在审题"。

快主要是解答要快速准确,一步到位,尽量减少反工检查的时间。

总体时间的把握上,在保证选填的基础上,要留出充分的时间放在解答题上,保证充分的思维时空,另外还应预留时间对把握不足的题目进行复查。

每年高考试题总有创新,对新型的探索开放题的解题要诀有:(1)试:阅读题意,分清条件和结论,尝试最简单、最基础的运算。

(2)猜:在前面尝试的基础上,大胆猜想,可以运用归纳、类比、推广、化归等思想方法多角度、多维度地猜想,合理进行猜想是关键的一步。

(3)证:综合运用数学知识进行求解与证明,要注意前后联系,过程严谨。

相关文档
最新文档