新人教版八年级上册数学[《三角形》全章复习与巩固—知识点整理及重点题型梳理](基础)

合集下载

新人教八年级数学上册知识点总结

新人教八年级数学上册知识点总结

第十一章三角形1、三角形的概念2、三角形中的主要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。

(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。

(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。

3、三角形的稳定性三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。

三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状5、三角形的分类三角形按边的关系分类如下:不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形三角形按角的关系分类如下:直角三角形(有一个角为直角的三角形)三角形锐角三角形(三个角都是锐角的三角形)斜三角形钝角三角形(有一个角为钝角的三角形)把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。

它是两条直角边相等的直角三角形。

6、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。

推论:三角形的两边之差小于第三边。

(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。

③证明线段不等关系。

7、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。

推论:①直角三角形的两个锐角互余。

②三角形的一个外角等于和它不相邻的来两个内角的和。

③三角形的一个外角大于任何一个和它不相邻的内角。

注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。

8、三角形的面积=21×底×高 多边形知识要点梳理定义:由三条或三条以上的线段首位顺次连接所组成的封闭图形叫做多边形凸多边形分类1: 凹多边形正多边形:各边相等,各角也相等的多边形叫做正多边形。

分类2:多边形 非正多边形:1、n 边形的内角和等于180°(n-2)。

最新人教版八年级上几何知识点及类型题复习

最新人教版八年级上几何知识点及类型题复习

FA B C DE11题三角形全章复习知识点一:1.三角形的定义:由不在同一条_________上的三条线段___________组成的图形叫做三角形.2.三角形的分类(1)按边分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形__________ ______________(2)按角分类: 3.三角形三边间的关系定理:三角形任意两边之和__________第三边.任意两边之差___________第三边。

即已知三角形两边的长,可以确定第三边的取值范围:设三角形的两边的长为a 、b ,则第三边的长c 的取值范围是_______________________. 基础知识训练练习1.下列长度的各组线段中,能组成三角形的是( )A .3cm ,12cm ,8cmB .6cm ,8cm ,15cmC .2.5cm ,3cm ,5cmD .6.3cm ,6.3cm ,12.6cm 【变式1】五条线段的长分别是1cm 、2cm 、3cm 、4cm 、5cm ,以其中三条线段为边可构成__个三角形. 【变式2】已知三角形的两边长分别4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ) A .13cm B .6cm C .5cm D .4cm【变式3】已知a 、b 、c 是△ABC 的三边,化简|a+b-c|+|b-a-c|-|c+b-a|.练习2.若三角形的两边长分别是2和7,则第三边长c 的取值范围是___________. 【变式1】如果三角形的两边长分别为2和6,则周长L 的取值范围是( ) A .6<L<15 B .6<L<16 C .11<L<13 D .12<L<16【变式2】已知等腰三角形的两边长分别为4cm 和7cm ,且它的周长大于16cm ,则第三边长为_________________.【变式】如果三角形的两边分别为7和2,且它的周长为偶数,那么第三边的长为( ) A 、5 B 、6 C 、7 D 、8【变式】小芳要画一个有两边长分别为5cm 和6cm 的等腰三角形,则这个等腰三角形的周长是( ) A .16cm B .17cm C .16cm 或17cm D .11cm【变式】小芳要画一个有两边长分别为2cm 和6cm 的等腰三角形,则这个等腰三角形的周长是( ) A .10cm B .14cm C .10cm 或14cm D .12cm 知识点二:三角形的高、中线、角平分线 1、三角形的高:从三角形的一个顶点向它的对边所在直线作垂线,_____和___之间的线段叫做三角形的高 ①锐角三角形的三条高在三角形_______部,三条高的交点也在三角形_______部;②钝角三角形有两条高在三角形的___部,另一条高在三角形的____部,三条高的交点在三角形的__ 部; ③直角三角形有两条高在三角形的__ _,另一条高在三角形的____部,三角三条高的交点是直角三角形的____________.2、三角形的中线:三角形的一个顶点与它的对边___________的连线叫三角形的中线. (1)三角形的中线是___________;(2)三角形三条中线全在三角形____________部; (3)三角形三条中线交于三角形_________部一点,这一点叫三角形的____________. (4)中线把三角形分成面积_______________的两个三角形.3、三角形的角平分线从三角形一个角的平分线与这个角的对边相交,那么这个角的顶点与交点的连线叫三角形的角平分线 (1)三角形的角平分线是___________;(2)一个三角形有__________条角平分线,并且都在三角形的___________部; (3)三角形三条角平分线的交点到三角形____________的距离相等. 知识点四:三角形具有__________性. 基础知识练习 :1.、对应练习:如图所示,画△ABC 的BC 边上的高,下列画法正确的是( ).2.将三角形面积四等分(至少四种)3.如图1所示,在△ABC 中,∠ACB=90°,把△ABC 沿直线AC 翻折180°,使点B 落在点B ′的位置,则线段AC 具有性质( )A.是边BB ′上的中线 B.是边BB ′上的高 C.是∠BAB ′的角平分线 D.以上三种都是4.不是利用三角形稳定性的是( ) A.自行车的三角形车架 B.三角形房架 C.照相机的三角架 D.矩形门框的斜拉条5.已知等腰三角形一腰上的中线将这个三角形的周长分为9cm 和15cm 两部分,求这个三角形的腰长和底边的长.知识点五:1:三角形的内角和定理:三角形内角和为 °2:三角形外角的性质(1)三角形的一个外角与相邻的内角 ;(2)三角形的一个外角等于不相邻的 ;(3) 三角形的一个外角大于任何一个 的内角.(4)三角形外角和为 °3.直角三角形两锐角 ,反之对应练习1、△ABC 中,若∠A =350,∠B =650,则∠C =___;若∠A =1200,∠B =2∠C ,则∠C =___2、三角形的三个内角之比为1∶3∶5,那么这个三角形的最大内角为_______; 3.如图,若∠A=32°,∠B=45°,∠C=38°,则∠DFE= ° 3.在△ABC 中,若∠A+∠B=∠C,则此三角形为_______三角形4.△ABC 中,∠B,∠C 的平分线交于点O,若∠BOC=132°,则∠A=____5..△ABC 中,∠B =40°,∠C =60°,AD 是∠A 的平分线,则∠DAC 的度数为_____. 6.如图,点D 在△ABC 边BC 的延长线上,DE ⊥AB 于E ,交AC 于F ,∠B =50°,∠CFD =60°,则∠ACB =________.7.已知三角形的三个外角的度数比为2:3:4,则它的最大内角的度数为( )A.90°B.110°C.100° D.120° 8.(1) 如图1,123456+++++∠∠∠∠∠∠ _____. (2). 如图2,A B C D E ++++=∠∠∠∠∠ =_____. (3).如图3,1234+++=∠∠∠∠_____.9.如图,C 岛在A 岛的北偏东50°方向,B 岛在A 岛的北偏东80°方向,C 岛在B 岛的北偏西40°方向。

新人教版八年级上册数学[《三角形》全章复习与巩固—知识点整理及重点题型梳理](提高)

新人教版八年级上册数学[《三角形》全章复习与巩固—知识点整理及重点题型梳理](提高)

新人教版八年级上册数学[《三角形》全章复习与巩固—知识点整理及重点题型梳理](提高)本文介绍了八年级上册数学中三角形的相关知识点。

研究目标包括正确表示三角形,理解三角形三边之间的关系,掌握三角形内角和定理及三角形的外角性质进行相关的计算,了解稳定性与没有稳定性在生产、生活中的广泛应用,掌握多边形内角和及外角和,并能灵活运用公式解决有关问题。

首先,文章介绍了三角形三边之间的关系,即任意两边之和大于第三边,任意两边之差小于第三边。

这一定理的应用可以判断三条线段能否组成三角形,同时可以求出第三边长的取值范围。

接着,文章将三角形按边分类,分为不等边三角形、底边和腰不相等的等腰三角形、等边三角形。

同时,文章介绍了三角形的重要线段,包括三角形的高、中线、角平分线。

三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外。

一个三角形有三条中线,它们交于三角形内一点,叫做三角形的重心。

三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

一个三角形有三条角平分线,它们交于三角形内一点,这一点叫做三角形的内心。

最后,文章提到了多边形、多边形的对角线、正多边形以及镶嵌等有关的概念,探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力。

在解决多边形问题时,可以先将多边形分割成若干个三角形,然后利用三角形的内角和公式求解;3)内角和公式的推导:将多边形分割成(n-2)个三角形,每个三角形的内角和为180°,因此n边形的内角和为(n-2)·180°.2.外角和公式:n边形的外角和为360°(n≥3,n是正整数).要点诠释:(1)外角和公式的推导:每个顶点的外角之和为360°,因此n边形的外角和为n·360°;2)外角和公式的应用:在解决多边形问题时,可以利用外角和公式求解一些问题,如求一个n边形的某个内角的补角或余角等.1.已知多边形的边数,可通过公式计算出其内角和;已知多边形的内角和,可通过公式计算出其边数。

(完整版)新人教版八年级上册数学各章节知识点总结

(完整版)新人教版八年级上册数学各章节知识点总结

第十一章三角形一、知识框架:二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13.公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.n-·180°⑶多边形内角和公式:n边形的内角和等于(2)⑷多边形的外角和:多边形的外角和为360°.n-条对角线,⑸多边形对角线的条数:从n边形的一个顶点出发可以引(3)第十二章全等三角形第一节:全等三角形形状大小放在一起完全重合的图形,叫做全等形。

换句话说,全等形就是能够完全重合的图形。

能够完全重合的两个三角形叫做全等三角形。

两个全等的三角形重合放在一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。

两个三角形全等用符号“≌”表示。

人教版八年级数学上册第11章《三角形》全章复习与巩固—知识讲解(提高)含习题答案

人教版八年级数学上册第11章《三角形》全章复习与巩固—知识讲解(提高)含习题答案
要点三、三角形的内角和与外角和
1.三角形内角和定理:三角形的内角和为 180°. 推论:1.直角三角形的两个锐角互余 2.有两个角互余的三角形是直角三角形
2.三角形外角性质: (1)三角形的一个外角等于与它不相邻的两个内角的和. (2)三角形的一个外角大于任意一个与它不相邻的内角.
3.三角形的外角和: 三角形的外角和等于 360°.
举一反三:
【变式】已知 a、b、c 是三角形三边长,试化简:|b+c-a|+|b-c-a|+|c-a-b|﹣|a-b+c|.
【答案】解:∵a、b、c 是三角形三边长,
∴b+c-a>0,b-c-a<0,c-a-b<0,a-b+c>0,
∴|b+c-a|+|b-c-a|+|c-a-b|-|a-b+c|,
=b+c-a-b+c+a-c+a+b-a+b-c =2b. 2.如图,O 是△ABC 内一点,连接 OB 和 OC.
类型三、与三角形有关的角
4.已知△ABC 中,AE 平分∠BAC (1)如图 1,若 AD⊥BC 于点 D,∠B=72°,∠C=36°,求∠DAE 的度数; (2)如图 2,P 为 AE 上一个动点(P 不与 A、E 重合,PF⊥BC 于点 F,若∠B>∠C,则
∠EPF=
是否成立,并说明理由.
【思路点拨】 (1)利用三角形内角和定理和已知条件直接计算即可; (2)成立,首先求出∠1 的度数,进而得到∠3 的度数,再根据∠EPF=180°﹣∠2﹣∠3 计 算即可. 【答案与解析】 证明:(1)如图 1,∵∠B=72°,∠C=36°,
解:如图(1),设 AB=x,AD=CD= 1 x . 2

(人教版)初中八年级数学上册《三角形》重要知识点梳理详解(汇编)

(人教版)初中八年级数学上册《三角形》重要知识点梳理详解(汇编)

(人教版)初中八年级数学上册《三角形》重要知识点梳理详解(汇编)11.1 与三角形有关的线段 一、三角形的边三角形:由不在同一条直线上的三条线段首尾顺次相接所组成的图形,叫做三角形。

注意点:(1)三条线段(2)不在同一直线上 (3)首尾顺次相接三角形的表示:三角形用符号“△”表示,记作“△ ABC ”, 读作“三角形ABC ”,除此△ ABC 还可记作△BCA, △ CAB, △ ACB 等.三角形的分类:按角分 按边分等腰三角形:两边相等的三角形叫等腰三角形。

相等的两边都叫腰,另一边叫做底,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

三角形中三边的关系:三角形两边的和大于第三边,三角形两边的差小于第三边。

(在做题时,不仅要考虑到两边之和大于第三边,还必须考虑到两边之差小 于第三边.)直角三角形 不等边三角形锐角三角形 等腰三角形钝角三角形 底和腰不相等的等腰三角形 等边三角形二、三角形的高、中线与角平分线三角形的高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段,叫做三角形这边的高,简称三角形的高。

1、 锐角三角形的三条高交于同一点。

三条高都在三角形的内部。

2、 直角三角形的三条高交于直角顶点.3、 钝角三角形的三条高不相交于一点。

钝角三角形的三条高所在直线交于一点。

总结:三角形的三条高的特性锐角三角形直角三角形钝角三角形高在三角形内部的数量 3 1 1 高所在的直线是否相交 相交 相交 相交 高之间是否相交 相交 相交 不相交 三条高所在直线的交点的位置 三角形内部直角顶点三角形外部三角形的中线:在三角形中,连结一个顶点和它对边中点的线段叫做这个三角形这边的中线.三角形中线的符号语言:∵AD 是△ABC 的中线 ∴BD=CD =1/2 BC三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段,叫做三角形的角平分线。

∵AD 是 △ ABC 的角平分线 ∴∠BAD = ∠CAD =1/2∠BAC 三角形的三条角平分线相交于一点,交点在三角形的内部三、三角形的稳定性三角形的三条高所在直线交于一点三角形的三条中线相交于一点,交点在三角形的内部。

最新数学八年级上册三角形 章知识点总结教学提纲

最新数学八年级上册三角形 章知识点总结教学提纲

数学八年级上册三角形章知识点总结20XX年XX月摘要Ideal is the beacon. Without ideal , there is no secure direction ; without direction , there is nolife新人教版八年级数学上册知识点总结第十一章三角形一、知识框架:二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13.公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.⑶多边形内角和公式:n边形的内角和等于(2)n-·180°⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:①从n边形的一个顶点出发可以引(3)n-条对角线,把多边形分成(2)n-个三角形.②n边形共有(3)2n n-条对角线.第十二章全等三角形一、知识框架:二、知识概念:1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.3.全等三角形的判定定理:⑴边边边(SSS):三边对应相等的两个三角形全等.⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等.⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等.⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等.4.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.5.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.第十三章轴对称一、知识框架:二、知识概念:1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一 个图形重合,那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这 条线段的垂直平分线.⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫 做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做 底角.⑸等边三角形:三条边都相等的三角形叫做等边三角形.2.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一 对对应点所连线段的垂直平分线.②对称的图形都全等.⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等.②与一条线段两个端点距离相等的点在这条线段的垂直平分线上. ⑶关于坐标轴对称的点的坐标性质①点P (,)x y 关于x 轴对称的点的坐标为'P (,)x y -.②点P (,)x y 关于y 轴对称的点的坐标为"P (,)x y -.⑷等腰三角形的性质:①等腰三角形两腰相等.②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合. ④等腰三角形是轴对称图形,对称轴是三线合一(1条).⑸等边三角形的性质:①等边三角形三边都相等.②等边三角形三个内角都相等,都等于60°③等边三角形每条边上都存在三线合一.④等边三角形是轴对称图形,对称轴是三线合一(3条).3.基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形.②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).⑵等边三角形的判定:①三条边都相等的三角形是等边三角形.②三个角都相等的三角形是等边三角形.③有一个角是60°的等腰三角形是等边三角形.4.基本方法:⑴做已知直线的垂线:⑵做已知线段的垂直平分线:⑶作对称轴:连接两个对应点,作所连线段的垂直平分线.⑷作已知图形关于某直线的对称图形:。

人教版八年级数学上册知识点总结和复习要点

人教版八年级数学上册知识点总结和复习要点

人教版八年级数学上册知识点总结和复习要点一、全等三角形1全等三角形的概念与性质概念:能够完全重合的两个三角形叫做全等三角形。

性质:全等三角形的对应边相等,对应角相等。

2全等三角形的判定条件SSS(边边边):三边对应相等的两个三角形全等。

SAS(边角边):两边及其夹角对应相等的两个三角形全等。

ASA(角边角):两角及其夹边对应相等的两个三角形全等。

AAS(角角边):两角及其一角的对边对应相等的两个三角形全等。

HL(直角、斜边):在一对直角三角形中,斜边及另一条直角边相等。

例子:若△ABC与△DEF中,AB = DE,AC = DF,∠A = ∠D,则根据SAS判定条件,△ABC ≌△DEF。

二、轴对称1轴对称的概念概念:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

2轴对称的性质性质:轴对称图形上对应点到对称轴的距离相等;对应点的连线与对称轴垂直。

例子:等腰三角形是轴对称图形,其对称轴是底边上的高(中线或顶角平分线)。

三、实数1平方根与立方根的概念平方根:如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方根)。

立方根:如果一个数的立方等于a,那么这个数就叫做a的立方根(或三次方根)。

2实数的分类与性质实数可以分为有理数和无理数两大类。

有理数包括整数和分数,而无理数则是无限不循环小数。

实数具有封闭性、有序性和传递性等性质。

例子:√4 = 2,是4的平方根;∛8 = 2,是8的立方根。

四、一次函数1一次函数的概念概念:一般地,形如y = kx + b(k,b是常数,k ≠0)的函数,叫做一次函数。

2一次函数的性质性质:一次函数的图像是一条直线;当k > 0时,函数值y随x的增大而增大;当k < 0时,函数值y随x的增大而减小。

例子:函数y = 2x + 1是一次函数,其图像是一条斜率为2、截距为1的直线。

五、整式的乘法与因式分解1整式的乘法整式的乘法包括单项式乘单项式、单项式乘多项式、多项式乘多项式等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教版八年级上册数学[《三角形》全章复习与巩固—知识点整理及重点题型梳
理](基础)
本文是一份新人教版八年级上册数学知识点梳理及巩固练重难点突破的精品文档,主要讲解了三角形的相关概念和性质。

研究目标包括:认识三角形并能用符号语言正确表示三角形,理解并会应用三角形三边之间的关系;理解三角形的高、中线、角平分线的概念,通过作图提高学生的基本作图能力,并能运用图形解决问题;能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题;通过观察和实地操作知道三角形具有稳定性,了解稳定性与没有稳定性在生产、生活中的广泛应用;了解多边形、多边形的对角线、正多边形以及镶嵌等有关的概念;掌握多边形内角和及外角和,并能灵活运用公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力。

重点梳理了三角形的相关概念和性质,其中包括三角形三边的关系,三角形按“边”分类,三角形的重要线段(包括高、中线、角平分线)等。

三角形三边关系的应用包括判断三条线段能否组成三角形,求已知两边长的第三边长的取值范围等。

同时,三角形还可以按边分类,分为不等边三角形、底边和腰不相等的等腰三角形和等边三角形。

三角形的重要线段包括高、中线和角平分线,它们的作用分别是作垂线、分割三角形、平分角度等。

此外,三角形的三条高所在的直线相交于一点的位置情况有三种,分别是锐角三角形交点在三角形内、直角三角形交点在直角顶点、钝角三角形交点在三角形外。

最后,本文还提到了多边形、多边形的对角线、正多边形以及镶嵌等有关的概念,以及多边形内角和及外角和的计算方法,帮助学生掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力。

已知一个多边形的边数,可以求出它的内角和。

反之,已知一个多边形的内角和,可以求出它的边数。

多边形的外角和恒等于360°,与边数无关。

根据外角和公式,可以求出正多边形的边数,也可以根据正多边形的边数求出外角度数。

多边形的边数与内角和、外角和有关,每增加一条边,内角和增加180°。

镶嵌是指用多边形覆盖平面的一部分,要求不重叠且可以是不同形状的多边形。

拼接在同一点的各个角的和恰好等于360°,相邻的多边形有公共边。

用正多边形实现镶嵌的条件是边长相等,顶点公用,且在一个顶点处各正多边形的内角之和为360°。

只用一种正多边形镶嵌地面时,围绕一点拼在一起的几个正多边形的内角加起来恰好组成一个周角360°时,就能铺成一个平面图形。

只有正三角形、正方形、正六边形的地砖可以用于镶嵌。

例如,若已知三角形的两条边长分别为6cm和10cm,则可以通过三角形三边关系得出第三边的取值范围,进而得出答案。

在判断三条线段是否能构成三角形时,可以利用三角形的两边a、b,得出第三边c的取值范围为│a-b│<c<a+b。

5.(2014春•新泰市期末)已知:在△ABC中,AD是BC 边上的高,AE是∠BAC平分线,∠B=50°,∠DAE=10°。

1)求∠BAE的度数;
2)求∠C的度数.
解析:(1)由角平分线定理可知,∠BAE=∠CAE,设
∠BAE=x,则∠CAE=x。

又因为∠BAC=2∠BAE+∠DAE,代入已知条件得到 50°=2x+10°,解得x=20°,因此
∠BAE=∠CAE=20°。

2)由三角形内角和定理可得∠A+∠B+∠C=180°,代入
已知条件得到∠A+50°+∠C=180°,化简得到∠C=130°。

总结升华:角平分线定理是解决与三角形有关的角问题的重要工具,能够帮助我们求出平分线所分割角度的大小。

同时,三角形内角和定理也是解决三角形问题的基本定理,我们需要掌握和灵活运用。

6.木工师傅在制作门框后,为了防止变形,通常会在门框
上钉上两条斜拉木板条,如下图所示。

这种做法的数学原理是什么?
解析:这种做法的数学原理是三角形的稳定性。

将木板条固定在门框两侧,形成了两个三角形,这两个三角形的稳定性可以防止门框变形。

举一反三:在建筑工程中,为了增加建筑物的稳定性,常常利用三角形的稳定性原理,将建筑物的某些部位设计成三角形结构。

例如,高层建筑的钢结构框架,通常采用三角形网格结构,使得整个建筑物更加稳定。

又如,桥梁的桥塔、桥墩等部位也常常采用三角形结构,以增加稳定性。

三角形的稳定性原理在实际生活中有着广泛的应用。

9.已知一个正多边形的一个内角是140°,求它的边数。

解析:根据正多边形的性质,一个内角和它所在的外角之和为180°,因此这个正多边形的外角为180°-140°=40°。

而一个正多边形的所有外角之和为360°,因此它的边数为
360°÷40°=9.
8.一个十二边形有多少条对角线?
解析:根据多边形对角线条数公式,一个n边形的对角线条数为n(n-3)÷2.因此,这个十二边形的对角线条数为12(12-3)÷2=54.
举一反三:一个多边形共有20条对角线,则这个多边形的边数为8.
9.分别用形状、大小完全相同的三角形、四边形、正五边形、正六边形木板作平面镶嵌,其中不能镶嵌成地板的是正五边形木板。

解析:将多边形组合成平面图形,实质上是相关多边形“交接处各角之和能否拼成一个周角”的问题。

而正三角形、正四边形、正六边形的内角和均为360°,可以拼成周角,因此可以镶嵌成地板。

而正五边形的内角和为540°,无法拼成周角,因此不能镶嵌成地板。

相关文档
最新文档