灭菌、无菌工艺验证

合集下载

灭菌工艺及设备验证

灭菌工艺及设备验证
物理参数监测
对灭菌过程中的温度、压力、时间等物理参数进行监 测和记录,确保符合工艺要求。
残留量检测
对灭菌后的产品进行残留物检测,确保无有毒有害物 质残留。
验证流程
实施验证
准备验证所需物品和资料
准备样品、试剂、仪器等,收集 相关工艺技术资料。
按照验证方案进行试验,记录各 项数据。
分析验证数据
对收集到的数据进行分析,评估 灭菌工艺的效果。
消毒验证方法
可以采用化学指示剂、生物指示剂等方法,对设备的消毒效果进行验证。同时,应关注消毒剂的选择和使用,避 免对设备造成腐蚀和损伤。
05
灭菌工艺与设备验证中 的问题与对策
问题一:灭菌不彻底
总结词
灭菌不彻底可能导致微生物残留,影响产品质量和安全性。
详细描述
灭菌不彻底的原因可能包括设备性能不佳、工艺参数设置不当、灭菌时间不足等 。为解决这一问题,需要定期对设备进行维护和校准,确保其性能稳定;同时, 优化工艺参数,如提高温度、延长灭菌时间等,以提高灭菌效果。
06
案例分析
案例一:某医院压力蒸汽灭菌设备的验证
01
02
03
验证目的
确保压力蒸汽灭菌设备性 能正常,能够达到预期的 灭菌效果。
验证方法
采用标准测试包,按照规 定程序进行灭菌,并对灭 菌后的物品进行生物指标 菌检测。
验证结果
经过多次验证,该压力蒸 汽灭菌设备性能稳定,灭 菌效果可靠,符合国家相 关标准和医院使用要求。
制定验证方案
明确验证目的、方法、范围和时 间安排等。
编写验证报告
根据验证结果编写报告,总结灭 菌工艺的有效性、可靠性和安全 性。
04
灭菌设备验证
设备性能验证

【VIP专享】灭菌无菌工艺验证指导原则sterile, aseptic process validation guideline

【VIP专享】灭菌无菌工艺验证指导原则sterile, aseptic process validation guideline

Contents1 概述Summary (2)2 制剂湿热灭菌工艺Moist heat sterile process (3)2.1 湿热灭菌工艺的研究Study on moist heat sterile process (3)2.2 湿热灭菌工艺的验证Moist heat sterilization process validation (6)3 制剂无菌生产工艺Preparation aseptic production process (10)3.1 无菌生产工艺的研究Research of aseptic production process (10)3.2 无菌生产工艺的验证Aseptic production process validation (11)4 原料药无菌生产工艺API aseptic production process (16)4.1 无菌原料药生产工艺特点Sterile API production process characteristics (17)4.2 无菌原料药工艺验证sterile API process validation (19)1 概述Summary无菌药品是指法定药品标准中列有无菌检查项目的制剂和原料药,一般包括注射剂、无菌原料药及滴眼剂等。

从严格意义上讲,无菌药品应完全不含有任何活的微生物,但由于目前检验手段的局限性,绝对无菌的概念不能适用于对整批产品的无菌性评价,因此目前所使用的“无菌”概念,是概率意义上的“无菌”。

一批药品的无菌特性只能通过该批药品中活微生物存在的概率低至某个可接受的水平,即无菌保证水平(Sterility Assurance Level, SAL)来表征。

而这种概率意义上的无菌保证取决于合理且经过验证的灭菌工艺过程、良好的无菌保证体系以及生产过程中严格的GMP管理。

Sterile drug means the preparations and API which legal drug standards list of asepsis check, generally, sterile drug including injection, sterile APIs and eye drops, etc. Strictly, sterile drug shouldn’t have any live microorganisms, but in current situation, it can’t be achieved. So current the sterile use a probability concept: SAL.无菌药品通常的灭菌方式可分为:1)湿热灭菌;2)干热灭菌;3)辐射灭菌;4)气体灭菌;5)除菌过滤。

无菌原料药生产工艺验证

无菌原料药生产工艺验证

无菌原料药生产工艺验证
无菌原料药生产工艺验证是指通过实验和观察,验证无菌原料药生产工艺的科学性、可行性和有效性的过程。

以下是一般的无菌原料药生产工艺验证流程,共分为三个阶段:设计验证、设备验证和过程验证。

设计验证阶段是验证无菌原料药生产工艺设计的合理性和科学性。

首先,制定验证计划,明确验证目标、内容和标准。

然后,根据工艺设计文档、工艺参数和标准操作程序,开展实验验证。

主要包括悬浮液制备、灭菌处理、过滤、密闭环境下无菌装瓶等工艺步骤的验证。

验证时需进行实验参数优化、灭菌效果验证、细菌培养实验等。

设备验证阶段是验证无菌原料药生产工艺所需设备的性能和操作的可行性。

首先,对所有设备进行全面检查,并确认其符合相关规范和标准。

然后,根据设定的工艺参数和操作要求,进行设备的试运行和操作验证。

验证内容包括设备的恒温、搅拌、压力、密闭性等性能的验证,以及设备操作过程中是否存在漏洞和问题等。

过程验证阶段是验证无菌原料药生产工艺在实际生产过程中的可行性和有效性。

首先,制定验证计划,明确验证目标、内容和标准。

然后,按照工艺参数和操作要求,进行批量生产和验证。

在过程验证中需要进行原辅料接纳、材料清洗和消毒、原料混合、中间检测等工艺步骤的验证。

同时,对中间检测结果进行统计和分析,确保生产工艺的合理性和稳定性。

综上所述,无菌原料药生产工艺验证是一个全面、复杂的过程。

通过设计验证、设备验证和过程验证三个阶段的实验和观察,可以验证无菌原料药生产工艺的科学性、可行性和有效性。

这有助于确保无菌原料药的质量和安全性,提高生产效率和经济效益。

灭菌工艺验证方案

灭菌工艺验证方案

灭菌工艺验证方案1. 简介灭菌是指将微生物完全杀灭或不再繁殖的过程。

在许多领域,如医疗器械、制药等,灭菌工艺的验证是确保产品质量和安全性的重要步骤。

本文档将介绍一种灭菌工艺验证方案,以确保灭菌过程达到预期的消毒效果。

2. 目标灭菌工艺验证的目标是验证所采用的灭菌过程能够在规定的时间和条件下有效地杀灭目标微生物。

3. 灭菌工艺验证步骤灭菌工艺验证通常包括以下步骤:3.1 确定验证菌株首先,需要选择适当的验证菌株。

验证菌株应与目标微生物相似,并能够代表目标微生物的最小抵抗因子。

验证菌株的选择应基于相关标准和指南。

3.2 设计验证实验设计验证实验是灭菌工艺验证的关键步骤。

验证实验应模拟实际生产中的情况,并包括各种可能的变异因素。

3.3 制备验证样品根据验证实验的设计,制备验证样品。

验证样品应包括各种可能存在的挑战物,如有机物、油脂、粘附物等。

3.4 进行验证实验根据验证实验的设计,在验证设备中进行灭菌实验。

记录并监测实验参数,如温度、压力、湿度等。

3.5 检测验证结果验证实验结束后,对验证样品进行微生物检测。

通过计数验证菌株的存活率,判断灭菌过程的有效性。

3.6 结果分析和评估分析和评估验证结果,确定灭菌过程是否达到预期的灭菌效果。

如果验证结果不符合预期,需要调整灭菌工艺,并重新进行验证实验。

4. 数据记录和报告灭菌工艺验证过程中需要进行详细的数据记录和生成验证报告。

数据记录应包括验证实验的参数、样品信息、监测数据等。

验证报告应包括验证目的、方法、结果、结论和建议等内容。

5. 重要考虑因素在进行灭菌工艺验证时,需要考虑以下因素:•灭菌设备的正确操作和维护•灭菌参数的正确选择和控制•验证样品的合理选择和制备•验证菌株的选择和培养条件•验证实验的可重复性和准确性•特殊情况下的挑战试验设计6. 结论灭菌工艺验证是确保产品质量和安全性的重要步骤。

本文档详细介绍了灭菌工艺验证的步骤和考虑因素,以及数据记录和报告的要求。

灭菌技术及工艺验证

灭菌技术及工艺验证

灭菌工艺方法的选择
过度杀灭法Overkill Method 残存概率法Bioburden Method 过度杀灭法/残存概率法两者结合
灭菌方法比较
过度杀灭法Overkill Method
• 过度杀灭设计法假设的初始菌数量和耐热性都高于实际情 况。大多数微生物的耐热性都比较低,因此,过度杀灭的 灭菌程序能提供很高的无菌保证值。由于该方法已经对初 始菌数量及耐热性作了最坏的假设,因此从技术角度看, 对被灭菌品不需要进行常规的初始菌监控。 初始菌的数量及耐热性值如下:N0=106 , D121℃=1 分 钟, Z = 10℃ 为了达到必要的非无菌单元的概率PNSU,NF=10-6 F0=D12l℃×(LogN0 —LogNF)=1.0 分钟×(Log106 — 10-6)=12 分钟 因此一个用过度杀灭法设计的灭菌程序可以定义为“一个 被灭菌品获得的F0 至少为12钟的灭菌程序”。
Pre-conditioning
Porous Load Sterilization Pre-conditioning
P r e s s u r e
Time Negative Pulse Positive Pulse Sterilization Sterilization Vacuum Drying Post-conditioning
灭菌的基本原理-微生物死亡动力学
将微生物杀灭的灭菌法的基本原理都是使细胞内的 蛋白质或核酸发生不可逆的凝固或破坏,使微生 物死亡。因此,各种灭菌方法使微生物死亡的速 度都符合一级动力学方程。以湿热灭菌为例,在 特定灭菌温度下,某种微生物孢子的死亡速度仅 与这个时刻孢子的浓度有关。用数学模型可表示 为lgN= lgN0-kt N产品内微生物的残存数 N0灭菌开始时产品内微生物数 t累计灭菌时间 k常数,与微生物耐热性、灭菌温度相关

灭菌工艺及设备验证

灭菌工艺及设备验证
阶段)的灭菌率累加,从而估算出某灭菌程序在标准温度 下的等效灭菌时间:
F0=Δt(L1/2+L2+L3+…+Ln-1+Ln/2), Δt指测量温度的时 间间隔。每两次测量温度的时间间隔必须相同。在初始 及结束时间段的灭菌率非常小,可将公式简化为:FT=Δt∑L。
100℃ L1 L2 L3
LN-1 LN
由 FT=(LgN0-LgNT)DT, FT/DT =LgN0-LgNT, 则lgNT=lgN0-FT/DT。根据灭菌设备内温度监控系 统所测得的物理参数,估测某灭菌程序对微生物的杀 灭效果。
DT表示某实际微生物(待灭菌物品中的污染菌)或假设 的微生物(生物指示剂)在T℃下的D值。
例如,假设F0为8分钟,DT=0.5分钟,数量为106,由 公式可以得出在灭菌结束时,芽胞的残存数量为10-10, SAL=lgNT =6-8/0.5=-10。
微生物的热致死特性:受热死亡速度符合一级动力学方程
dN/dt=K(N0-Nt)
N0为t=0时,存活的微生物数; Nt为t时被杀灭的微生物数; N为t时存活的微生物数 K为常数。
将上式积分得到:
lgNt =lgN0-(K/2.303)t
专业名词
lgN 4 3 2 1D t1 t2
它是分析灭菌工艺效果的重 要生物学参数。并且其数值 可通过残存曲线法或阴性分 数法加以确定。
基本概念
一般指没有活体微生物存在的药品。在 药品制剂类别中,无菌药品也可称为无 菌制剂
无菌药品
无菌药品是指法定药品标准中列有无菌 检查项目的制剂和原料
----«药品生产质量管理规范»(2010年修订 )附录1.无菌药品
基本概念
无菌保证水平(Sterility Assurance Level)---SAL

灭菌、无菌工艺验证

灭菌、无菌工艺验证
2.1.1.2
在对活性成分的结构特点与稳定性进行研究的基础上,可以有针对性的进行处方工艺的优化研究。如活性成分易发生氧化反应,则需要考虑是否需要在工艺中去除氧并采取充氮的生产工艺,或在处方中加入适宜的抗氧剂;如活性成分的稳定性与pH值相关,则需要通过研究寻找最利于主成分稳定性的pH值,当然此时需要关注该pH值在临床治疗时能否接受;如果主成分是因为某些杂质的存在影响了稳定性,则需要通过适宜的手段去除相关的杂质;如果是主成分在某种溶剂系统中稳定性较差,则需要考虑更换溶剂系统,此时同样需要考虑所选用的溶剂系统在临床应用时能否被接受;湿热灭菌的不同灭菌温度和灭菌时间的组合对产品的稳定性的要求有所不同,可以在保证提供所需的SAL的基础上,通过灭菌时间和灭菌温度的调整来确定药物可以耐受的湿热灭菌工艺。
由于灭菌/除菌工艺验证的工作在我国开展的时间不长,基础还不牢靠,因此必然在实际工作中会遇到很多难以预料的问题,故本指导原则只是一个一般性原则,药物研发者应从药物研发的客观规律出发,具体问题具体分析,必要时根据实际情况采用其他有效的方法和手段。同时,本指导原则作为阶段性产物,必将随着药物研究者与评价者对灭菌工艺研究与验证的认知加深,而不断进行修订与完善。
但这并不意味着生产过程中对污染可以完全不加控制。仅从控制热原的角度,也应当遵循工艺卫生规范,控制产品的微生物污染。如果实际生产中能够严格遵循GMP的要求,这一点是可以实现的。
2.1.3
阶段及常规生产阶段的信息、指示菌(对灭菌程序呈现强耐热性的试验菌)以及生物负荷的信息。只有积累了这类有价值的信息后,才能制定比过度杀灭法F0值低的热力灭菌程序,同时产品的无菌保证水平不会降低。使用热力较低灭菌程序更有利于药品的稳定性,使产品的有效期延长。正是因为这个原因,残存概率法更适合那些处方耐热性较差的最终灭菌产品。

《化学药品注射剂灭菌无菌工艺研究及验证指导原则》

《化学药品注射剂灭菌无菌工艺研究及验证指导原则》

化学药品注射剂灭菌/无菌工艺研究及验证指导原则目录一、概述 (3)二、注射剂湿热灭菌工艺 (4)(一)湿热灭菌工艺的研究 (4)1.湿热灭菌工艺的确定依据 (4)2.微生物污染的监控 (7)(二)湿热灭菌工艺的验证 (9)1.物理确认 (9)2.生物学确认 (13)3.基于风险评估的验证方案设计 (16)三、注射剂无菌生产工艺 (16)(一)无菌生产工艺的研究 (16)1.除菌过滤工艺的研究 (16)2.无菌分装工艺的研究 (18)(二)无菌生产工艺的验证 (18)1.除菌过滤工艺验证 (19)2.无菌工艺模拟试验 (21)1/ 29四、附件 (24)五、参考文献 (27)2/ 291一、概述2无菌药品是指法定药品标准中列有无菌检查项目的制3剂和原料药,一般包括注射剂、无菌原料药及滴眼剂等。

4从严格意义上讲,无菌药品应不含任何活的微生物,但由5于目前检验手段的局限性,绝对无菌的概念不能适用于对6整批产品的无菌性评价,因此目前所使用的“无菌”概念,7是概率意义上的“无菌”。

特定批次药品的无菌特性只能通8过该批药品中活微生物存在的概率低至某个可接受的水平,即无菌保证水平(Sterility Assurance Level, SAL)来表征,910而这种概率意义上的无菌需通过合理设计和全面验证的灭11菌/除菌工艺过程、良好的无菌保证体系以及在生产过程中12执行严格的药品生产质量管理规范(GMP)予以保证。

13本指导原则主要参考国内外相关技术指导原则和标准14起草制订,重点对注射剂常用的灭菌/无菌工艺,即湿热灭15菌为主的终端灭菌工艺(terminal sterilizing process)和无16菌生产工艺(aseptic processing)的研究和验证进行阐述,17旨在促进现阶段化学药品注射剂的研究和评价工作的开展。

18本指导原则主要适用于无菌注射剂申请上市以及上市后变19更等注册申报过程中对灭菌/无菌工艺进行的研究和验证工作,相关仪器设备等的验证及常规再验证不包括在本指2021导原则的范围内。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

灭菌/无菌工艺验证指导原则(第二稿)目录1概述12制剂湿热灭菌工艺32。

1湿热灭菌工艺的研究32.1.1 湿热灭菌工艺的确定依据32。

1.2过度杀灭法的工艺研究42.1.3残存概率法的工艺研究52。

2湿热灭菌工艺的验证62.2。

1物理确认62.2。

2 生物学确认83制剂无菌生产工艺103.1无菌生产工艺的研究103.1.1无菌分装生产工艺的研究103。

1.2 过滤除菌生产工艺的研究113。

2 无菌生产工艺的验证113.2.1培养基模拟灌装试验123.2.2 除菌过滤系统的验证144原料药无菌生产工艺164.1 无菌原料药生产工艺特点174。

1。

1 溶媒结晶工艺184.1。

2 冷冻干燥工艺184.2 无菌原料药工艺验证184.2.1 验证批量194.2.2 最差条件191概述无菌药品是指法定药品标准中列有无菌检查项目的制剂和原料药,一般包括注射剂、无菌原料药及滴眼剂等。

从严格意义上讲,无菌药品应完全不含有任何活的微生物,但由于目前检验手段的局限性,绝对无菌的概念不能适用于对整批产品的无菌性评价,因此目前所使用的“无菌”概念,是概率意义上的“无菌"。

一批药品的无菌特性只能通过该批药品中活微生物存在的概率低至某个可接受的水平,即无菌保证水平(Sterility Assurance Level, SAL)来表征。

而这种概率意义上的无菌保证取决于合理且经过验证的灭菌工艺过程、良好的无菌保证体系以及生产过程中严格的GMP管理。

无菌药品通常的灭菌方式可分为:1)湿热灭菌;2)干热灭菌;3)辐射灭菌;4)气体灭菌;5)除菌过滤。

按工艺的不同分为最终灭菌工艺(sterilizing process)和无菌生产工艺(aseptic processing)。

其中最终灭菌工艺系指将完成最终密封的产品进行适当灭菌的工艺,由此生产的无菌制剂称为最终灭菌无菌药品,湿热灭菌和辐射灭菌均属于此范畴.无菌生产工艺系指在无菌环境条件下,通过无菌操作来生产无菌药品的方法,除菌过滤和无菌生产均属于无菌生产工艺。

部分或全部工序采用无菌生产工艺的药品称为非最终灭菌无菌药品.基于无菌药品灭菌/除菌生产工艺的现状,本指导原则主要对在注射剂与无菌原料药的生产中比较常用的湿热灭菌与无菌生产工艺进行讨论。

本指导原则中的湿热灭菌工艺验证主要包括灭菌条件的筛选和研究,湿热灭菌的物理确认,生物指示剂确认等内容;无菌生产工艺验证主要包括无菌分装、除菌过滤、培养基模拟灌装、过滤系统的验证等验证内容。

最终灭菌工艺和无菌生产工艺实现产品无菌的方法有本质上的差异,从而决定了由这两类工艺生产的产品应该达到的最低无菌保证水平的巨大差异。

最终灭菌无菌产品的无菌保证水平为残存微生物污染概率≤10—6,非最终灭菌无菌产品的无菌保证水平至少应达到95%置信限下的污染概率<0。

1%.由此可见,非最终灭菌无菌产品存在微生物污染的概率远远高于最终灭菌无菌产品,为尽量减少非最终灭菌无菌产品污染微生物的概率,鼓励企业在生产中采用隔离舱等先进技术设备.基于质量源于设计的药品研发与质量控制的理念,为保证无菌药品的无菌保证水平符合要求,研发者在产品的研发过程中应根据药品的特性选择合适的灭菌方式,并系统地评估生产的各环节及各种因素对无菌保证水平的影响,根据风险的高低与风险发生的可能性等来针对性地验证灭菌工艺的可靠性,验证的内容、范围与批数等取决于工艺与产品的复杂性以及生产企业对类似工艺的经验多少等因素。

只有在研发中经过系统而深入的研究与验证,获得可靠的灭菌工艺,并在日常的生产过程中严格执行该工艺,才能真正保证每批药品的无菌保证水平符合预期的要求。

当然,在药品的整个生命周期内,随着对所生产的药品的特性和生产工艺等的了解越来越全面和深入,灭菌工艺也在不断的完善,此时就会涉及到对变更后的工艺如何进行验证的问题,本指导原则也适用于此种情况。

由于灭菌/除菌工艺验证的工作在我国开展的时间不长,基础还不牢靠,因此必然在实际工作中会遇到很多难以预料的问题,故本指导原则只是一个一般性原则,药物研发者应从药物研发的客观规律出发,具体问题具体分析,必要时根据实际情况采用其他有效的方法和手段。

同时,本指导原则作为阶段性产物,必将随着药物研究者与评价者对灭菌工艺研究与验证的认知加深,而不断进行修订与完善。

2制剂湿热灭菌工艺2.1湿热灭菌工艺的研究2.1。

1 湿热灭菌工艺的确定依据灭菌工艺的选择一般按照灭菌工艺的决策树(详见附件1)进行,湿热灭菌工艺是决策树中首先考虑的灭菌工艺。

湿热灭菌法是利用高压饱和蒸汽、过热水喷淋等手段使微生物菌体中的蛋白质、核酸发生变性而杀灭微生物的方法。

高温在杀灭微生物的同时,可能对药品的质量也有所影响.如果产品不能耐受湿热灭菌,则需要考虑采用无菌生产工艺。

所以,对于药品的灭菌工艺的考察和确定,首先是考察其能否采用湿热灭菌工艺,能否耐受湿热灭菌的高温.目前湿热灭菌方法主要有两种:过度杀灭法(F0≥12)和残存概率法(8≤F0<12)。

用其它F0值小于8的终端灭菌条件的工艺,则应该按照无菌生产工艺要求。

以上两种湿热灭菌方法都可以在实际生产中使用,具体选择哪种灭菌方法,在很大程度上取决于被灭菌产品的热稳定性。

药物是否能耐受湿热灭菌工艺的高温,除了与药物活性成分的化学性质相关外,还与活性成分存在的环境密切相关,所以在初期的工艺设计过程中需要通过对药物热稳定性进行综合分析,以确定能否采用湿热灭菌工艺。

2.1.1.1活性成分的化学结构特点与稳定性通过对活性成分的化学结构进行分析,可以初步判断活性成分的稳定性,如果活性成分结构中含有一些对热不稳定的结构基团,则提示主成分的热稳定性可能较差.在此基础之上,还应该通过设计一系列的强制降解试验对活性成分的稳定性做进一步研究确认,了解活性成分在各种条件下可能发生的降解反应,以便在处方工艺的研究中采取针对性的措施,保障产品能够采用湿热灭菌工艺。

2。

1.1。

2处方工艺的研究在对活性成分的结构特点与稳定性进行研究的基础上,可以有针对性的进行处方工艺的优化研究。

如活性成分易发生氧化反应,则需要考虑是否需要在工艺中去除氧并采取充氮的生产工艺,或在处方中加入适宜的抗氧剂;如活性成分的稳定性与pH值相关,则需要通过研究寻找最利于主成分稳定性的pH值,当然此时需要关注该pH值在临床治疗时能否接受;如果主成分是因为某些杂质的存在影响了稳定性,则需要通过适宜的手段去除相关的杂质;如果是主成分在某种溶剂系统中稳定性较差,则需要考虑更换溶剂系统,此时同样需要考虑所选用的溶剂系统在临床应用时能否被接受;湿热灭菌的不同灭菌温度和灭菌时间的组合对产品的稳定性的要求有所不同,可以在保证提供所需的SAL的基础上,通过灭菌时间和灭菌温度的调整来确定药物可以耐受的湿热灭菌工艺。

总之,需要通过各个方面的研究,使药物尽可能的可以采用湿热灭菌工艺。

只有在理论和实践均证明即使采用了各种可行的技术方法之后,活性成分依然无法耐受湿热灭菌的工艺时,才能选择无菌保证水平较低的无菌生产工艺。

2。

2。

1.3稳定性研究无论使用何种设计方法,都需要进行最终灭菌产品的稳定性研究。

考察最终灭菌程序对产品性质稳定性影响的试验可包括产品的降解、含量、pH值、颜色、缓冲能力以及产品的其它质量特性.灭菌时,杀灭微生物的效果和活性成分的降解都随着时间和温度而累积.这意味着加热和冷却的变化将影响产品的稳定性,同时影响杀灭效果.因此,稳定性研究用样品最好选取处于最苛刻的灭菌条件的产品,如:可采用在热穿透试验中F0最大的位置上灭菌的产品进行稳定性考察,以确保灭菌产品的质量仍能符合要求。

2.1.2过度杀灭法的工艺研究通常来说,与残存概率法相比,过度灭杀法所需的被灭菌品开始生产阶段和日常监控阶段生物负荷的信息较少,但是过度杀灭要求的热能比较大,其后果是被灭菌品降解的可能性增大.过度杀灭法的目标是确保达到一定程度的无菌保证水平,而不管被灭菌产品初始菌的数量及其耐热性如何。

过度杀灭法假设的生物负荷和耐热性都高于实际数,而大多数微生物的耐热性都比较低,很少发现自然生成的微生物的D121℃值大于0.5分钟。

因此,过度杀灭的灭菌程序理论上能完全杀灭微生物,从而能提供很高的无菌保证值。

由于该方法已经对生物负荷及耐热性作了最坏的假设,从技术角度看,对被灭菌品进行初始菌监控就没有多大必要了。

但这并不意味着生产过程中对污染可以完全不加控制。

仅从控制热原的角度,也应当遵循工艺卫生规范,控制产品的微生物污染。

如果实际生产中能够严格遵循GMP的要求,这一点是可以实现的。

2.1.3残存概率法的工艺研究与过度杀灭法相比,残存概率法方法所需的信息量要大得多,包括被灭菌品生产开始阶段及常规生产阶段的信息、指示菌(对灭菌程序呈现强耐热性的试验菌)以及生物负荷的信息。

只有积累了这类有价值的信息后,才能制定比过度杀灭法F0值低的热力灭菌程序,同时产品的无菌保证水平不会降低.使用热力较低灭菌程序更有利于药品的稳定性,使产品的有效期延长.正是因为这个原因,残存概率法更适合那些处方耐热性较差的最终灭菌产品。

通常说来,不耐热药品的灭菌可能不能使用过度杀灭法,需要设计一个灭菌程序能够恰当地杀灭生物负荷,同时不导致产品不可接受的降解。

这种情况下,灭菌程序的确认就需研究产品的生物负荷和耐热性。

根据以下公式可以比较清楚的说明这一点:无菌保证值= F0/ D - lgN0其中,无菌保证值是SAL的负对数,N0为灭菌开始时产品中的污染微生物总数,D为污染微生物的耐热参数。

所以,菌工艺的无菌保证值与F0、N0、D密切相关。

2。

1.3.1 灭菌前生物负荷的控制采用残存概率法进行终端灭菌的产品,除了需要关注灭菌过程本身,还需要在生产过程中采用一些适当的手段来监测和控制药品灭菌前的生物负荷。

具体的措施通常包括灭菌前微生物数量与耐热性的监测、药液过滤、工艺参数的控制等等。

灭菌前微生物污染水平的监测将在下面的章节详细阐述.产品过滤在终端灭菌的产品中仅仅作为辅助的控制手段,但是在工艺确定的过程中,也应该对滤膜的孔径、材质、滤器的使用周期进行必要的筛选。

在工艺参数控制方面,由于微生物的特性,通常在药液放置期间也会逐渐繁殖,尤其一些营养型的注射液,如葡萄糖注射液、复方氨基酸注射液等,其环境更有利于微生物的生长和繁殖,因此应通过工艺筛选和验证来确定溶液配制至过滤前、以及过滤后至灭菌前能够放置的最长时限,并相应确定产品的批量、生产周期等关键工艺参数.2.1.3。

2 灭菌前微生物污染的监测灭菌前微生物污染水平的监测应在正常生产过程中取样并覆盖整个生产过程,取样设计应选取生产过程中污染最大,最有代表性的样品,且要充分考虑到产品从灌封到灭菌前的放置时间。

相关文档
最新文档