红外光谱法测定高分子化合物的结构
红外光谱法在聚合物鉴别中的应用

红外光谱法在聚合物鉴别中的应用红外光谱法在聚合物鉴别中的应用红外光谱法是一种分析化学技术,它通过将分子中的振动能量转化为电磁波,利用光谱仪测定样品吸收红外辐射的能量,进而分析样品的成分和结构。
在聚合物材料的鉴别和表征方面,红外光谱法得到了广泛的应用,成为了聚合物研究的基本手段之一。
本文将详细介绍红外光谱法在聚合物鉴别中的应用。
1.聚合物的基本结构聚合物是由数个重复单元结构化合而成的高分子化合物。
其中,重复单元由单体分子通过化学键结合而成,分子量高达几千至几百万不等。
不同的聚合物具有不同的物理化学性质和应用性能,因此对于聚合物的鉴别和表征具有重要的意义。
聚合物材料具有复杂的结构和特性,但是它们的基本单体结构和宏观性质往往与其红外光谱图谱(IR谱)相关联。
IR谱是由聚合物分子的振动带来的光谱图像,包括由伸缩、弯曲、扭曲和往复式振动产生的信息。
因此,IR谱可以用来确定单体结构、化学键类型、官能团或取代基类别、杂质种类、晶型、杂交锋的相对量等信息。
2.聚合物鉴别的方法在聚合物的鉴别和表征中,主要有以下几种方法:2.1 溶解色谱法通过在不同的溶剂中溶解样品,观察到不同的相对分子质量和分子间吸引力的变化,可以间接地进行聚合物的鉴别。
然而,对于相似结构的聚合物,由于其相似的水溶性和分子量,很难分辨出它们的差异性。
2.2 标准化的温度和热重分析法温度和热重分析法(TGA)和不同的附加技术也可以用于聚合物的鉴别。
通过在恒定的加热速率下,检测样品的重量损失,可以获得特定聚合物的热分解温度、热容和热稳定性等信息。
然而,由于在不同条件下的析出温度差异甚至可以超过10摄氏度,因此,这一方法只能识别相对不同的聚合物,而不能进行严格的鉴别。
2.3 光谱法光谱法是目前最常用的聚合物鉴别方法之一,IR谱作为其中的重要分支,提供了分子结构和化学键类型等信息。
根据不同的聚合物类型和分子结构,红外光谱谱图可以表现为一系列的吸收峰。
给定的峰可以被标识为相应的化学键,从而确定分子中的成分和结构。
红外实验报告

红外光谱法测定高分子化合物的结构实验报告实验目的1.熟悉傅里叶变换红外光谱仪(FTIR)的使用方法和工作原理。
2.掌握用KBr压片法制备固体样品进行红外光谱测定的技术和方法。
3.了解基本且常用的KBr压片制样技术在红外光谱测定中的应用。
4.通过对高分子材料红外光谱的解释的,初步学会红外光谱图的解析,能从图上获取一些高分子的组成结构信息。
二、实验原理当一定频率的红外光照射分子时,如果分子中某个基团的振动频率和它一样,光的能量通过分子偶极矩的变化传递给分子,这个基团就吸收了一定频率的红外光。
分子吸收光能后由原来的振动基态能级跃迁到较高的振动能级。
按照量子学说,当分子从一个量子态跃迁到另一个量子态时,就要发射或吸收电磁波,两个量子状态间的能量差△ E与发射或吸收光的频率v之间存在如下关系:△ E=h v,式中h为普朗克(Plank)常数,等于6.626*10-34J?s频率v =C/ 入,C 是光速,C=2.9979*108m/s。
红外辐射的波长在2ym-50卩m之间。
红外光量子的能量较小,只能引起原子的振动和分子的转动,所以红外光谱又称振动转动光谱。
原子的振动相当于键合原子的键长与键角的周期性改变,相应于振动形式有伸缩振动和弯曲振动。
对于具体的基团与分子振动,其形式和名称有多种多样,对应于每一种振动形式有一种振动频率,其所具有的各种振动形式以及对应的谱带波数。
红外吸收光谱法的原理是当物质受到红外照射时,由于能量小而不足以引起电子的跃迁。
但它能引起分子的振动能级的跃迁。
这种能级跃迁是有选择性地吸收一定波长的红外光。
物质的这种性质表现为物质的吸收光谱。
红外光谱法是利用某些物质对电磁波中的红外光区特定频率的波具有选择性吸收的特性来进行结构分析、定性鉴定和定量测定的一种方法。
红外吸收光谱是在电磁辐射的作用下,分子中原子的振动能级和转动能级发生跃迁时所产生的分子吸收光谱。
由于这种跃迁时振动能级和转动能级的能量差比较小(前者约为1——0.05电子伏特,后者约为0.05―― 0.0035电子伏特),因此其吸收光谱的波长均在红外光区(0.78 —300微米)内。
红外光谱法鉴定聚合物的结构特征

红外光谱法鉴定聚合物的结构特征引言红外光谱法是一种常用的分析技术,广泛应用于聚合物材料的表征和鉴定。
聚合物是由重复单元组成的高分子化合物,其结构决定了其性质和应用领域。
通过红外光谱法,可以研究聚合物中的化学键类型、官能团以及杂质等信息,从而实现聚合物的结构特征的鉴定。
本文将介绍红外光谱法在聚合物结构鉴定中的原理和方法,并结合实例进行详细说明。
一、红外光谱的原理红外光谱法基于分子内振动产生的特定频率的吸收现象来鉴定材料的成分和结构。
红外光谱仪通过引入红外光源,照射到样品上,样品会吸收特定频率的红外光,所吸收的红外光谱与样品分子的振动能级间的能量差有关,因此可以得到有关样品结构和化学键性质的信息。
二、红外光谱法在聚合物结构鉴定中的应用1.化学键类型的鉴定红外光谱法可以通过分析吸收峰的位置和形状来确定聚合物中的化学键类型。
例如,碳氢键的振动会在285-300 cm-1范围内产生吸收峰,羟基(OH)官能团的振动会在320-360 cm-1范围内产生宽而强的吸收峰。
通过观察这些特征吸收峰的出现和位置,可以确定聚合物中的化学键类型。
2.官能团的鉴定红外光谱法可以通过分析吸收峰的位置和形状来确定聚合物中的官能团。
不同官能团的振动会在不同的频率范围内产生吸收峰。
例如,醛基(C=O)官能团会在165-175 cm-1范围内产生吸收峰,羧基(COOH)官能团会在170-180 cm-1范围内产生吸收峰。
通过观察这些特征吸收峰的出现和位置,可以确定聚合物中的官能团。
3.结构的定性和定量分析通过分析红外光谱中的吸收峰的强度和形状,可以对聚合物结构进行定性和定量的分析。
例如,在聚丙烯中,不饱和度的增加会导致红外光谱中烯烃吸收峰的增加。
通过测量吸收峰的强度,可以确定聚合物中不饱和度的含量。
4.杂质的检测实例以聚丙烯为例,通过红外光谱法鉴定其结构特征。
首先,我们需要将聚丙烯样品制备成薄膜状。
然后,将样品置于红外光谱仪中进行测试。
化学分析中的红外光谱技术

化学分析中的红外光谱技术红外光谱技术是一种重要的分析方法,广泛应用于化学领域。
它主要通过测定物质在红外光区域的吸收特性,从而获取有关物质结构和组成的信息。
以下是关于红外光谱技术的一些关键知识点:1.红外光谱的原理:红外光谱是利用物质对红外光的吸收作用,分析物质分子内部结构的一种技术。
红外光的波长范围在4000-400cm-1之间,不同类型的化学键和官能团在红外光区域有特定的吸收频率。
2.红外光谱仪:红外光谱仪是进行红外光谱分析的主要仪器设备。
它主要由光源、样品室、分光镜、检测器等部分组成。
样品通过红外光源照射,经过样品室后,由分光镜分离出不同波长的光,最后由检测器检测吸收的光强。
3.红外光谱图:红外光谱图是表示物质红外光谱吸收情况的图表。
横轴表示波数(cm-1),纵轴表示吸收强度。
红外光谱图可以用来分析物质的分子结构、化学键类型和官能团等信息。
4.红外光谱的应用:红外光谱技术在化学分析领域具有广泛的应用,可以用于定性分析、定量分析、结构分析、混合物分析等。
例如,通过红外光谱可以确定有机化合物的分子结构,分析高分子材料的组成等。
5.红外光谱的解析:红外光谱的解析主要包括峰的识别、峰的归属和峰的积分等步骤。
通过对红外光谱图中的吸收峰进行识别和归属,可以确定物质中的化学键类型和官能团,从而推断出物质的结构信息。
6.红外光谱的优点:红外光谱技术具有快速、简便、灵敏、准确等优点,是一种非常重要的分析方法。
它不仅适用于固体、液体样品,还可以用于气体和薄膜样品的研究。
7.红外光谱的局限性:虽然红外光谱技术具有很多优点,但也存在一定的局限性。
例如,红外光谱信号易受样品环境、化学计量比等因素的影响,因此在分析过程中需要注意样品的制备和测试条件的控制。
以上是关于化学分析中红外光谱技术的一些关键知识点,希望对您有所帮助。
习题及方法:1.习题:红外光谱图中,吸收峰的位置与哪个因素有关?解题思路:此题考查对红外光谱图的基本理解。
傅里叶变换红外光谱法在高分子材料研究中的应用

傅里叶变换红外光谱法在高分子材料
研究中的应用
傅里叶变换红外光谱法(FT-IR)是一种常用的非破坏性表征高分子材料结构的技术。
它通过测量材料吸收、透射或反射红外光的强度,得到材料的红外吸收光谱图像。
这些光谱图像可以提供材料的分子振动信息,从而揭示材料的分子结构、化学键信息和分子间相互作用等重要特征。
在高分子材料研究中,FT-IR可以用于以下方面:
1. 确定材料的组成和结构:FT-IR可以检测材料中的特定化学键类型,如C-H键、O-H键、N-H键等。
通过观察这些键的吸收峰位置和强度,可以确定材料的组成和结构。
2. 研究材料的互作用:高分子材料通常包含多种功能性基团,它们之间会相互作用。
FT-IR可以检测这些基团之间的相互作用,例如氢键、范德华力等。
3. 分析材料的热性能:高分子材料的热性能与其分子结构密切相关。
FT-IR可以用于研究高分子材料的热性能,如热稳定性、热分解等。
4. 研究材料的形态结构:FT-IR还可以与显微镜等其他技术相结合,用于研究材料的形态结构,如薄膜、纤维等。
总之,FT-IR技术在高分子材料研究中具有广泛的应用前景,可以提供有关高分子材料结构、性能和功能的有价值的信息。
1/ 1。
高分子成分定性及定量分析

高分子成分定性及定量分析简介高分子是由重复单元组成的大分子化合物,广泛应用于塑料、橡胶、纺织品等领域。
高分子成分的定性及定量分析是确定高分子样品中各种成分的种类和含量的关键步骤。
本文将介绍几种常用的高分子成分定性及定量分析方法,并对其原理和应用进行详细阐述。
定性分析方法红外光谱法红外光谱法是一种常用的高分子成分定性分析方法。
它通过测量高分子样品在红外光谱范围内的吸收和散射情况,来判断样品中的各种成分。
每种化合物都有独特的红外吸收带,因此可以通过与已知标准样品的红外光谱对比,确定高分子样品中各种成分的存在与否。
核磁共振(NMR)法核磁共振法是一种高分子成分定性分析的精确方法。
NMR法通过测量高分子样品中核磁共振谱的特征,来确定样品中各种成分的种类。
NMR谱图可以提供高分辨率和高信噪比,可以准确识别高分子样品中的各种结构单元。
质谱(MS)法质谱法是一种高分子成分定性分析的灵敏方法。
它通过测量高分子样品中离子的质量-荷比,来确定样品中各种成分的种类。
质谱可以提供高分辨率和高灵敏度的分析结果,可以准确识别高分子样品中的各种成分。
定量分析方法色谱法色谱法是一种常见的高分子成分定量分析方法。
常用的色谱法有气相色谱(GC)和液相色谱(LC)。
色谱法基于样品分离原理,通过测量高分子样品中各种成分的峰面积或峰高,来确定其相对含量。
色谱法具有分离效率高、灵敏度高的特点,广泛应用于高分子成分定量分析。
热重分析(TGA)法热重分析法是一种高分子成分定量分析的热性能测量方法。
它通过加热高分子样品,测量其在不同温度下失重的情况,来确定各种成分的含量。
不同成分的失重温度和失重量不同,因此可以通过热重分析法来定量分析高分子样品中各种成分的含量。
标准曲线法标准曲线法是一种常用的定量分析方法。
它通过制备一系列已知浓度的标准样品,测量它们的响应值(如吸收光谱的吸光度),绘制标准曲线。
然后用待测样品测量得到的响应值在标准曲线上找到相应的浓度,从而确定高分子样品中各种成分的含量。
红外光谱法在高分子研究中的应用

红外光谱法在高分子研究中的应用
红外光谱法是一种常用的高分子研究方法,可以通过分析高分子材料的红外吸收谱图来确定其分子结构和化学键类型、数量、位置等信息。
该方法广泛应用于高分子材料的合成、加工、改性、性能评价等方面。
在高分子材料的合成中,红外光谱法可以用来监测反应过程中的化学键变化,以确定反应的程度和产物结构。
在高分子材料的加工中,红外光谱法可以用来检测高分子材料中的表面污染物,以保证产品质量。
在高分子材料的改性中,红外光谱法可以用来研究高分子材料的结构改变和性能变化,以确定改性效果是否达到预期。
在高分子材料的性能评价中,红外光谱法可以用来分析材料的分子结构和化学键类型、数量、位置等信息,以确定材料的性能特点和优劣。
总之,红外光谱法在高分子研究中具有重要的应用价值,可以为高分子材料的合成、加工、改性、性能评价等方面提供有效的分析手段。
- 1 -。
红外光谱分析技术及其在高分子材料研究中的应用(简)

影响基团特征频率的因素
诱导效应 共轭效应
环的张力 效应
• 取代基的电负性不同引起分子中电 荷分布发生变化,使健力常数改变
• 共轭效应使体系π电子云密度更趋 于均匀,使单键变短双键伸长
• 随环减小,张力增加,吸收频率也 增高
影响基团特征频率的因素
氢键效应 耦合效应
其他作用
• 氢键形成,常常使正常的共价键 键长伸长,键能降低,特征频率 也随之降低
分析与鉴别聚合物
因红外操作简单,谱图的特征性强, 因此是鉴别聚合物很理想的方法 用红外光谱不仅可区分不同类型的聚 合物,而且对某些结构相近的聚合物, 也可以依靠指纹区谱图来区分 例如尼龙-6、尼龙-7、尼龙-8都是聚 酰胺类聚合物,具有相同的官能团
H N (CH2) n CO
分析与鉴别聚合物
测定聚合物样品的结晶度 研究聚合物结晶动力学 计算结晶度公式:Xc=kAi/As 式中Ai、As 分别代表测定结晶度时, 所选择的分析谱带和内标谱带的吸收 峰面积;k为比例常数,用已知结晶度 的样品预先测定
聚合物取向的研究
在红外光谱仪的测量光路中加入一个 偏振器便形成偏振红外光谱,它是研 究聚合物分子链取向的好手段
定量分析
朗伯-比尔定律: A=lgIo/I=εCL
A为吸光度、C为溶液的浓度、l为样品槽厚度 ε为吸光系数,其值的大小与基团的结构、 所处的环境有关,取决于基团振动时偶极 矩的变化率
红外光谱法在高分子材料研究中的应用
分析与鉴别聚合物 聚合物反应的研究 共聚物研究 聚合物结晶形态的研究 聚合物取向的研究 聚合物表面的研究 高分子材料的组成分布
扫描速度快(几十次/秒),信号累加,信噪比提 高(可达60:1)。 光通量大,所有频率同时测量,检测灵敏度高, 样品量减少。 扫描速度快,可跟踪反应历程,作反应动力学研 究,并可与GC(Gas Chromatography)等联用。 测量频率范围宽,可达到4500~6cm-1 杂散光少,波数精度高,分辨率可达0.05/cm 对温度、湿度要求不高。 光学部件简单,只有一个动镜在实验中运动,不 易磨损。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
红外光谱法测定高分子化合物的结构
一、实验目的
1.熟悉傅里叶变换红外光谱仪(FTIR)的使用方法和工作原理。
2.初步掌握红外光谱试样的制备和红外光谱仪的使用。
3 通过对高分子材料红外光谱的解释的,初步学会红外光谱图的解析,能从图上获取一些高分子的组成结构信息。
二、实验原理
红外光谱与分子的结构密切相关,是研究表征分子结构的一种有效手段,与其它方法相比较,红外光谱由于对样品没有任何限制,它是公认的一种重要分析工具。
红外光谱是研究波长为0.7—1000 微米的红外光与物质的相互作用,为分子振动光谱。
是表征高聚物的化学结构和物理性质的一种重要工具。
它们可以对以下一些方面提供定性和定量的信息。
是研究高分子化合物的一种重要手段。
1.化学:结构单元、支化类型、支化度、端基、添加剂、杂质。
2.立构:顺—反异构、立构规整度。
3.物态:晶态、介晶态、非晶态、晶胞内链的数目、分子间作用力、晶片厚度。
4.构象:高分子链的物理构象、平面锯齿形或螺旋形。
5.取向:高分子链和侧基在各向异性材料中排列的方式和规整度。
还可以鉴定高聚物的主链结构、取代基和双键的位置、相转变,甚至还可以研究橡胶的老化。
总之,在微结构上起变化而在光谱上出现特殊谱线的都可以用过程都可以用红外光谱来研究。
当一定频率的红外光照射分子时,如果分子中某个基团的振动频率和它一样,光的能量通过分子偶极矩的变化传递给分子,这个基团就吸收了一定频率的红外光。
分子吸收光能后,由原来的振动基态能级跃迁到较高的振动能级。
按照量子学说,当分子从一个量子态跃迁到另一个量子态时,就要发射或吸收电磁波,两个量子状态间的能量差ΔE 与发射或吸收光的频率ν之间存在如下关系:
ΔE=hν,式中h 为普朗克(Plank)常数,等于6.626*10-34J•s,
频率ν=C/λ,C 是光速,C=2.9979*108m/s。
红外辐射的波长在2μm-50μm 之间。
红外光量子的能量较小,只能引起原子的振动和分子的转动,所以红外光谱又称振动转动光谱。
原子的振动相当于键合原子的键长与键角的周期性改变,相应于振动形式有伸缩振动和弯曲振动。
对于具体的基团与分子振动,其形式和名称有多种多样,对应于每一种振动形式有一种振动频率,其所具有的各种振动形式以及对应的谱带波数。
红外光谱可以研究分子的结构和化学键,如力常数的测定和分子对称性等,利用红外光谱方法可测定分子的键长和键角,并由此推测分子的立体构型根据所得的力常数可推知化学键的强弱,由简正频率计算热力学函数等分子中的某些基团或化学键在不同化合物中所对应的谱带波数基本上是固定的或只在小波段范围内变化,因此许多有机官能团例如甲基、亚甲基、羰基,氰基,羟基,胺基等等在红外光谱中都有特征吸收,通过红外光谱测定,判定未知样品中存在哪些有
机官能团,这为最终确定未知物的化学结构奠定了基础。
由于分子内和分子间相互作用,有机官能团的特征频率会由于官能团所处的化学环境不同而发生微细变化,这为研究表征分子内、分子间相互作用创造了条件。
分子在低波数区的许多简正振动往往涉及分子中全部原子,不同的分子的振动方式彼此不同,这使得红外光谱具有像指纹一样高度的特征性,称为指纹区利用这一特点,人们采集了成千上万种已知化合物的红外光谱,并把它们存入计算机中,编成红外光谱标准谱图库,只需把测得未知物的红外光谱与标准库中的光谱进行比对,就可以迅速判定未知化合物的成份。
利用红外光谱鉴定化合物的结构,需要熟悉重要的红外光谱区域基团和频率关系。
高分子化合物结构研究中应用最广泛的是中红外区。
三、仪器和试剂
Nicolet6700 型傅里叶变换红外光谱仪(FTIR)、红外灯、玛瑙研钵、除湿机、分析天平、粉末压片机,玛瑙研钵。
仪器介绍:
设备名称:傅里叶变换红外光谱仪(FT-IR)
规格、型号:Nicolet6700
生产厂家:美国赛默-飞世尔有限公司
主要技术指标:
(1)光谱范围:8,000 – 50 cm-1
(2)分辨率:优于 0.6 cm-1,连续可调。
(3)信噪比:优于40000:1
(4)光学部件:镀金反射镜,采用金刚石切削、一次加工成型工艺。
(5)光学台:密封干燥光学台,包括电子式湿度指示及可重复使用的干燥装置。
(6)干涉仪:麦克逊干涉仪,采用光学补偿或动态调整技术。
(7)分束器:双分束器包括中红外KBr 分束器、远红外固体分束器。
(8)检测器:双检测器包括中红外DLATGS 检测器、远红外DLATGS 检测器。
(9)红外软件:中文版软件,包括:红外控制、谱图处理、数据转换、多组分定量等全部。
红外光谱仪分析测试原理:
FTIR 原理框图
四、实验试剂
标准KBr,试样为壳聚糖和PC。
五、实验步骤
1.仪器准备:接通电源,开启总电源开关,预热仪器。
2.溴化钾压片:
a.标准样品压片:用分析天平称取150mg 左右的干燥的KBr 粉末,然后在玛瑙研钵中充
分磨细,最后在10*108Pa 下抽真空压成片透明的薄片,放入仪器中进行测试。
b.待测样品压片:制备溴化钾压片所需的溴化钾和样品的质量比为200:1,所以用分析天平称取和标准样品制备中所称量大约一致的干燥的KBr 粉末,然后再加入1-2mg 试样样品,在玛瑙研钵中充分磨细,同上所述最后在压片机上进行压片,得到一个透明的薄片,放入仪器中进行测试。
3、记录数据和图谱,整理仪器设备和试样。
六、图谱及分析
结果分析:
1、1598.70cm-1和1497.99cm-1是苯环的骨架振动吸收峰。
821.25cm-1和749.36cm-1是苯环上C-H的弯曲振动的特征峰。
2、1352.97cm-1是C-O-C不对称伸缩振动特征峰,1013.34cm-1是C-O-C对称伸缩振动特征峰,1185.47cm-1是C-N-C不对称伸缩振动特征峰,940.14cm-1是恶嗪环特征峰,1230.59cm-1是恶嗪环上CH
振动特征峰,上述五个特征吸收峰的出现说
2
明该物质中存在恶嗪环。
所以初步推断该物质为苯并恶嗪树脂。