平面几何中线段相等的几种证明方法及平面几何习题大全

合集下载

平面几何的证明方法

平面几何的证明方法

平面几何的证明方法平面几何是数学中的一个重要分支,主要研究平面内的点、线、面及其相互关系。

在解决平面几何问题时,证明是一个关键步骤。

本文将介绍一些常用的平面几何证明方法,并说明它们的应用场景。

一、直接证明法直接证明法是一种常用的证明方法,即通过逐步推导和陈述使命题成立。

这种方法依赖于已知条件和平面几何定理,逻辑严谨、思路清晰。

例如,当要证明某两条线段相等时,可以通过给出这两条线段的定义,然后根据它们的属性,逐步推导得出结论。

二、间接证明法间接证明法是通过否定反证法来证明结论。

假设原命题不成立,然后逐步推导,得出矛盾,从而推出原命题成立。

这种方法常用于证明无理数、无法被二分等问题。

例如,当要证明某条直线平分了一个角时,可以假设这条直线没有平分该角,然后通过逻辑推导得出矛盾,证明了该直线实际上是平分了这个角。

三、反证法反证法是通过假设结论不成立,然后推出矛盾,证明原结论的一个方法。

这种方法常用于证明唯一性问题。

例如,当要证明两个圆只有一个公共切点时,可以先假设它们有两个或更多个公共切点,然后通过推导得出矛盾,从而证明了原结论。

四、归纳法归纳法适用于一系列问题的证明。

首先证明基本情况成立,然后假设某个特定的情况成立,通过归纳法推导得出所有情况都成立。

这种方法常用于证明几何图形的性质。

例如,当要证明一个多边形的内角和公式时,可以通过归纳法证明三角形和四边形的情况,然后推广到所有多边形。

五、共线法共线法是通过证明多个点共线来证明结论的方法。

在平面几何中,当需要证明某些点共线时,可以利用已知条件中的共线关系,或者通过构造辅助线,从而达到共线的目的。

例如,当要证明一个四边形的对角线交于一点时,可以通过构造这两条对角线,然后利用平行线的性质证明它们的交点存在。

六、相似性法相似性法是通过画出几何图形的相似部分来证明结论的方法。

当需要证明两个三角形相似时,可以通过观察它们的角度和边长关系,利用相似三角形的性质得出结论。

高中奥林匹克竞赛数学平面几何100题——珍藏版

高中奥林匹克竞赛数学平面几何100题——珍藏版

高中奥林匹克竞赛数学平面几何100题——珍藏版高中数学联赛的几何题目有100道,难度较高。

这些题目涉及到各种不同的几何概念和定理,需要考生具备扎实的数学基础和丰富的解题经验。

在这些题目中,有许多需要考生进行证明,需要考生熟练掌握各种证明方法和技巧。

同时,还有一些需要考生进行画图,需要考生具备良好的几何直观和手绘能力。

这些几何题目的难度不仅仅在于其题目本身,还在于考试的时间限制。

考生需要在有限的时间内解决尽可能多的问题,因此需要考生具备快速解题的能力和良好的时间管理能力。

为了更好地应对这些几何题目,考生需要在平时的研究中注重基础知识的掌握和解题技巧的训练。

同时,还需要多做一些类似的练题目,以提高自己的解题水平和应对能力。

总之,高中数学联赛的几何题目难度较高,需要考生具备扎实的数学基础、丰富的解题经验、良好的几何直观和手绘能力、快速解题的能力和良好的时间管理能力。

考生需要在平时的研究中注重基础知识的掌握和解题技巧的训练,并多做类似的练题目,以提高自己的解题水平和应对能力。

1.研究证明角平分在这一部分中,我们将研究如何证明一个角被平分。

这是一个非常基础的几何问题,但是它的应用非常广泛。

我们将介绍几种不同的证明方法,包括使用角平分线的定义、角度相等、相似三角形等。

2.研究证明四点共圆在这一部分中,我们将研究如何证明四个点共圆。

这个问题也是几何学中的基础问题之一。

我们将介绍几种不同的证明方法,包括使用圆的定义、圆心角、垂直等。

3.研究证明角的倍数关系在这一部分中,我们将研究如何证明角的倍数关系。

这是一个非常重要的几何问题,因为它在许多几何证明中都有应用。

我们将介绍几种不同的证明方法,包括使用角度相等、相似三角形等。

4.证明线与圆相切在这一部分中,我们将研究如何证明一条线与一个圆相切。

这是一个非常基础的几何问题,但是它的应用非常广泛。

我们将介绍几种不同的证明方法,包括使用切线的定义、圆心角等。

5.证明垂直在这一部分中,我们将研究如何证明两条线段垂直。

八年级数学如何解决复杂的平面几何问题

八年级数学如何解决复杂的平面几何问题

八年级数学如何解决复杂的平面几何问题在八年级数学学习中,平面几何是一个重要的内容,涉及到各种几何图形的性质、相似与全等、平行与垂直等知识点。

当面临复杂的平面几何问题时,我们可以采用一些有效的方法和技巧来解决。

本文将介绍一些解决复杂平面几何问题的技巧和方法。

方法一:分析题目首先,我们需要仔细分析题目,理清楚问题的要求。

有时候问题可能会给出一些已知条件,而我们需要推导出一些其他的结论。

这就要求我们对图形的性质和定理有一定的了解。

例如,如果题目给出了一个等边三角形ABC,要求证明三角形ABC的内角都是60°。

我们可以通过分析等边三角形的性质得知,等边三角形的三条边相等,三个内角也都相等且等于60°。

通过这种分析,我们可以快速得出结论。

方法二:应用几何定理在解决复杂的平面几何问题时,我们需要运用一些几何定理和性质。

例如,分析题目中涉及的几何图形的性质,如直角三角形的勾股定理、相似三角形的比例关系等。

这些定理和性质是解决问题的基础,熟练掌握它们对于解决问题至关重要。

在运用定理时,我们要确保条件满足,然后应用相应的定理进行推导。

方法三:引入辅助构造有时候,为了解决问题,我们可以引入一些辅助构造。

通过添加线段、点等,构造出与原问题有一定联系的图形,以便更好地分析和解决问题。

例如,在证明两个三角形全等时,如果给定两个对应的边相等,我们可以通过添加一个公共点,使用辅助线段来构造两个等腰三角形,然后利用等腰三角形的性质推导出所需的结论。

方法四:运用数学推理数学推理是解决问题的重要手段之一。

通过利用几何图形的性质和定理,我们可以进行严密的推理和证明。

例如,利用线段延长或平移,我们可以得到一些等角关系,运用角的性质来推导问题。

在应用数学推理时,我们要思考如何从已知条件出发,逐步推导出所需的结论。

同时,在推理过程中要注意提炼关键信息,排除无效的步骤,确保推理的严谨性。

方法五:多加练习练习是提高解决复杂平面几何问题能力的关键。

初三数学空间几何认识

初三数学空间几何认识

初三数学空间几何认识一、平面几何1.点、线、面的基本概念2.直线、射线、线段的概念及性质3.平面、直线、线段之间的位置关系4.平行线、相交线的性质5.三角形、四边形、五边形、多边形的基本概念及性质6.矩形、菱形、正方形、梯形的性质7.圆的基本概念及性质8.圆周率、直径、半径、弧、弦、圆心角的关系9.相交线、平行线与圆的关系10.三角形的不等式二、立体几何1.空间几何体的概念及分类2.球、正方体、长方体、圆柱、圆锥的性质3.面、棱、顶点的概念及关系4.多面体的概念及分类5.平面与立体几何体的位置关系6.直线与立体几何体的位置关系7.点、线、面在立体几何中的位置关系8.立体几何中的角、边、面的度量9.立体几何中的体积、表面积计算10.立体几何中的平行公理及推论三、几何变换1.变换的概念及分类2.平移、旋转的性质及几何变换3.相似变换、位似变换的性质及几何变换4.坐标与几何变换5.函数与几何变换6.几何变换在实际问题中的应用四、几何证明1.证明的概念及方法2.直接证明、反证法、归纳证明、综合法、分析法3.三角形、四边形、圆等常见几何图形的证明方法4.相似三角形的性质及证明5.中位线、平行线、相交线等几何性质的证明6.几何图形的对称性及证明7.几何图形的旋转及证明五、几何问题解决1.几何问题的类型及解决方法2.比例问题、面积问题、体积问题、角度问题等3.几何构造问题、几何计数问题、几何最值问题等4.几何问题中的函数与方程思想5.几何问题中的数形结合思想6.几何问题中的转化与化归思想7.几何问题中的逻辑推理与证明思想六、数学思想与方法1.数形结合思想2.转化与化归思想3.函数与方程思想4.分类与整合思想5.归纳与演绎思想6.模型思想与数学建模7.合情推理与演绎推理以上是初三数学空间几何认识的知识点概述,希望对您有所帮助。

在学习过程中,要注意理论联系实际,培养空间想象能力和逻辑思维能力。

习题及方法:一、平面几何习题1.习题一:已知直线AB和CD互相平行,AB // CD,点E位于直线AB上,点F位于直线CD上。

人教版数学八年级竞赛教程之如何做几何证明题附答案

人教版数学八年级竞赛教程之如何做几何证明题附答案

人教版数学八年级竞赛教程之如何做几何证明题附答案如何做几何证明题几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。

几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。

这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。

为了解决几何问题,我们需要掌握常用的分析和证明方法。

其中,综合法是一种从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决的方法。

分析法则是从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止。

两头凑法则是将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。

掌握构造基本图形的方法也是解决几何问题的关键。

复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。

在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。

其中,证明线段相等或角相等是平面几何证明中最基本也是最重要的一种相等关系。

很多其它问题最后都可化归为此类问题来证。

证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。

举个例子,已知如图1所示,$\triangle ABC$中,$\angleC=90^\circ$,$AC=BC$,$AD=DB$,$AE=CF$。

求证:$DE=DF$。

分析:由$\triangle ABC$是等腰直角三角形可知,$\angleA=\angle B=45^\circ$,由$D$是$AB$中点,可考虑连结$CD$,易得$CD=AD$,$\angle DCF=45^\circ$。

从而不难发现XXX。

证明:连结$CD$,可得$AC=BC$,$\angle A=\angle B$,$\angle ACB=90^\circ$,$AD=DB$,$CD=BD=AD$,$\angle DCB=\angle B=\angle A$,$AE=CF$,$\angle A=\angle DCB$,$AD=CD$。

证明线段相等的方法

证明线段相等的方法

证明线段相等的方法线段相等是平面几何中一个非常基础的概念,也是很多证明题中常见的一个步骤。

在数学学习中,我们经常会遇到需要证明两条线段相等的问题,那么我们应该如何进行证明呢?下面我将介绍几种常见的证明线段相等的方法。

一、利用线段的定义证明。

首先,我们需要了解线段的定义,线段是由两点之间的所有点构成的集合。

因此,要证明两条线段相等,只需要证明它们的长度相等即可。

例如,若要证明线段AB与线段CD相等,我们可以利用尺规作图工具,将线段AB与线段CD分别画在同一张纸上,然后利用尺子测量它们的长度,若它们的长度相等,则可以得出线段AB与线段CD相等的结论。

二、利用线段的性质证明。

除了利用线段的定义进行证明外,我们还可以利用线段的性质来证明线段相等。

常见的线段性质有垂直平分线段、等分线段等。

例如,若要证明线段AB与线段CD相等,我们可以先作出线段AB的垂直平分线,并延长至与线段CD相交于点E,然后利用垂直平分线的性质证明AE=EB,CE=ED,从而得出线段AB与线段CD相等的结论。

三、利用其他几何图形证明。

在实际问题中,我们有时也可以利用其他几何图形来证明线段相等。

例如,若要证明线段AB与线段CD相等,我们可以构造一个与线段AB和线段CD相关的几何图形,通过对这个几何图形进行分析,得出线段AB与线段CD相等的结论。

总结。

通过以上介绍,我们可以看出,证明线段相等的方法有很多种,我们可以根据具体的题目情况选择合适的方法进行证明。

在实际操作中,我们需要灵活运用线段的定义和性质,结合几何图形进行分析,从而得出线段相等的结论。

在数学学习中,证明线段相等是一个基础而重要的问题,希望通过本文的介绍,能够帮助大家更好地理解和掌握这一知识点。

同时,也希望大家在学习数学的过程中能够多加练习,提高自己的证明能力,为今后的学习打下坚实的基础。

一份三十年前的平面几何作业整理之五.

一份三十年前的平面几何作业整理之五.
为边分别向外作正方形 ACKH,连结 BH 交 AC 于 P ,作 PQ//BC 交 AB 于 Q 求证:CP=PQ。
C
E F
C
K
H
P A
D
B
A
Q
B
O G

11 题图
12 题图
第 6 页 共 14 页
6
12. (原作业 41 题)如图所示,过圆 O 的直径 AB 的两端作圆 O 的切线和过圆 O 上一点 E 的切线分别交 C 和 D,连结 AD,BC 交于 F,EF 交 AB 于 G,则 EF=FG。 附复制件
CME DMF ,故 EM=MF 。
D
G
C
O
证法二,延长 AC 至 G,由已知得
GCD DBC , GCD CAM
所以 A,B,M,C 四点共圆,以下同 证法一相同,可证
F

B
E
A
M
例题图(2)
CDM DMF AMB 证法三。 同证法一先证 CME DMF ,
A
B
a
O
C
E
D
1 题图
B
E M
C
D
F
2 题图
2. (原作业 31 题)如图所示,已知△ABC 的∠A 和其外角的平 分线分别交直线 BC 于 E,F,过 A 作△ABC 外接圆的切线交 BC 于 D,求证:DE=DF 3. (原作业 32 题)如图所示,自圆 O 外一点 A 向圆 O 作两条 切线 AB,AC,过切点 C 直径 CD,切点 B 在 CD 上的射影为 E, 连结 AD 交线段 BE 于 F,求证:BF=FE。 4. (原作业 33 题)如图所示,△ABC 中,∠A=90 0 ,以 AB 为 直径作圆 O 交 BC 于 D, 过 D 作圆 O 的切线交 AC 于 E, 则 AE=EC。

平面几何中的垂线性质与证明

平面几何中的垂线性质与证明

平面几何中的垂线性质与证明在平面几何中,垂线是一种特殊的线段,它与所相交的线段成直角。

垂线的性质及其相关的证明是理解和运用平面几何的基础知识。

本文将深入探讨垂线的性质,并给出相应的证明。

一、垂线的定义和基本性质:在平面几何中,我们定义垂线为与所相交的线段成直角的线段。

下面是几个垂线的基本性质:1. 垂线的长度相等性质:如果两条垂线分别与两条平行线段相交,则两个垂线的长度相等。

证明如下:(在这里,请根据自己的题目需求思考该性质是否适用,如果不适用,请自行调整性质及其证明的内容。

以下仅为示例)假设有两条平行线段AB和CD,垂线分别为AE和CF。

我们需要证明AE和CF的长度相等。

首先,连接AC和BF两条线段,根据平行线与横切线的性质可知∠AEC = ∠CFB(对应角相等)和∠CAE = ∠CBF(内错角相等)。

由此可得三角形ACF和BCD相似。

进一步,根据相似三角形的性质,我们可以得出AE/CF = AC/BC。

因为AC = BC(平行线段的性质),所以AE = CF,即垂线AE和CF的长度相等,证毕。

2. 垂线的唯一性性质:通过一个点在直线上作垂线,得到的垂线是唯一的。

证明如下: (在这里,请根据自己的题目需求思考该性质是否适用,如果不适用,请自行调整性质及其证明的内容。

以下仅为示例)假设有一条直线AB和一点C在直线上,我们需要证明通过点C作直线AB的垂线唯一。

假设存在另一条直线CD与直线AB垂直,且与直线AB相交于E 点。

由于CD与AB垂直,所以∠CDE = 90°。

又因为CD与AB平行(同一直线上的垂线平行),所以∠CDE = ∠BCA(内错角相等)。

由于∠CDE和∠BCA都等于90°,所以∠BCA = 90°。

这意味着直线AB和BC之间的夹角为90°,根据垂线的定义,BC是AB的垂线。

由于AB和CD共有一点C,所以根据直线的性质,两条直线BC和CD必然重合,即垂线是唯一的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
下面的平面几何习题均是我两年来收集的,属竞赛范围。共分为五种类型,1,几何计算;2,几何证明;3,共点线与共线点;4,几何不等式;5,经典几何。
几何计算-1
命题设点D是Rt△ABC斜边AB上的一点,DE⊥BC于点E,DF⊥AC于点F。若AF=15,BE=10,则四边形DECF的面积是多少?
解:设DF=CE=x,DE=CF=y.∵Rt△BED∽Rt△DFA,∴BE/DE=DF/AF
平面几何中线段相等的证明几种方法
平面几何中线段相等的证明看似简单,但方法不当也会带来麻烦,特别是在有限的两个小时考试中。恰当选用正确的方法,可法很普遍,如果所证两条线段分别在不同的三角形中,它们所在三角形看似全等,或者,通过简单处理,它们所在三角形看似全等,可考虑这种方法。
求证:EF=FD。
证明:过D作DO⊥AC交AB于点O
∵OD垂直平分AC,∠ACB=90°
∴BC⊥AC
∴O点必为AB的中点,连结EO,则EO⊥AB
∵∠CAB=30°,∠BAE=∠CAD=60°
∴AD⊥AB,AE⊥AC
∴OE//AD,AE//OD
∴四边形ODAE为平行四边形
∴EF=FD
[例2]如图,AD是△ABC的中线,过DC上任意一点F作EG//AB,与AC和AD的延长线分别交于G和E,FH//AC,交AB于点H。
[例2]如图,已知△ABC中,AB=AC,点E在AB上,点F在AC的延长线上,且BE=CF,EF与BC交于D,求证:ED=DF。
证明:过点E作EG//AF交BC于点G
∴∠EGB=∠ACB,∠EGD=∠FCD
∵AB=AC
∴∠B=∠ACB,∠B=∠FGB,BE=GE
∵BE=CF,∴GE=CF
在△EGD和△FCD中,
[R*x+(2*R^2-c^2)*y/(2R)+(2*R^2-b^2)*z/(2R)]^2+[c*y*cosC-b*z*cosB]^2≥0,
显然成立。易验证当x:y:z=a*cosA:b*cosB:c*cosC,即外心时取等号。
几何不等式-4
命题试比较给定一三角形的最大内接矩形的面积与最大内接正方形的面积大小。
证明 设P点关于正△ABC的重心坐标为P(x,y,z),a为正△ABC的边长,则正△ABC的面积为S=(a^2√3)/4。
由三角形重心坐标定义易求得:
AD=za/(y+z),CD=ya/(y+z),CE=xa/(z+x),AE=za/(z+x),AF=ya/(x+y),BF=xa/(x+y).
故得:
根据塞瓦定理得:
xyz=(1-x)*(1-y)*(1-z)
上述恒等式展开等价于
1+yz+zx+xy=2xyz+x+y+z
将其代入得:8xyz≤1.
由算术--几何平均不等式得:
2√[x(1-x)]≤1,
2√[y(1-y)]≤1,
2√[z(1-z)]≤1,
上述三式相乘得:
8√[xyz(1-x)*(1-y)*(1-z)]≤1 , <==> 8xyz≤1 .
证明 设三角形ABC的面积为S, 塞瓦三角形DEF的面积为S1, 三角形AEF的面积为Sa, 三角形BFD的面积为Sb, 三角形CDE的面积为Sc。令BD=xBC,CE=yCA,AF=zAB,则CD=(1-x)BC,AE=(1-y)CA,BF=(1-z)AB。那么
Sa=(AE*AF*sinA)/2=z*(1-y)*S,
∴∠BAD=∠FAD
同理可得:∠CAE=∠GAE
∵∠ABD=∠ACE
∴∠FAB=∠GAC,故∠FAC=∠GAB
在△ABG和△AFC中,
AB=AF,∠GAB=∠CAF,AG=AC
∴△ABG≌△AFC
∴BG=FC
又∵DF=DB,EC=EG,M是BC的中点
∴DM= =EM,即DM=EM
[例2]如图,△ABC中,∠C为直角,∠A=30°,分别以AB、AC为边在△ABC的外侧作正△ABE与正△ACD,DE与AB交于F。
易证ΔAPO≌ΔORD,所以 DR=OP,AP=OR,
故 OP+OR=DR+AP=(CD+AB)/2。
同理可得:OQ+OS=(DA+BC)/2。
因此有 OP+OQ+OR+OS=(AB+BC+CD+DA)/2。
证明(二)连OA,OB,OC,OD,因为∠AOB+∠COD=180°,OA=OD,所以易证
RtΔAPO≌RtΔORD,故得 DR=OP,AP=OR,
[例1]如图,C是线段AB上一点,△ACD和△BCE是等边三角形。求证:AE=BD。
证明∵△ACB和△BCE都是等边三角形
∴∠ACD=60°,∠BCE=60°,∠DCE=60°
∴∠ACE=∠ACD+∠DCE=120°
∠BCD=∠BCE+∠DCE=120°
∴AC=CD,CE=CB
∴△ACE≌△DCB(SAS)∴AE=DB
Sb=(BD*BF*sinB)/2=x*(1-z)*S,
Sc=(CD*CE*sinC)/2=y*(1-x)*S。
所以有
S1=S-Sa-Sb-Sc=S*[1-z*(1-y)-x*(1-z)-y*(1-x)]
=S*[1-(x+y+z)+yz+zx+xy] ,
据此命题[S≥4S1]转化为证明
4*[1-(x+y+z)+yz+zx+xy]≤1
<==> 10/y=x/15 <==> xy=150.
所以,矩形DECF的面积150.
几何证明-1
命题在圆内接四边形ABCD中,O为圆心,己知∠AOB+∠COD=180.求证:由O向四边形ABCD所作的垂线段之和等于四边形ABCD的周长的一半。
证明(一)连OA,OB,OC,OD,过圆心O点分别作AB,BC,CD,DA的垂线,垂足依次为P,Q,R,S。
∠BEC=∠EAH=90°
∴△AEH≌△BEC(ASA)
∴AH=BC,AD=AH
又∵F是BC的中点
∴Rt△DFC≌Rt△CEB
∴∠DFC=∠CEB
∴∠GCF+∠GFC=∠ECB+∠CEB=90°
∴∠CGF=90°
∴∠DGH=∠CGF=90°
∴△DGH是Rt△
∵AD=AH
∴AG= =AD
平面几何习题大全
F=[r2*r3*sinA+r3*r1*sinB+r1*r2*sinC]/2
=[a*r2*r3+b*r3*r1+c*r1*r2]/(4R)。
故命题转化为求证
a*r2*r3+b*r3*r1+c*r1*r2≤RΔ (1)
据恒等式:abc=4RΔ,则上式为
a*r2*r3+b*r3*r1+c*r1*r2≤abc/4 (2)
求证:HG=BE。
证明:延长AD到A',使DA'=AD
又∵BD=CD
∴四边形BACA'是平行四边形
∴BA=A'C
由题设可知HFGA也是平行四边形
∴HF=AG
∵HF//AC,∴
又∵ ,HF=AG,BA=A'C
∴BH=EG
∴四边形BEGH是平行四边形
∴HG=BE
四、利用中位线证明线段相等
如果已知中含有中点或等边等,用上面方法较难,可以考虑此法。
即 OP+OR=DR+AP=(CD+AB)/2。
同理可得:OQ+OS=(DA+BC)/2。
因此有 OP+OQ+OR+OS=(AB+BC+CD+DA)/2。
几何不等式-1
命题设P是正△ABC内任意一点,△DEF是P点关于正△ABC的内接三角形[AP,BP,CP延长分别交BC,CA,AB于D,E,F],记面积为S1;△KNM是P点关于正△ABC的垂足三角形[过P点分别作BC,CA,AB垂线交于K,N,M],记面积为S2。求证:S2≥S1 。
证明:∵DF⊥BC
∴∠DFB=∠EFC=90°,∠D=90°-∠B,∠CEF=90°-∠C
∵AB=AC,∴∠B=∠C
∴∠D=∠CEF
∵∠CEF=∠AED
∴∠D=∠AED
∴AD=AE
三、利用平行四边形的性质证明线段相等
如果所证两线段在一直线上或看似平行,用上面的方法不易,可以考虑此法。
[例1]如图,△ABC中,∠C=90°,∠A=30°,分别以AB、AC为边在△ABC的外侧作正△ABE和正△ACD,DE与AB交于F,
求证:EF=FD。
证明:过D作DG//AB交EA的延长线于G,可得∠DAG=30°
∵∠BAD=30°+60°=90°
∴∠ADG=90°
∵∠DAG=30°=∠CAB,AD=AC
∴Rt△AGD≌Rt△ABC
∴AG=AB,∴AG=AE
∵DG//AB
∴EF//FD
五、利用“直角三角形斜边上的中线等于斜边的一半”证明线段相等。
如果所证两线段所在的图形能构成直角三角形,并且可能构成斜边及斜边上的中线,用上面方法一时证不出来,可以考虑此法。
[例]如图,正方形ABCD中,E、F分别为AB、BC的中点,EC和DF相交于G,连接AG,求证:AG=AD。
证明:作DA、CE的延长线交于H
∵ABCD是正方形,E是AB的中点
∴AE=BE,∠AEH=∠BEC
△AEF的面积 X=AE*AF*sin60°/2=Syz/(z+x)(x+y);
△BFD的面积 Y=BF*BD*sin60°/2=Szx/(x+y)(y+z);
相关文档
最新文档