光的干涉知识点精解
《光的干涉》 讲义

《光的干涉》讲义在我们的日常生活中,光无处不在。
从照亮我们房间的灯光,到大自然中美丽的彩虹,光以其多样的形式展现着它的魅力。
而在光学的世界里,有一个重要的现象——光的干涉,它不仅为我们揭示了光的本质,还在许多领域有着广泛的应用。
一、光的本质要理解光的干涉,首先我们得了解一下光到底是什么。
在很长一段时间里,关于光的本质存在着两种不同的观点,即粒子说和波动说。
粒子说认为光是由一个个微小的粒子组成的,这些粒子像子弹一样直线传播。
而波动说则主张光是以波的形式传播的。
经过一系列的实验和研究,现代物理学证明,光具有波粒二象性,也就是说,在某些情况下,光表现出粒子的特性;而在另一些情况下,又表现出波动的特性。
对于光的干涉现象,我们更多地是从光的波动性来进行理解和解释。
二、光的干涉现象当两列或多列光波在空间相遇时,它们会相互叠加,从而在某些区域光的强度增强,而在另一些区域光的强度减弱,这种现象就被称为光的干涉。
最常见的光的干涉现象就是杨氏双缝干涉实验。
在这个实验中,一束光通过两个相距很近的狭缝,在后面的屏幕上会出现明暗相间的条纹。
亮条纹的地方,是两列光波到达时相互加强的结果;暗条纹的地方,则是两列光波到达时相互削弱的结果。
还有一种常见的干涉现象是薄膜干涉。
比如,我们在阳光下看到肥皂泡或者水面上的油膜呈现出五彩斑斓的颜色,这就是薄膜干涉的结果。
薄膜的上下表面反射的光波相互叠加,由于薄膜的厚度不均匀,不同位置的光程差不同,导致了不同颜色的光在某些位置相互加强,某些位置相互削弱,从而呈现出各种颜色。
三、光的干涉条件并不是任意两列光波相遇都会发生干涉现象,而是需要满足一定的条件。
首先,两列光波的频率必须相同。
这是因为只有频率相同的光波,在相遇时才能保持稳定的相位差,从而产生干涉现象。
其次,两列光波的振动方向要相同或者至少有相同的分量。
如果两列光波的振动方向完全垂直,那么它们就无法相互叠加,也就不会发生干涉。
最后,两列光波的相位差要保持恒定。
光的干涉知识点归纳总结

光的干涉知识点归纳总结
1、双缝干涉
1、两列光波在空间相遇时发生叠加,在某些区域总加强,在另
外一些区域总减弱,从而出现亮暗相间的条纹的现象叫光的干涉现象。
2、产生干涉的条件,两个振动情况总是相同的波源叫相干波源,只有相干波源发出的光互相叠加,才能产生干涉现象,在屏上出现稳定的亮暗相间的条纹。
3、双缝干涉实验规律,双缝干涉实验中,光屏上某点到相干光源、的路程之差为光程差,(n=0,1,2,3)P点将出现亮条纹;若光程差是半波长的奇数倍(n=0,1,2,3),P点将出现暗条纹。
屏上和双缝、距离相等的点,若用单色光实验该点是亮条纹(中
央条纹),若用白光实验该点是白色的亮条纹。
若用单色光实验,在屏上得到明暗相间的条纹;若用白光实验,中央是白色条纹,两侧是彩色条纹。
屏上明暗条纹之间的距离总是相等的,其距离大小与双缝之间距离d。
双缝到屏的距离及光的波长有关,即在和d不变的情况下,和波长成正比,应用该式可测光波的波长。
用同一实验装置做干涉实验,红光干涉条纹的间距最大,紫光干涉条纹间距最小,故可知大于小于。
2、薄膜干涉
薄膜干涉的成因:由薄膜的前、后表面反射的两列光波叠加而成,劈形薄膜干涉可产生平行相间的条纹。
薄膜干涉的应用:增透膜:透镜和棱镜表面的增透膜的厚度是入射光在薄膜中波长的。
检查平整程度:待检平面和标准平面之间的楔形空气薄膜,用单色光进行照射,入射光从空气膜的上、下表面反射出两列光波,形成干涉条纹,待检平面若是平的,空气膜厚度相同的各点就位于一条直线上,干涉条纹是平行的;反之,干涉条纹有弯曲现象。
第四章 干涉现象知识点归纳

第四章干涉现象知识点归纳
干涉现象是光学中的一种重要现象,涉及到光波的波动性和相
位的调制。
本章主要介绍了干涉现象的基本概念、原理以及一些实
际应用。
知识点归纳如下:
1. 干涉现象的概念
干涉现象是指两个或多个光波相遇时产生的波的叠加效应。
它
源于光波的波动性和相位的调制,导致波的增强或抵消现象。
2. 干涉的类型
干涉可分为两种类型:干涉的构造性干涉和干涉的破坏性干涉。
构造性干涉指两个相干光波相遇时相位差为整数倍波长,波的振幅
增强;破坏性干涉指两个相干光波相遇时相位差为奇数半波长,波
的振幅减弱。
3. 干涉的原理
干涉的原理可以通过杨氏双缝干涉实验来解释,根据菲涅尔衍射原理和相干光源的条件,可以得到干涉条纹的分布规律。
4. 干涉的应用
干涉现象在实际中有广泛的应用,其中包括干涉测量、干涉光栅、干涉仪器、干涉消除、干涉光谱等。
5. 干涉的相关理论
干涉现象的研究涉及到一些相关的理论,包括惠更斯原理、费马原理、斯涅尔定律等,这些理论可以帮助我们更好地理解干涉现象的本质和特点。
总结:
本章主要介绍了干涉现象的基本概念、原理和应用。
对干涉现象的理解对于光学研究和实际应用都具有重要意义。
通过本章的学习,希望能够加深对干涉现象的认识,并能够应用于实际情境中。
物理知识点光的干涉

物理知识点光的干涉光的干涉是光学中的重要概念之一,它揭示了光波的波动性质及其产生的干涉现象。
本文将依据物理知识点,对光的干涉进行详细论述。
一、干涉现象的基本原理光的干涉是指两个或多个光波相互叠加所形成的干涉图案。
干涉现象的产生需要满足两个基本条件:光源是相干光源,波长相同。
当光波经过不同路径传播后再次相遇时,它们会相互干涉,产生增强或减弱的干涉效应。
二、双缝干涉1. 双缝干涉的实验装置双缝干涉实验一般采用光源、狭缝、透镜和屏幕等组成。
光源发出的光经狭缝后,形成一个光源光斑,通过透镜聚焦后照射到屏幕上。
2. 双缝干涉的光程差当光波通过两个缝隙后再次相遇时,其传播路径的长度差称为光程差。
光的干涉现象取决于光程差的大小。
3. 双缝干涉的干涉图案双缝干涉的干涉图案呈现出一系列明暗相间的条纹,称为干涉条纹。
该条纹呈现出一定的规律性,可通过干涉公式和级差条件进行分析和计算。
三、杨氏双缝干涉实验1. 杨氏双缝干涉实验的装置杨氏双缝干涉实验是一种经典的干涉实验方法。
实验装置由一束狭缝光源、双缝、透镜和幕板等组成。
2. 杨氏双缝干涉的干涉条纹杨氏干涉条纹呈现出一系列黑白相间的圆环或直线条纹。
根据实验条件和光波的干涉效应,可以通过杨氏双缝干涉公式进行计算。
四、单缝干涉1. 单缝干涉的实验装置单缝干涉实验通常采用单缝光源、单缝和屏幕等组成。
单缝光源发出的光波通过单缝后形成一个光斑,映射到屏幕上形成单缝干涉图样。
2. 单缝干涉的干涉条纹单缝干涉的干涉条纹呈现出明暗相间且中央最亮的中央极大和两侧较暗的暗条纹分布。
单缝干涉的干涉效应可由单缝干涉公式和级差条件加以说明。
五、干涉现象的应用光的干涉在科学研究和实际应用中有着重要的意义。
1. 干涉仪干涉仪是一种基于光的干涉原理设计的精密仪器,常用于光学测量、干涉剖析和光学检测等领域。
2. 光纤通信光纤通信是一种基于光的传输技术。
光波经光纤传输时,可能会产生干涉现象,影响信号传输质量,因此需要进行干涉相关的优化和控制。
光学光的干涉知识点总结

光学光的干涉知识点总结光的干涉是指两个或多个光波相互干涉形成明暗交替的现象,在光学研究中具有重要的意义。
本文将对光的干涉中的相关知识点进行总结和概述,包括干涉的原理、干涉的类型、干涉图案的形成以及应用等方面。
一、干涉的原理1. 干涉是基于光的波动性的现象,要求干涉光波必须是相干波。
相干检测方法常用的有干涉仪、自发辐射以及激光器等。
2. 干涉是光的波动性在空间中叠加干涉而表现出的现象,倍波源发出的光波在空间中相遇叠加,形成干涉现象。
3. 干涉光的波动特性包括振幅、相位、波长等,这些特性的差异决定了干涉图样的形态和干涉的结果。
二、干涉的类型1. 多普勒干涉:当光源或接收器相对于介质运动或产生相对运动时,引起光的频率和波长发生变化,导致多普勒效应而产生光的干涉。
2. 空气薄膜干涉:光在两个介质交界面上反射和折射时产生相位差,由此形成空气薄膜干涉现象。
应用广泛,如油渍上的彩虹。
3. 条纹干涉:当两束或多束光线相遇并发生干涉时,在空间中产生交替显示明暗条纹的现象。
包括等倾条纹、等厚条纹等。
4. 动态干涉:采用光的干涉原理实现对物体表面纹理、形貌和微位移的测量或分析的技术。
5. 光栅干涉:利用光栅的衍射和干涉作用,将光束分解成若干相干子光束,并产生衍射和干涉图样。
三、干涉图样的形成1. 明纹和暗纹:光的干涉现象会形成明纹和暗纹,明纹是波峰叠加形成的亮区,暗纹是波峰和波谷叠加形成的暗区。
2. 干涉条纹:光的干涉现象在空间中形成了交替排列的明暗条纹。
常见的干涉条纹有等厚条纹、等倾条纹等。
3. 干涉环:干涉环是由同心圆环状的干涉条纹构成的图案。
常见的干涉环有牛顿环和菲涅尔环。
四、干涉的应用1. 干涉仪:干涉仪是一种技术性的仪器,利用光的干涉现象实现对光学参数、物体表面的测量和分析。
2. 波前重建:利用光的干涉原理恢复物体波前信息,实现三维图像的重建和显示。
3. 表面形貌测量:通过干涉技术可以实现对物体表面形貌的非接触式测量,广泛应用于机械加工、光学加工等领域。
光的干涉知识点归纳总结

光的干涉知识点归纳总结
光的干涉现象
两束(或多束)光在相遇的区域内产生相干叠加,各点的光强不同于各光波单独作用所产生的光强之和,形成稳定的明暗交替或彩色条纹的现象,称为光的干涉现象。
干涉原理
注:波的叠加原理和独立性原理成立于线性介质中,本书主要讨论的就是线性介质中的情况。
1、光波的独立传播原理
当两列波或多列波在同一波场中传播时,每一列波的传播方式都不因其他波的存在而受到影响,每列波仍然保持原有的特性(频率、波长、振动方向、传播方向等)。
2、光波的叠加原理
在两列或多列波的交叠区域,波场中某点的振动等于各个波单独存在时在该点所产生振动之和。
波叠加例子用到的数学技巧:注:叠加结果为光波复振幅的矢量和,而非强度和。
分为相干叠加即叠加场的光强不等于参与叠加的波的强度和和非相干叠加即叠加场的光强
等于参与叠加的波的强度和。
光的干涉知识点

光的干涉是光学中的一个重要现象,它描述了两个或多个光波在空间中相遇时相互叠加,形成新的光强分布的现象。
以下是一些关于光的干涉的基本知识点:
1. 相干性:要产生光的干涉现象,入射到同一区域的光波必须满足相干条件,即它们的振动方向一致、频率相同(或频率差恒定),且相位差稳定或可预测。
2. 分波前干涉与分振幅干涉:
- 分波前干涉:如杨氏双缝干涉实验,光源通过两个非常接近的小缝隙后,产生的两个子波源发出的光波在空间某点相遇,由于路程差引起相位差,从而形成明暗相间的干涉条纹。
- 分振幅干涉:例如薄膜干涉,光在通过厚度不均匀的薄膜前后两次反射形成的两束相干光相遇干涉,也会形成明暗相间的干涉条纹。
3. 相长干涉与相消干涉:
- 相长干涉:当两束相干光波在同一点的相位差为整数倍的波长时,它们的振幅相加,合振幅最大,对应的地方会出现亮纹(强度最大)。
- 相消干涉:当两束相干光波在同一点的相位差为半整数
倍的波长时,它们的振幅互相抵消,合振幅最小,对应的地方会出现暗纹(强度几乎为零)。
4. 迈克尔逊干涉仪:是一种精密测量光程差和进行精密干涉测量的重要仪器,可以观察到极其微小的变化所引起的干涉条纹移动。
5. 等厚干涉与等倾干涉:菲涅耳双棱镜干涉属于等倾干涉,而牛顿环实验则属于等厚干涉。
6. 全息照相:利用光的干涉原理记录物体光波的全部信息,包括振幅和相位,能够再现立体图像,是干涉技术的重要应用之一。
以上只是光的干涉部分基础知识,其理论和应用广泛深入于物理学、光学工程、计量学、激光技术等领域。
光的干涉知识点总结

第二章 光的干涉 知识点总结2.1.1 光的干涉现象两束(或多束)光在相遇的区域内产生相干叠加,各点的光强不同于各光波单独作用所产生的 光强之和,形成稳定的明暗交替或彩色条纹的现象 ,称为光的干涉现象。
2.1.2 干涉原理注:波的叠加原理和独立性原理成立于线性介质中 ,本书主要讨论的就是线性介质中的情况 . (1)光波的独立传播原理当两列波或多列波在同一波场中传播时, 每一列波的传播方式都不因其他波的存在而受到影 响,每列波仍然保持原有的特性(频率、波长、振动方向、传播方向等) (2)光波的叠加原理在两列或多列波的交叠区域, 波场中某点的振动等于各个波单独存在时在该点所产生振动之 和。
波叠加例子用到的数学技巧: (1)(2)注: 叠加结果为光波复振幅的矢量和,而非强度和。
分为相干叠加(叠加场的光强不等于参与叠加的波的强度和 )和非相干叠加(叠加场的光强等 于参与叠加的波的强度和). 2.1.3 波叠加的相干条件I (r ) = (E 1 + E 2 ) . (E 1 + E 2 ) 2= I 1 (r ) + I 2 (r ) + 2 E 1 . E 2干涉项: 2 E 1 . E2= E 10 . E 20 {cos(k 1 + k 2 ) . r + (Q 20 +Q 10 ) 一 (O 2 + O 1 )t +相干条件:E 10 . E 20 士 0 (干涉项不为零)O 2 = O 1 (为了获得稳定的叠加分布)Q 20 一 Q 10 = 常数 (为了使干涉场强不随时间变化)2.1.4 干涉场的衬比度 1.两束平行光的干涉场(学会推导) (1)两束平行光的干涉场cos(k 2 一 k 1 ) . r + (Q 20 一 Q 10 ) 一 (O 2 一 O 1 )t }干涉场强分布:I (x , y ) = (U 1 (x , y ) +U 2 (x , y ))(U 1 (x , y ) +U 2 (x , y ))*= I 1 + I 2 + 2 I 1I 2 cos 编Q1(,x x , y y )-k A 1(i k n s i 11p 1s i 0n ) 92x (x +(,y 00=-2i )(-k sin92x +p 20)亮度最大值处: 亮度最小值处: 条纹间距公式空间频率:(2)定义衬比度 Y = (I M - I m ) (I M + I m ) 以参与相干叠加的两个光场参数表示:2 I I I + I 衬比度的物理意义 1.光强起伏I(r 一) = I 0 (1 + Y cos Ap(r 一)2.相干度Y = 1 完全相干Y = 0 完全非相干0 < Y < 1 部分相干ƒ2AA=2.2 分波前干涉2.2.1 普通光源实现相干叠加的方法 (1)普通光源特性• 发光断续性 • 相位无序性• 各点源发光的独立性根源:微观上持续发光时间 τ 0 有限。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光的干涉知识点精解(总7页)
--本页仅作为文档封面,使用时请直接删除即可--
--内页可以根据需求调整合适字体及大小--
光的干涉知识点精解
?
1.干涉现象
两列频率相同的光波在空中相遇时发生叠加,在某些区域总加强,在另外一些区域总减弱,出现明暗相间的条纹或者是彩色条纹的现象叫做光的干涉。
2.产生稳定干涉的条件
只有两列光波的频率相同,位相差恒定,振动方向一致的相干光源,才能产生光的干涉。
由两个普通独立光源发出的光,不可能具有相同的频率,更不可能存在固定的相差,因此,不能产生干涉现象。
3.双缝干涉
(1)实验装置
一个有单缝的屏,作用是产生一个“线光源”。
一个有双缝的屏,缝间间距相等,且大约为毫米,作用是产生两个振动情况总是相同的光——相干光。
一个光屏。
(2)实验方法
按图2-1放好三个屏。
放置时屏与屏平行,单缝与双缝平行。
然后用一束单色光投射到前面的屏上,结果在后面的屏上能看到明暗相间的等宽的干涉条纹。
若换用白光做上述实验,在屏上看到的是彩色条纹。
(3)条纹宽度(或条纹间距)
双缝干涉中屏上出现明暗条纹的位置和宽度与两缝间距离、缝到屏的距离以及光波的波长有关。
且相邻两明条纹和相邻两暗条纹之间的距离是相等的。
设双缝间距S1S2=S,缝到屏的距离r0,光波波长λ,相邻两明条纹间距y。
如图2-2所示。
图中P为中央亮条纹,P1为离开中央亮条纹的第一条亮条纹。
它们间距为y。
∴θ角很小(<5°)
sinθ=tgθ
在Rt△P1OP中,
上式说明,两缝间距离越小、缝到屏的距离越大,光波的波长越大,条纹的宽度就越大。
当实验装置一定,红光的条纹间距最大,紫光的条纹间距最小。
这表明不同色光的波长不同,红光最长,紫光最短。
(4)波长和频率的关系
①光的颜色由光的频率决定的,与光的波长和波速无关;
②各种色光在真空中的速度都相同,都是3×108m/s,光从真空中进入其它介质时,光速将减小。
③光从一种介质进入到另一种介质其频率不变,波长和波速将改变。
真空中各种色光满足c=λ0v(λ0为此种光在真空中的波长)光在其他介质中v=λv(v为此种光在该介质中的速度,λ为此种光在该介质中的波长)。
介质中速度。
n表示介质对该色光的折射能力。
⑤在同种均匀介质中,可见光从红光到紫光它们的各种光学性质的关系:
【讨论】①教材中说:“杨氏又发现用狭缝代替小孔可以得到同样清晰但明亮得多的干涉图样”这“明亮得多”的原因是什么
用狭缝代替小孔,狭缝成为线光源,而线光源可以认为由许多个发光点沿一条线排列组成的,每个点光源分别产生自己的干涉图样,在屏上的干涉条纹则是各个点光源的干涉图样的叠加。
由于这些点光源与双缝的相对位置完全一样,产生的干涉图样完全相同。
虽然不同的点光源的光互不相干,但它们叠加起来仍与点光源产生干涉图样相似,只是强度增大而由亮点变成明线,易于观察。
②在双缝干涉实验中,如果用红色滤光片遮住一个狭缝S1,再用绿滤光片遮住另一个狭缝S2,当用白光入射时,屏上是否会产生双缝干涉图样
这时在屏上将会出现红光单缝衍射光矢量和绿光单缝衍射光矢量振动的叠加。
由于红光和绿光的频率不同,因此它们在屏上叠加时不能产生干涉,此时屏上将出现混合色二单缝衍射图样。
③在双缝干涉实验中,如果遮闭其中一条缝,则在屏上出现的条纹有何变化原来亮的地方会不会变暗
如果遮住双缝其中的一条缝,在屏上将由双缝干涉条纹演变为单缝衍射条纹,与干涉条纹相比,这时单缝衍射条纹亮度要减弱,而且明纹的宽度要增大,但由于干涉是受衍射调制的,所以原来亮的地方不会变暗。
④双缝干涉的亮条纹或暗条纹是两列光波在光屏处叠加后加强或抵消而产生的,这是否违反了能量守恒定律
暗条纹处的光能量几乎是零,表明两列光波叠加,彼此相互抵消,这是按照光的传播规律,暗条纹处是没有光能量传到该处的原因,不是光能量损耗了或转变成了其它形式的能量。
同样,亮条纹处的光能量比较强,光能量增加,也不是光的干涉可以产生能量,而是按照波的传播规律到达该处的光能量比较集中。
双缝干涉实验不违反能量守恒定律。
4.薄膜干涉
(1) 薄膜干涉现象
竖立的肥皂液薄膜上出现的明暗相间的条纹;阳光下肥皂泡上的彩色花纹;水面上飘浮的油膜上的彩色条纹;蝴蝶等昆虫翅膀上的彩色花纹。
(2)薄膜干涉的原理
竖立的肥皂膜在重力的作用下形成上薄下厚的楔形,当光照在薄膜上时,从膜的前后表面各反射回一列光波,这两列波即是频率相同的相干光波,由于薄膜的厚度不同,这两列光波的路程差不同。
当路程差为光波波长的整数倍时,则为波峰与波峰相遇,波谷与波谷相遇,使光波的振动加强,形成亮条纹;当光波的路程差为半波长的奇数倍时,则波峰与波谷相遇,光波的振动减弱,形成暗条纹。
如果用白光照射上述肥皂液薄膜,薄膜就出现各种不同颜色的条纹。
这也是由于白光是由种种不同颜色的光组成的,而每种颜色的光各有一定的波长,所以在薄膜某一厚度的地方,某一波长的光反射回来互相增强,另外一些波长的光反射回来互相削弱。
这样,在薄膜上就出现了不同颜色的条纹。
【说明】在用肥皂液薄膜观察薄膜干涉现象时,实验现象如下:
①肥皂膜刚刚立起时,在膜上只看到蜡焰的像,没有干涉条纹。
②稍候,膜的上部开始出现干涉条纹,条纹范围逐渐向膜下部扩大。
③上部条纹宽,下部条纹细且密,无沦怎样重复实验,膜的最下部(约1/3膜,随肥皂膜的尺寸而异。
)没有干涉条纹,只有蜡焰的像。
④干涉条纹中的明条纹比蜡焰的像更明亮。
5.光的干涉在技术上的应用
(1)干涉法检查精密部件的表面
取一个透明的标准样板,放在待检查的部件表面并在一端垫一薄片,使样板的平面与被检查的平面间形成一个楔形空气膜,用单色光从上面照射,入射光从空气层的上下表面反射出两列光形成相干光,从反射光中就会看到干涉条纹,如图2-3甲所示。
如果被检表面是平的,那么空气层厚度相同的各点就位于一条直线上,产生的干涉条纹就是平行的(如图2-3乙);如果观察到的干涉条纹如图2-3丙所示,A、B处的凹凸情况可以这样分析:由丙图知,P、Q两点位于同一条亮纹上,故甲图中与P、Q对应的位置空气层厚度相同。
由于Q位于P的右方(即远离楔尖),如果被检表面是平的,Q处厚度应该比P处大,所以,只有当A处凹陷时才能使P与Q 处深度相同。
同理可以判断与M对应的B处为凸起。
(2)增透膜
是在透镜、棱镜等光学元件表面涂的一层氟化镁薄膜。
当薄膜的两个表面上反射光的路程差等于半个波长时,反射回来的光抵消。
从而增强了透射光的强度。
显然增透膜的厚度应该等于光在该介质中波长的1/4。
由能量守恒可知,入射光总强度=反射光总强度+透射光总强度。
光恰好实现波峰与波谷相叠加,实现干涉相消,使其合振幅接近于零,即反射光的总强度接近于零,从总效果上看,相当于光几乎不发生反射而透过薄膜,因而大大减少了光的反射损失,增强了透射光的强度。
增透膜只对人眼或感光胶片上最敏感的绿光起增透作用。
当白光照到(垂直)增透膜上,绿光产生相消干涉,反射光中绿光的强度几乎是零。
这时其他波长的光(如红光和紫光)并没有被完全抵消。
因此,增透膜呈绿光的互补色——淡紫色。
【例1】如图2-4所示,在双缝干涉实验中,若用λ1=5×10-7m的光照射,屏上O点是中央亮条纹,屏上A点为第二级亮纹所在处。
若换用λ2=4×10-7m的光照射时,屏上O点处是什么情况,屏上A点处又是什么情况
【思路分析】本题是要考查对光的干涉现象,当路程差d满足光波长的整数倍时,该点为亮条纹,当路程差d为半波长的奇数倍时,该点为暗条纹。
【解题方法】双缝干涉原理,路程差与波长的数量关系。
【解题】从双缝到屏上O点的距离之差,无论用何种频率的光入射,路程差总是零。
所以O点仍然是亮条纹。
从双缝到屏上A点的路程差d=S2A-S1A,用λ1光入射时为第二亮条纹,即d=2λ1,
代入数据d=10×10-7m,
这个路程差10×10-7m对于λ2的光波来说
即为半波长的奇数倍,A处为暗条纹。
∴k=2
当k=0时为第一暗条纹,所以当k=2时应为第三暗纹。
【例2】如果光的频率为ν,则增透膜的最小厚度为多少(v表示介质中的光速)
【思路分析】当入射光在增透膜前后两表面反射光的路程差为半波长奇数倍时,才能实现相干抵消。
寻找厚度与波长关系即可。
【解题方法】光的干涉原理及波长和频率关系。
【解题】要使薄膜起到增透的作用,必须使从增透膜两个表面反射回的两列光的路程差等于光波半波长的奇数倍,即:
又两列光的路程差恰为增透膜的2倍,即:
d=2D(D为增透膜的厚度)
要使增透膜厚度最小,k=0.
又由光的波长λ,光速v及频率v之间的关系
λ=v/ν。