光的干涉 知识点总结

合集下载

《大学物理》光的干涉知识点

《大学物理》光的干涉知识点

《大学物理》光的干涉知识点咱们来聊聊大学物理里超有意思的光的干涉!先说说啥是光的干涉啊。

简单说,就是两束或者多束光相遇的时候,它们会相互影响,产生一些特别有趣的现象。

这就好比两个人在舞台上跳舞,配合好了就能跳出精彩的舞步。

比如说杨氏双缝干涉实验,这可是光的干涉里的经典。

托马斯·杨当年做这个实验的时候,那可是打开了新世界的大门。

想象一下,一束光通过两条窄缝,然后在后面的屏幕上就出现了明暗相间的条纹。

这就像是光在跟我们玩捉迷藏,一会儿亮,一会儿暗。

那为啥会出现这种现象呢?这就得从光的波动性说起啦。

光啊,它可不是简单的直线跑的小粒子,而是像波浪一样传播的。

当两束光的波峰和波峰相遇,或者波谷和波谷相遇,就会变得更亮,这叫加强;要是波峰和波谷相遇,那就会变暗,这叫减弱。

我记得有一次在实验室里,自己动手做杨氏双缝干涉实验。

那时候紧张又兴奋,小心翼翼地调整着仪器,眼睛紧紧盯着屏幕,就盼着能看到那神奇的条纹。

当终于看到那清晰的明暗相间的条纹时,心里那种激动和惊喜,简直没法形容!感觉自己像是揭开了大自然的一个小秘密。

还有薄膜干涉,这在生活中也很常见。

比如夏天马路上的油膜,在阳光下会呈现出五彩斑斓的颜色,这就是薄膜干涉的杰作。

还有相机镜头上的镀膜,也是利用了薄膜干涉的原理来减少反射,提高成像质量。

光的干涉在现代科技中的应用那可多了去了。

比如在光学检测中,通过干涉条纹的变化可以检测出物体表面的微小缺陷。

还有干涉仪,可以用来测量长度、角度等物理量,精度高得吓人。

总之,光的干涉这个知识点,看似神秘,其实就在我们身边。

只要我们用心去观察、去探索,就能发现它的无穷魅力。

希望通过我这一番不太专业但充满热情的讲解,能让您对光的干涉有了更清楚的认识。

下次您再看到那些奇妙的光学现象,就知道背后的原理啦!。

高中物理光的干涉知识点总结

高中物理光的干涉知识点总结

高中物理光的干涉知识点总结
光的干涉是光学中的一个重要概念,涉及到干涉现象的原理、种类、特征和应用等方面。

以下是高中物理光的干涉知识点总结:
1. 光的干涉原理
干涉原理是指两个或多个相干光源发出的光在某些情况下会发
生干涉现象。

干涉现象是由光的相干性引起的,当两个或多个光源发出的光相互接近时,它们就会干涉在一起,形成干涉条纹。

2. 干涉条纹的种类
干涉条纹的种类有:干涉衍射条纹、干涉屏散条纹、干涉筛法条纹、干涉干涉条纹等。

其中,干涉衍射条纹是最为普遍的干涉条纹类型,它是由于干涉仪本身的结构所引起的。

3. 干涉仪
干涉仪是一种利用干涉原理进行实验的工具,常见的干涉仪有干涉仪、单色干涉仪、干涉显微镜等。

干涉仪可以用来测量光的波长、频率、相位等参数,从而实现对光的深入探究。

4. 干涉条纹的特征
干涉条纹的特征包括:
- 干涉条纹具有重复性:相同频率的光在一起会产生干涉条纹,
不同频率的光在一起也会产生干涉条纹,条纹的频率会重复。

- 干涉条纹具有干涉斑:当光源不同的时候,产生的干涉斑大小
不同,干涉条纹的形态也不同。

- 干涉条纹具有随机性:干涉条纹的形态和位置取决于光源的位
置和时间。

5. 干涉的应用
干涉现象在科学研究和实际应用中有着广泛的应用,例如: - 利用干涉现象测量光的频率和波长
- 利用干涉现象分析光的干涉和衍射现象
- 利用干涉现象制作光纤通信和光学传感器等。

光的干涉-知识点总结

光的干涉-知识点总结

光的干涉-知识点总结干涉场强分布:亮度最大值处: 亮度最小值处:条纹间距公式空间频率:ƒ(2()()()*12121212,(,)(,)(,)(,)2cos =++=++∆I x y U x y U x y U x y U x y I I I I ϕ()()110sin 11,i k x U x y Ae θϕ+=()()220sin 22,i k x U x y A e θϕ-+=()(1220(,)sin sin x y k x ϕθθφφ∆=-++-()()122010(,)sin sin x y k x ϕθθφφ∆=-++-以参与相干叠加的两个光场参数表示:衬比度的物理意义 1.光强起伏2.相干度2.2分波前干涉2.2.1普通光源实现相干叠加的方法 (1)普通光源特性 • 发光断续性 • 相位无序性• 各点源发光的独立性根源:微观上持续发光时间τ0有限。

如果τ无限,则波列无限长,初相位单一,振幅单一,偏振方向单一。

这就是理想单色光。

(2)两种方法21212I I I I +=γ2212112⎪⎭⎫ ⎝⎛+=A A A Aγ())(cos 1)(0r I r Iϕγ∆+=1γ=0γ=01γ<< 完全相干 完全非相干 部分相干◆ 分波前干涉(将波前先分割再叠加,叠加广场来自同波源具有相同初始位相) ◆ 分振幅干涉(将光的能量分为几部分,参与叠加的光波来自同一波列,保证相位差稳定)2.2.2杨氏双孔干涉实验:两个球面波的干涉 (1) 杨氏双孔干涉实验装置及其历史意义(1) 光程差分析(要会推导)XZ(x,y)(3)干涉条纹分布xdr r r r r r r r 2))((212212122122=-+-=-, 由 x DdD xdr r xd r r =≈+=-2221212得 λπϕ2,),(==∆k x D d k y x )(2)(2),(),()(12122010r r R R t P t P P -+-=-=∆λπλπϕϕϕ2222222221)2(,)2(由 D y dx r D y dx r +++=++-=)(2)(2),(),()(12122010r r R R t P t P P -+-=-=∆λπλπϕϕϕxdr r2得 2122=-当Q 位于Z轴上时,R 1=R 2,则)),(cos 1(),(0y x I y x I ϕ∆+=(4) 非近轴近似下的干涉条纹分布亮条纹和暗条纹在空间形成一系列双叶旋转双曲面。

光的干涉知识点总结简短

光的干涉知识点总结简短

光的干涉知识点总结简短
光的波动性质
首先,我们需要了解光的波动性质。

光是一种电磁波,它可以在空间中传播。

光波的波长和频率决定了光的颜色和能量。

光波还具有干涉、衍射、偏振等现象,这些都体现了光的波动特性。

干涉的基本原理
在光学中,干涉是指两个或多个光波相遇时产生的相互作用。

干涉的基本原理是光波相遇时会发生叠加,这种叠加会导致光波的强度发生变化。

当两个波峰相遇时,它们会增强彼此的幅度,形成亮条纹;当波峰和波谷相遇时,它们会相互抵消,形成暗条纹。

干涉的分类
根据光波相遇的方式,干涉可以分为两种基本类型:相干干涉和非相干干涉。

相干干涉是指两个光源发出的光波具有一定的相位关系,这种干涉可以产生清晰的干涉条纹。

非相干干涉是指两个光源发出的光波没有固定的相位关系,这种干涉会产生随机的干涉条纹。

干涉的条件
要产生明显的干涉现象,需要满足一定的条件。

首先,光源必须是单色光源,即具有固定的波长和频率;其次,干涉光程差必须小于光波的波长,这样才能产生明显的干涉条纹;最后,光波必须是相干的,即具有固定的相位关系。

干涉的应用
光的干涉在科学研究和工程应用中有着广泛的应用。

例如,在光学仪器中常常利用干涉现象来测量物体的形状和表面质量;在光学显微镜中,干涉技术可以提高显微镜的分辨率;在激光技术中,干涉技术可以用来调节激光的相位和频率。

总结
光的干涉是光学领域中的重要现象,它可以用来研究光波的波动性质和相互作用。

在本文中,我们简要总结了光的波动性质、干涉的基本原理、干涉的分类、干涉的条件和干涉的应用。

希望本文可以帮助大家更好地理解光的干涉现象。

光的干涉知识点归纳总结

光的干涉知识点归纳总结

光的干涉知识点归纳总结
1、双缝干涉
1、两列光波在空间相遇时发生叠加,在某些区域总加强,在另
外一些区域总减弱,从而出现亮暗相间的条纹的现象叫光的干涉现象。

2、产生干涉的条件,两个振动情况总是相同的波源叫相干波源,只有相干波源发出的光互相叠加,才能产生干涉现象,在屏上出现稳定的亮暗相间的条纹。

3、双缝干涉实验规律,双缝干涉实验中,光屏上某点到相干光源、的路程之差为光程差,(n=0,1,2,3)P点将出现亮条纹;若光程差是半波长的奇数倍(n=0,1,2,3),P点将出现暗条纹。

屏上和双缝、距离相等的点,若用单色光实验该点是亮条纹(中
央条纹),若用白光实验该点是白色的亮条纹。

若用单色光实验,在屏上得到明暗相间的条纹;若用白光实验,中央是白色条纹,两侧是彩色条纹。

屏上明暗条纹之间的距离总是相等的,其距离大小与双缝之间距离d。

双缝到屏的距离及光的波长有关,即在和d不变的情况下,和波长成正比,应用该式可测光波的波长。

用同一实验装置做干涉实验,红光干涉条纹的间距最大,紫光干涉条纹间距最小,故可知大于小于。

2、薄膜干涉
薄膜干涉的成因:由薄膜的前、后表面反射的两列光波叠加而成,劈形薄膜干涉可产生平行相间的条纹。

薄膜干涉的应用:增透膜:透镜和棱镜表面的增透膜的厚度是入射光在薄膜中波长的。

检查平整程度:待检平面和标准平面之间的楔形空气薄膜,用单色光进行照射,入射光从空气膜的上、下表面反射出两列光波,形成干涉条纹,待检平面若是平的,空气膜厚度相同的各点就位于一条直线上,干涉条纹是平行的;反之,干涉条纹有弯曲现象。

物理知识点光的干涉

物理知识点光的干涉

物理知识点光的干涉光的干涉是光学中的重要概念之一,它揭示了光波的波动性质及其产生的干涉现象。

本文将依据物理知识点,对光的干涉进行详细论述。

一、干涉现象的基本原理光的干涉是指两个或多个光波相互叠加所形成的干涉图案。

干涉现象的产生需要满足两个基本条件:光源是相干光源,波长相同。

当光波经过不同路径传播后再次相遇时,它们会相互干涉,产生增强或减弱的干涉效应。

二、双缝干涉1. 双缝干涉的实验装置双缝干涉实验一般采用光源、狭缝、透镜和屏幕等组成。

光源发出的光经狭缝后,形成一个光源光斑,通过透镜聚焦后照射到屏幕上。

2. 双缝干涉的光程差当光波通过两个缝隙后再次相遇时,其传播路径的长度差称为光程差。

光的干涉现象取决于光程差的大小。

3. 双缝干涉的干涉图案双缝干涉的干涉图案呈现出一系列明暗相间的条纹,称为干涉条纹。

该条纹呈现出一定的规律性,可通过干涉公式和级差条件进行分析和计算。

三、杨氏双缝干涉实验1. 杨氏双缝干涉实验的装置杨氏双缝干涉实验是一种经典的干涉实验方法。

实验装置由一束狭缝光源、双缝、透镜和幕板等组成。

2. 杨氏双缝干涉的干涉条纹杨氏干涉条纹呈现出一系列黑白相间的圆环或直线条纹。

根据实验条件和光波的干涉效应,可以通过杨氏双缝干涉公式进行计算。

四、单缝干涉1. 单缝干涉的实验装置单缝干涉实验通常采用单缝光源、单缝和屏幕等组成。

单缝光源发出的光波通过单缝后形成一个光斑,映射到屏幕上形成单缝干涉图样。

2. 单缝干涉的干涉条纹单缝干涉的干涉条纹呈现出明暗相间且中央最亮的中央极大和两侧较暗的暗条纹分布。

单缝干涉的干涉效应可由单缝干涉公式和级差条件加以说明。

五、干涉现象的应用光的干涉在科学研究和实际应用中有着重要的意义。

1. 干涉仪干涉仪是一种基于光的干涉原理设计的精密仪器,常用于光学测量、干涉剖析和光学检测等领域。

2. 光纤通信光纤通信是一种基于光的传输技术。

光波经光纤传输时,可能会产生干涉现象,影响信号传输质量,因此需要进行干涉相关的优化和控制。

光学光的干涉知识点总结

光学光的干涉知识点总结

光学光的干涉知识点总结光的干涉是指两个或多个光波相互干涉形成明暗交替的现象,在光学研究中具有重要的意义。

本文将对光的干涉中的相关知识点进行总结和概述,包括干涉的原理、干涉的类型、干涉图案的形成以及应用等方面。

一、干涉的原理1. 干涉是基于光的波动性的现象,要求干涉光波必须是相干波。

相干检测方法常用的有干涉仪、自发辐射以及激光器等。

2. 干涉是光的波动性在空间中叠加干涉而表现出的现象,倍波源发出的光波在空间中相遇叠加,形成干涉现象。

3. 干涉光的波动特性包括振幅、相位、波长等,这些特性的差异决定了干涉图样的形态和干涉的结果。

二、干涉的类型1. 多普勒干涉:当光源或接收器相对于介质运动或产生相对运动时,引起光的频率和波长发生变化,导致多普勒效应而产生光的干涉。

2. 空气薄膜干涉:光在两个介质交界面上反射和折射时产生相位差,由此形成空气薄膜干涉现象。

应用广泛,如油渍上的彩虹。

3. 条纹干涉:当两束或多束光线相遇并发生干涉时,在空间中产生交替显示明暗条纹的现象。

包括等倾条纹、等厚条纹等。

4. 动态干涉:采用光的干涉原理实现对物体表面纹理、形貌和微位移的测量或分析的技术。

5. 光栅干涉:利用光栅的衍射和干涉作用,将光束分解成若干相干子光束,并产生衍射和干涉图样。

三、干涉图样的形成1. 明纹和暗纹:光的干涉现象会形成明纹和暗纹,明纹是波峰叠加形成的亮区,暗纹是波峰和波谷叠加形成的暗区。

2. 干涉条纹:光的干涉现象在空间中形成了交替排列的明暗条纹。

常见的干涉条纹有等厚条纹、等倾条纹等。

3. 干涉环:干涉环是由同心圆环状的干涉条纹构成的图案。

常见的干涉环有牛顿环和菲涅尔环。

四、干涉的应用1. 干涉仪:干涉仪是一种技术性的仪器,利用光的干涉现象实现对光学参数、物体表面的测量和分析。

2. 波前重建:利用光的干涉原理恢复物体波前信息,实现三维图像的重建和显示。

3. 表面形貌测量:通过干涉技术可以实现对物体表面形貌的非接触式测量,广泛应用于机械加工、光学加工等领域。

物理高二光的干涉知识点

物理高二光的干涉知识点

物理高二光的干涉知识点光的干涉是物理高二课程中的重要知识点之一。

干涉是指两束或多束光波相遇后,产生明暗相间的干涉条纹现象。

在干涉中,光的波动性起到了关键的作用。

本文将从光的波动性、干涉的条件、干涉模式以及干涉的应用等方面来介绍光的干涉知识点。

一、光的波动性光既可以被看作是一种电磁波,也可以被看作是由光子组成的粒子。

在干涉现象中,我们主要关注光的波动性。

光的波动性表现为光的传播具有波长、频率和振幅等特性。

光的波动性由麦克斯韦方程组以及光的波动模型来描述。

二、干涉的条件要产生干涉现象,我们需要满足以下两个基本条件:1.光源必须是相干光源,即光源发出的光波具有相同的频率、相位以及恒定的相对相位关系。

2.光波之间存在干涉的叠加,即光波在空间中有相互叠加并形成干涉现象。

三、干涉模式根据干涉条纹的形态和光源的性质,光的干涉可分为两种典型模式:分波前干涉和分波后干涉。

1.分波前干涉:分波前干涉是指在光源发出的光波通过干涉装置之前进行分波处理。

常见的分波前干涉有双缝干涉和光栅干涉等。

2.分波后干涉:分波后干涉是指光源发出的光波通过干涉装置后,再进行干涉现象的观察。

常见的分波后干涉有薄膜干涉和薄板干涉等。

四、干涉的应用光的干涉在实际生活和科学研究中有着广泛的应用。

以下是几个常见的干涉应用:1. Michelson 干涉仪:Michelson 干涉仪是一种重要的光学仪器,它可以用于测量光的波长、光速以及薄膜的厚度等。

2. 干涉消色差:利用干涉的原理,可以设计制造一些具有消色差效果的光学元件,例如消色差镜头、消色差光栅等。

3. 干涉显微镜:干涉显微镜是一种高分辨率的显微镜,它利用了干涉的原理来增强光学图像的清晰度和对比度。

4. 光的编码和解码:利用干涉的特性,可以将信息编码进光波中,通过解码方式获取信息,例如光栅码、二维码等。

综上所述,光的干涉是物理高二课程中的重要知识点,涉及到光的波动性、干涉的条件、干涉模式以及干涉的应用等方面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 光的干涉 知识点总结2.1.1光的干涉现象两束(或多束)光在相遇的区域内产生相干叠加,各点的光强不同于各光波单独作用所产生的光强之和,形成稳定的明暗交替或彩色条纹的现象,称为光的干涉现象。

2.1.2干涉原理注:波的叠加原理和独立性原理成立于线性介质中,本书主要讨论的就是线性介质中的情况. (1)光波的独立传播原理当两列波或多列波在同一波场中传播时,每一列波的传播方式都不因其他波的存在而受到影响,每列波仍然保持原有的特性(频率、波长、振动方向、传播方向等) (2)光波的叠加原理在两列或多列波的交叠区域,波场中某点的振动等于各个波单独存在时在该点所产生振动之和。

波叠加例子用到的数学技巧: (1) A +iB =√A 2+B 2(A √A 2+B2+i B √A 2+B 2)=A t e iφt(2)eiφ1=ei[(φ12+φ22)+(φ12−φ22)] eiφ1=ei[(φ12+φ22)−(φ12−φ22)]注:叠加结果为光波复振幅的矢量和,而非强度和。

分为相干叠加(叠加场的光强不等于参与叠加的波的强度和)和非相干叠加(叠加场的光强等于参与叠加的波的强度和). 2.1.3波叠加的相干条件干涉项:相干条件:(干涉项不为零)(为了获得稳定的叠加分布) (为了使干涉场强不随时间变化) 2.1.4 干涉场的衬比度1.两束平行光的干涉场(学会推导) (1)两束平行光的干涉场 干涉场强分布:21ωω=10200⋅≠E E 2010ϕϕ-=常数()()212121212()()()2=+⋅+=++⋅I r E E E E I r I r E E 12102012201021212010212{cos()()()cos()()()}⋅=⋅+⋅++-++-⋅+---E E E E k k r t k k r t ϕϕωωϕϕωω()()()*12121212,(,)(,)(,)(,)2cos =++=++∆I x y U x y U x y U x y U x y I I I I ϕ亮度最大值处:∆φ=2mπ亮度最小值处:∆φ=(2m +1)π 条纹间距公式∆x =λsin θ1+sin θ2空间频率:ƒ=1∆x ⁄(2)定义衬比度以参与相干叠加的两个光场参数表示:衬比度的物理意义 1.光强起伏2.相干度2.2分波前干涉2.2.1普通光源实现相干叠加的方法 (1)普通光源特性• 发光断续性 • 相位无序性• 各点源发光的独立性根源:微观上持续发光时间τ0有限。

如果τ0无限,则波列无限长,初相位单一,振幅单一,偏振方向单一。

这就是理想单色光。

(2)两种方法◆ 分波前干涉(将波前先分割再叠加,叠加广场来自同波源具有相同初始位相) ◆ 分振幅干涉(将光的能量分为几部分,参与叠加的光波来自同一波列,保证相位差稳定)2.2.2杨氏双孔干涉实验:两个球面波的干涉 (1) 杨氏双孔干涉实验装置及其历史意义)()(m M m M I I I I +-=γ21212I I I I +=γ2212112⎪⎭⎫ ⎝⎛+=A A A A γ())(cos 1)(0r I r I ϕγ∆+=1γ=0γ=01γ<< 完全相干 完全非相干 部分相干 ()()110sin 11,i k x U x y Ae θϕ+=()()220sin 22,i k x U x y A e θϕ-+=()(1220(,)sin sin x y k x ϕθθφφ∆=-++-()()122010(,)sin sin x y k x ϕθθφφ∆=-++-(2) 光程差分析(要会推导)(3)干涉条纹分布(4) 非近轴近似下的干涉条纹分布亮条纹和暗条纹在空间形成一系列双叶旋转双曲面。

在平面接收屏上为一组双曲线,明暗交错分布。

干涉条纹为非定域的,空间各处均可见到。

(5)干涉条纹间距公式XZ(x,y)2222222221)2(,)2(由 D y d x r D y d x r +++=++-=)(2)(2),(),()(12122010r r R R t P t P P -+-=-=∆λπλπϕϕϕxd r r 2得 2122=-xd r r r r r r r r 2))((212212122122=-+-=-, 由 x D dD xd r r xd r r =≈+=-22212得 λπϕ2,),(==∆k x Ddk y x 当Q 位于Z轴上时,R 1=R 2,则)(2)(2),(),()(12122010r r R R t P t P P -+-=-=∆λπλπϕϕϕ)),(cos 1(),(0y x I y x I ϕ∆+=))cos(1(),(0x D d k I y x I +=()()干涉相消,)12(2)(干涉相长,22)(1212πλπϕπλπϕ+=-=∆=-=∆j r r P j r r P )),(cos 1(),(0y x I y x I ϕ∆+=λπλπdD jx j x Ddx D d k x D d k I y x I j ===+=得 22,))cos(1(),(由 0条纹间距:(6) 干涉条纹的物理意义: 光程差物理意义:1、干涉条纹代表着光程差的等值线。

2、相邻两个干涉条纹之间其光程差变化量为一个波长l ,位相差变化2π。

2.2.3 其它分波前干涉装置(了解,见PPT )2.2.4 光源宽度对干涉场衬比度的影响(学会推导,记住图即可) 扩展光源 (extended source of light) 具有一定的尺寸和体积 大量非相干点源的集合多组干涉条纹的非相干叠加降低衬比度 1 两个分离点源照明时的部分相干场 (1) 计算思路:i 先分别求出两点光源在观察屏上的光强分布,关键是找到关系式0x RDx =δ。

ii 然后根据算得各点光源在观察屏上的光强分布iii 由于两点光源非相干,所以总的光强分布可以直接由两者场强相加得到。

(2)衬比度变化2 线光源照明时的部分相干场(1) 计算思路:i 用到1中结论,I A =I 0(1+cos(2πƒx +2πƒ0x 0))。

并且有 ii 对整个线光源积分:暗条纹;时)(亮条纹;时211212λλ+=-=-m r r m r r 000))22cos(1(),(dx x f fx B y x dI ππ++∝⎰⎰--++==2/2/0002/2/)22cos(1(B ),(b b b b dxx f fx dI y x I ππ(2) 衬比度变化:3 面光源照明时的部分相干场 (1) 计算思路与2接近,只是将线积分改为面积分。

(2) 方孔光源与线光源照明时形式一样,区别在于方孔时常数项I 0=B(ab),线光源时,I 0=Bb (3) 圆盘光源积分不能得到解析式 圆盘光源极限直径: 2.2.5光场的时间相干性 1.谱线宽度光源有一定谱线宽度是光源发光的断续性造成的。

假设某一微观粒子辐射出的光波复振幅可表示为:则广播强度随频率的分布:当ω=ω0±∆ω2⁄时,i (ω)=0,∆ω=2πτ为该辐射光谱宽度。

当τ取无穷大时,就对应理想单色光的情况;当τ较大以致∆ω≪ω0时,就称为准单色光由∆ω=2πτ,ω=2πν可得:这是一般情况下发光时间与谱线宽度的简单关系。

2.光源非单色性对条纹衬比度的影响 方垒型谱函数下干涉场的衬比度u u b f b f sin sin 00==ππγbR d dR b d R b u λλγλπ====00 b 0,d 双孔极限间隔下,同理,给定光源极限宽度=此时下,时,对给定的当dR b λ10.10=)2cos sin 1(),(000fx b f bf I y x I πππ+=b R db f u u u λππγ===0,sin 0()exp(),22()0E t t t E t ττω⎧=--<<⎪⎨⎪=⎩i 其他时间[]220204sin ()2()()()i g ωωτωωπωω-==-1ντ∆⋅=LkL kv vL L kv L k v v I dk L k i I L I k k k k ∆∆∆∆==∆∆∆=∆+=∆=∆⎰∆+∆-2sin sin )( 则2其中 )cos sin 1()cos(+)(002/2/0000γ准单色光持续发光时间有限,因而发射的波列长度是有限的,相邻波列之间相位关系是随机的。

)(时间相干性光场中这类相干性称为)为相干长度() 为相干时间(的特征量,人们称是决定光场纵向相干性,鉴于0000coherence temporal ngth coherentle L time coherent L ττ2.2.6光场的空间相干性光场的空间相干性是指在光源照明空间中横向任意两点位置处的光场U~1和U ~2之间的相干程度,其相干程度是由光源本身的性质决定的,可以通过干涉场的衬比度γ来定量描述U~1和U~2之间的相干程度。

(1)相干孔径角:(3) 以孔径角表示衬比度的形式:(4) 相干面积2200200200)(2S 处的相干面积则距离光源,2sin 2旋转而成的空间立体角空间相干范围是由d R R R ≈∆≈∆Ω=∆∆=∆Ω∆θπθπθ 2.2.6 分波前干涉应用(了解) 2.3 分振幅干涉薄膜干涉{等倾干涉等厚干涉λλππγ∆=∆∆=∆⋅∆∆=//2= 求得2/ 此时程差时的光程差称为最大光0第一次出现2k L L k L M M 00τc L =λθθλ=∆⋅=∆=000 则,定义相干孔径角,b Rd bR d 000sin sinc( f b f b πθγππθ∆=∆==1.等倾干涉光程差:计算干涉场条纹分布时只考虑前两条光线是因为仅有前两条光线的强度较接近。

干涉条纹分布仅与入射光线的方向有关,同一干涉亮环对应的是同一入射倾角的光线在焦平面上的叠加,正因为如此这种干涉被称为等倾干涉。

定域条纹:在单设扩展光源照明平板的分振幅干涉中,干涉条纹的衬比度随观察屏的位置而变化,存在一个位置使衬比度达到最大值,这种衬比度与观察屏有关的干涉条纹称为定域条纹。

分波前干涉是非定域的。

等倾干涉第一级干涉条纹在最外面,越靠近中心处入射角越小,光程差越大,条纹级次m 越大。

2.等厚干涉(1)光程差:一般采用垂直入射:cos i ≈1(2)等厚干涉条纹主要特点:i 、表面条纹形状与楔形板或薄膜的等厚线是一致的。

()202()()1sin cos ()2cos nh L P n AB BP CP i iL P nh i ∆=+-≈-∆≈nh P L 2)(0≈∆nh j nh 22 由00λλ=∆⇒=ii 、相邻两个亮条纹对应点处的楔形板厚度差值。

相关文档
最新文档