(完整版)圆锥曲线中的一类对称问题

合集下载

完美版圆锥曲线知识点总结

完美版圆锥曲线知识点总结

完美版圆锥曲线知识点总结圆锥曲线的方程与性质1.椭圆(1)椭圆概念平面内与两个定点、的距离的和等于常数2(大于)的点的轨迹叫做椭圆。

这两个定点叫做椭圆的焦点,两焦点的距离2c叫椭圆的焦距。

若为椭圆上任意一点,则有。

椭圆的标准方程为:()(焦点在x轴上)或()(焦点在y轴上)。

注:①以上方程中的大小,其中;②在和两个方程中都有的条件,要分清焦点的位置,只要看和的分母的大小。

例如椭圆(,)当时表示焦点在轴上的椭圆;当时表示焦点在轴上的椭圆。

(2)椭圆的性质①范围:由标准方程知,说明椭圆位于直线,所围成的矩形里;②对称性:在曲线方程里,若以代替方程不变,所以若点在曲线上时,点也在曲线上,所以曲线关于轴对称,同理,以代替方程不变,则曲线关于轴对称。

若同时以代替,代替方程也不变,则曲线关于原点对称。

所以,椭圆关于轴、轴和原点对称。

这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心;③顶点:确定曲线在坐标系中的位置,常需要求出曲线与轴、轴的交点坐标。

在椭圆的标准方程中,令,得,则,是椭圆与轴的两个交点。

同理令得,即,是椭圆与轴的两个交点。

所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点。

同时,线段、分别叫做椭圆的长轴和短轴,它们的长分别为和,和分别叫做椭圆的长半轴长和短半轴长。

由椭圆的对称性知:椭圆的短轴端点到焦点的距离为;在中,,且,即;④离心率:椭圆的焦距与长轴的比叫椭圆的离心率。

∵,∴,且越接近,就越接近,从而就越小,对应的椭圆越扁;反之,越接近于,就越接近于,从而越接近于,这时椭圆越接近于圆。

当且仅当时,两焦点重合,图形变为圆,方程为。

2.双曲线(1)双曲线的概念平面上与两点距离的差的绝对值为非零常数的动点轨迹是双曲线()。

注意:①式中是差的绝对值,在条件下;时为双曲线的一支;时为双曲线的另一支(含的一支);②当时,表示两条射线;③当时,不表示任何图形;④两定点叫做双曲线的焦点,叫做焦距。

(完整版)解圆锥曲线问题常用的八种方法与七种常规题型

(完整版)解圆锥曲线问题常用的八种方法与七种常规题型

解圆锥曲线问题常用的八种方法与七种常规题型总论:常用的八种方法1、定义法2、韦达定理法3、设而不求点差法4、弦长公式法5、数形结合法6、参数法(点参数、K 参数、角参数)7、代入法8、充分利用曲线系方程法七种常规题型(1)中点弦问题(2)焦点三角形问题(3)直线与圆锥曲线位置关系问题 (4)圆锥曲线的有关最值(范围)问题 (5)求曲线的方程问题1.曲线的形状已知---—-—--这类问题一般可用待定系数法解决. 2.曲线的形状未知-———-求轨迹方程(6) 存在两点关于直线对称问题 (7)两线段垂直问题常用的八种方法1、定义法(1)椭圆有两种定义。

第一定义中,r 1+r 2=2a 。

第二定义中,r 1=ed 1 r 2=ed 2。

(2)双曲线有两种定义。

第一定义中,a r r 221=-,当r 1〉r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。

(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明.2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。

3、设而不求法解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。

设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法",即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M (x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。

圆锥曲线一类对称问题的通法探究

圆锥曲线一类对称问题的通法探究

又 中点 M ( , o 在 直 线 z 函 Y) : 一4 + 上 , 以 所 一4 + m,② xo 由① ② 得 。 一 m, = 一3 一 ,
因为 t.2 1 t一
三 二 <o 二
所 以 3 。 I y 一 1 — 3 + 4× 9 — 1 < O x - 4 o - 2 m m 2
一 1得 :
( 一 或> ) z < z 又一+ z 去 + z . 又 为 < 6 ÷ 一 z丢 :_ 因 z 一 詈 卫
或 >
。0— y 1) 一. s: ) o r 2o + J 3 ~ + 1
上式 化简得 : 2 +坠 5
。 1
解 E 一 , ) 在 圆c 存 两 AB 得b ( , 椭 上 在 点 , 故

/一 \
2 1 第 3期 0 0年
数 学 教 育 研 究
・ 5 5 ・
解 得 一 ±

所以弦 A, 中 点 M 的轨 迹方 程 为 Y一÷ - B z
霉 …牵 4 ㈣ 等
所 以 ~
< <
为 的 范 围 .
4 方 法 四 直 线参 数 法 例 4 已知椭圆 c +寺 1试确定 m的取值 : ,
范 围, l 使 : 一4 + m 在 椭 圆 C 上 存 在 不 同两 点 关 于 直 z 线 z 称. 对 解 :设 这 不 同 两 点 为 A,B 线 段 A 的 中 点 M B
£ z+ 4 +3

z 1 一 2
一 0.
所以 b 的取值 范 围是 b 一 <
或 6 、 , > / 故双 ,
因 为 A,B两 点 对 称 分 布 在 M ( 。 Y ) 侧 , 以 x , 。两 所

(完整版)圆锥曲线常见题型及答案

(完整版)圆锥曲线常见题型及答案

圆锥曲线常见题型归纳一、基础题涉及圆锥曲线的基本概念、几何性质,如求圆锥曲线的标准方程,求准线或渐近线方程,求顶点或焦点坐标,求与有关的值,求与焦半径或长(短)轴或实(虚)轴有关的角和三角形面积。

此类题在考试中最常见,解此类题应注意:(1)熟练掌握圆锥曲线的图形结构,充分利用图形来解题;注意离心率与曲线形状的关系; (2)如未指明焦点位置,应考虑焦点在x 轴和y 轴的两种(或四种)情况;(3)注意2,2,a a a ,2,2,b b b ,2,2,c c c ,2,,2p p p 的区别及其几何背景、出现位置的不同,椭圆中222b a c -=,双曲线中222b a c +=,离心率a c e =,准线方程a x 2±=;例题:(1)已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是 ( )A .421=+PF PFB .621=+PF PF C .1021=+PF PF D .122221=+PF PF (答:C );(2)方程8=表示的曲线是_____ (答:双曲线的左支)(3)已知点)0,22(Q 及抛物线42x y =上一动点P (x ,y ),则y+|PQ|的最小值是_____ (答:2)(4)已知方程12322=-++k y k x 表示椭圆,则k 的取值范围为____ (答:11(3,)(,2)22---); (5)双曲线的离心率等于25,且与椭圆14922=+y x 有公共焦点,则该双曲线的方程_______(答:2214x y -=);(6)设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C 的方程为_______(答:226x y -=)二、定义题对圆锥曲线的两个定义的考查,与动点到定点的距离(焦半径)和动点到定直线(准线)的距离有关,有时要用到圆的几何性质。

此类题常用平面几何的方法来解决,需要对圆锥曲线的(两个)定义有深入、细致、全面的理解和掌握。

专题7.8:圆锥曲线中一类对称问题的研究与拓展.pdf

专题7.8:圆锥曲线中一类对称问题的研究与拓展.pdf

试题为高清版 下载可打印
试题为高清版 下载可打印专题7.8:圆锥曲线中一类对称问题的研究与拓展
【探究拓展】
引例:试探究是否存在实数,使得椭圆有不同的两点关于直线对称?若存在,m 13
42
2=+y x m x y +=4求出实数的取值范围;若不存在,请说明理由;
m 结论:若直线交椭圆于两点,且不与轴垂直,为线段的中点,则_____变式1:已知AB B A ,AB x P AB 直线与双曲线相交于两点,是否存在实数,使两点关于直线1+=kx y 132
2=-y x B A ,k B A ,对称?若存在,求出实数的值,不存在,请说明理由
02=-y x k 变式2:已知抛物线与直线,试问上是否存在关于直线对称的两点?若存在,x y C =2:4
3:+
=kx y l C l 求出实数的取值范围;若不存在,请说明理由k 变式3:中心在原点,焦点在轴上的椭圆的一个顶点为,右焦点到直线
x C )1,0(-B 的距离为3
022:=+-y x m (1)求椭圆的标准方程;
C (2)是否存在斜率的直线交于两点,使得?若存在,求出的取值范围;若不0≠k l N M ,BN BM =k 存在,请说明理由
【专题反思】你学到了什么?还想继续研究什么?。

微难点13 圆锥曲线中的对称问题(斜率乘积问题)

微难点13 圆锥曲线中的对称问题(斜率乘积问题)

微难点13 圆锥曲线中的对称问题(斜率乘积问题)
析典例 ·举题破难
第3页
栏目导航
高考总复习 一轮复习导学案 ·数学
微难点13 圆锥曲线中的对称问题(斜率乘积问题)
若 AB 是圆 O:x2+y2=r2 的直径,P 是圆 O 上一点,且 PA,PB 都存在非
零斜率 kPA,kPB,则 kPA·kPB=-1;若 M 是 AB 的中点,且 AB,OM 都存在非零斜率 kAB,kOM,则 kAB·kOM=-1.
高考总复习 一轮复习导学案 ·数学
微难点13 圆锥曲线中的对称问题(斜率乘积问题)
微难点13 圆锥曲线中的对称问题(斜率乘积问题)
第1页
栏目导航
高考总复习 一轮复习导学案 ·数学
微难点13 圆锥曲线中的对称问题(斜率乘积问题)
栏 目 导 航
第2页
栏目导航
析典例 ·举题破难 解类题 ·融会贯通
高考总复习 一轮复习导学案 ·数学
通过类比得到如下结论:AB 是过椭圆xa22+by22=1(a>0,b>0)中心的弦,P 是椭圆 上任意一点,且 PA,PB 都存在非零斜率 kPA,kPB,则 kPA·kPB=__-__ba_22___;若 M 是 AB 的中点,且 AB,OM 都存在非零斜率 kAB,kOM,则 kAB·kOM=__-__ba_22___.(填空并证明此
第5页
栏目导航
高考总复习 一轮复习导学案 ·数学
微难点13 圆锥曲线中的对称问题(斜率乘积问题)
(2) 如图(2),过点 B 作椭圆的直径 BC,连接 AC,则 OM∥AC,
图(2) 由上述类比知 kABkOM=kABkAC=-ba22.
第6页
栏目导航

(完整版)圆锥曲线解题方法技巧归纳

(完整版)圆锥曲线解题方法技巧归纳

圆锥曲线解题方法技巧归纳第一、知识储备: 1. 直线方程的形式(1) 直线方程的形式有五件:点斜式、两点式、斜截式、截距式、 一般式。

(2) 与直线相关的重要内容 ① 倾斜角与斜率k tan , [0,)② 点到直线的距离dA/ B y0_C tan(3) 弦长公式 直线 y kx b 上两点 A(x i , yj, B(X 2, y 2)间的距离:AB| J i k 2|x X 2J (1 k 2)[(X i X 2)2 4沁]或 AB J i *|y i y 2(4) 两条直线的位置关系 ① l 1 l 2 k 1k 2=-1② l 1 //12k 1 k 2且b 1 b 22、圆锥曲线方程及性质(1) 、椭圆的方程的形式有几种?(三种形式)标准方程: 2 2—匚 1(m 0, n 0且 m n) m n 距离式方程:.(x c)2 y 2 . (x c)2 y 2 2a参数方程: x a cos , y bsin(2) 、双曲线的方程的形式有两种③夹角公式:k 2 12 2标准方程:—-1(m n 0)(3) 、三种圆锥曲线的通径你记得吗?椭圆:近;双曲线:玄;抛物线:2pa a(4) 、圆锥曲线的定义你记清楚了吗?b 2 tan —2P 在双曲线上时,S FP F 2 b 2 cot —,t| PF |2 | PF |2 4c 2 uur ujrn uur uimr(其中 F 1PF 2,COS 】1鳥尙,PF ?PF 2 |PF 1||PF 2|COS(6)、 记住焦 半 径公式: (1 )椭圆焦点在x 轴上时为a ex g ;焦点在y 轴上时为a ey °,可简记为“左加右减,上加下减”(2) 双曲线焦点在x 轴上时为e|x 01 a(3) 抛物线焦点在x 轴上时为| x , | 2,焦点在y 轴上时为| % | 2 (6)、椭圆和双曲线的基本量三角形你清楚吗? _ 第二、方法储备 1、点差法(中点弦问题)2B X 2,y 2,M a,b 为椭圆— 42 2 2 2 2222如: 已知F ,、 2 2F 2是椭圆勻七1的两个焦点,平面内一个动点 M足MF !MF 22则动点M 的轨迹是(A 、双曲线;B 、双曲线的一支;C 、两条射线;D 、一条射线(5)、焦点三角形面积公式:P 在椭圆上时,S F1p F2设 A x ,, y ,2仝1的弦AB 中点则有3仝生1,空空1 ;两式相减得二竺上上04 3 4 3 4 3x i X2 捲X2 y i y2 y i y2 3a4 3 k AB一不2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什么?如果有两个参数怎么办?设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,使用判别式0,以及根与系数的关系,代入弦长公式,设曲线上的两点A(X!, y i), B(X2, y2),将这两点代入曲线方程得到①②两个式子,然后①-②,整体消元..................... ,若有两个字母未知数,贝S要找到它们的联系,消去一个,比如直线过焦点,则可以利用三点A、B、F共线解决之。

圆锥曲线中的典型问题与方法:圆锥曲线解题技巧和方法综合

圆锥曲线中的典型问题与方法:圆锥曲线解题技巧和方法综合

圆锥曲线的解题技巧一、常规七大题型:(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。

如:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有0220=+k b y a x 。

(2))0,0(12222>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有0220=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线x y 2221-=。

过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。

(2)焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。

典型例题 设P(x,y)为椭圆x a y b 22221+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。

(1)求证离心率βαβαsin sin )sin(++=e ;(2)求|||PF PF 1323+的最值。

(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。

典型例题抛物线方程,直线与轴的交点在抛物线准线的右边。

y p x p x y t x 210=+>+=()()(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线中的一类对称问题
大庆实验中学 郝明泉
圆锥曲线上存在两点关于直线对称问题是高考中的一类热点问题,该问题集直线与圆锥曲线位置关系,点与圆锥曲线的位置关系,中点弦,方程与不等式等数学知识于一体,经常在知识网络交汇处、思想方法的交汇线和能力层次的交叉区设置问题,一般问题的综合性较强,但难度不是很大,具有很好的选拔功能,对学生的知识和能力的考察情况也较好。

下面本文就这一类问题的解决方法,结合下面的例题,谈一下自己的看法。

例:已知椭圆22
:143
x y C +=,试确定m 的取值范围,使得对于直线:4l y x m =+,椭圆C 上有不同的两点关于这条直线对称。

法一:利用判别式及韦达定理来求解
两点,A B 关于直线l 对称,对称中体现的两要点:垂直和两点连线中点在对称直线l 上,因此使用这种方法求解时,必须同时确保: ⑴垂直;⑵平分⑶存在,下面就说明三个确保的实施。

解:椭圆上存在两点,A B 关于直线:4l y x m =+对称
设直线AB 为:n x y +-=4
1 (确保垂直). 则直线AB 与椭圆有两个不同的交点
2222141381648014
3y x n x nx n x y ⎧=-+⎪⎪⇒-+-=⎨⎪+=⎪⎩ 2192(413)0b ∆=--> (确保存在)
即:22
n -<< ① 12881313
n n x x -+=-= ,A B 两点的中点的横坐标为
124,213x x n +=纵坐标为141241313n n n -⨯+= 则点412,1313n n ⎛⎫ ⎪⎝⎭
在直线:4l y x m =+上,12441313n n m =⨯+. (确保平分) 413
m n ⇒=-
把上式代入①中,
得:1313
m -<< 法二:点差法
点差法是解决中点弦问题的一种常见方法,对称问题符合点差法的应用条件,过程如下 解:设椭圆上关于l 对称的两点分别为1122(,),(,)A x y B x y ,弦AB 的中点为00(,)M x y ,代入椭圆方程后作差,得
0121203144
x y y x x y -=-=-- ① 由点00(,)M x y 在直线:4l y x m =+上,得004y x m =+ ②
由①②解得00,3x m y m =-=-
因为点00(,)M x y 在椭圆的内部
所以 22
()(3)143
m m --+<
解得1313
m -<<
法三:利用根的分布求解
C 上存在不同的两点关于直线l 对称,等价于C 上存在被l 垂直平分的弦,即等价于C 的适合条件的弦所在的直线方程,与曲线C 的方程组成的方程组在某确定的区间上有两不同的解,因此可利用一元二次方程根的分布来求解,过程如下。

解:由解法二,知中点00(,)M x y 的坐标为(,3)m m --,
所以直线AB 的方程为11344m y x =-
- 代入椭圆方程整理得221326169480x mx m ++-=
此方程在[2,2]-上有两个不等实根
令22
()132616948f x x mx m =++-,则
0(2)0(2)0
22
f f m ∆>⎧⎪≥⎪⎨-≥⎪⎪-<-<⎩ 解得
1313m -<<
法四: 平行弦中点轨迹法
寻求有关弦中点轨迹,通过轨迹曲线与圆锥曲线的位置关系,利用数形结合寻求参量范围。

解:设椭圆上关于l 对称的两点分别为1122(,),(,)A x y B x y ,弦AB 的中点为00(,)M x y ,将,A B 坐标代入椭圆方程后作差,得
0121203144
AB x y y k x x y -==-=-- 003y x = 所以以14
-为斜率的平行弦的中点轨迹是直线3y x =在椭圆内的一段,不包括端点。

将3y x =与椭圆22
:143
x y C +=
联立得两交点(P Q 所以问题可以转化为直线:4l y x m =+与线段3y x =
(x ∈有交点。

易得m
的取值范围是1313
m -<< 以上方法在处理其它圆锥曲线时同样适用,但在处理非封闭曲线时,应注意对是否存在的验证。

以上是笔者对这类问题的一点拙见,方法总结未必全面,希望能给各位读者带来帮助,也希望各位读者批评指正。

相关文档
最新文档