圆锥曲线解题十招全归纳
圆锥曲线解题十招全归纳

《圆锥曲线解题十招全归纳》招式一:弦的垂直平分线问题 (2)招式二:动弦过定点的问题 (4)招式四:共线向量问题 (6)招式五:面积问题 (13)招式六:弦或弦长为定值、最值问题 (16)招式七:直线问题 (20)招式八:轨迹问题 (24)招式九:对称问题 (30)招式十、存在性问题 (33)招式一:弦的垂直平分线问题例题1、过点T(-1,0)作直线l 与曲线N :2y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ∆是等边三角形,若存在,求出0x ;若不存在,请说明理由。
解:依题意知,直线的斜率存在,且不等于0。
设直线:(1)l y k x =+,0k ≠,11(,)A x y ,22(,)B x y 。
由2(1)y k x y x=+⎧⎨=⎩消y 整理,得2222(21)0k x k x k +-+= ① 由直线和抛物线交于两点,得2242(21)4410k k k ∆=--=-+> 即2104k <<② 由韦达定理,得:212221,k x x k -+=-121x x =。
则线段AB 的中点为22211(,)22k k k--。
线段的垂直平分线方程为:221112()22k y x k k k --=--令y=0,得021122x k =-,则211(,0)22E k -ABE ∆为正三角形,∴211(,0)22E k -到直线AB 的距离d 。
AB =21k =+2d k=21k +=k =053x =。
【涉及到弦的垂直平分线问题】这种问题主要是需要用到弦AB 的垂直平分线L 的方程,往往是利用点差或者韦达定理........产生弦AB 的中点坐标M ,结合弦AB 与它的垂直平分线L 的斜率互为负倒数,写出弦的垂直平分线L 的方程,然后解决相关问题,比如:求L 在x 轴y 轴上的截距的取值范围,求L 过某定点等等。
有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB 的中点问题,比如:弦与某定点D 构成以D 为顶点的等腰三角形(即D 在AB 的垂直平分线上)、曲线上存在两点AB 关于直线m 对称等等。
圆锥曲线的解题方法(精选4篇)

圆锥曲线的解题方法(精选4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、工作计划、应急预案、演讲致辞、规章制度、合同协议、条据书信、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work summaries, work plans, emergency plans, speeches, rules and regulations, contract agreements, document letters, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!圆锥曲线的解题方法(精选4篇)圆锥曲线的七种题型归纳:篇1一、求圆锥曲线方程(1)轨迹法:设点建立方程,化简证明求得。
解圆锥曲线问题常用方法大全

解圆锥曲线问题常用方法大全专题:解圆锥曲线问题常用方法(一)【学习要点】解圆锥曲线问题常用以下方法: 1、定义法(1)椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1 r 2=ed 2。
(2)双曲线有两种定义。
第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。
(2))0,0(12222>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k by a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.【典型例题】例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42) (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,分析:(1)A 在抛物线外,如图,连PF ,则PF PH =点共线时,距离和最小。
高中数学圆锥曲线解题十招全归纳

高中数学圆锥曲线解题十招全归纳
1.熟悉圆锥曲线的基本概念,如焦点、准线、离心率等。
2. 对于椭圆和双曲线,要注意判断其是横向还是纵向,并掌握
其标准方程。
3. 解题时要注意转化,如通过平移、旋转等方式将方程转化为
标准方程。
4. 对于椭圆和双曲线的焦点、准线、离心率等参数要有清晰的
认识,能正确描绘出图形。
5. 注意判断椭圆和双曲线的类型,如是否为实心或空心图形等。
6. 对于椭圆和双曲线的对称性要有充分的认识。
7. 在解题过程中,注意运用对称性和几何意义,如面积公式、
周长公式等。
8. 对于椭圆和双曲线的渐近线,要了解其定义和性质,并掌握
其方程。
9. 在解题过程中,注意运用渐近线的性质,如过定点、过中心、垂直等。
10. 解题时要注意画出图形,有助于更好地理解题目和解题思路。
- 1 -。
高中数学圆锥曲线解题技巧方法总结

圆锥曲线1.圆锥曲线的两定义:第一定义中要重视“括号〞内的限制条件:椭圆中,与两个定点F1,F2的距离的和等于常数2a,且此常数2a一定要大于F1F,当常数等于F1F2时,轨迹是线段F1F2,当常数小于F1F2时,无2轨迹;双曲线中,与两定点F1,F2的距离的差的绝对值等于常数2a,且此常数2a一定要小于|F1F2|,定义中的“绝对值〞与2a<|F 1F2|不可无视。
假设2a=|F1F2|,那么轨迹是以F1,F2为端点的两条射线,假设2a﹥|F 1F2|,那么轨迹不存在。
假设去掉定义中的绝对值那么轨迹仅表示双曲线的一支。
如方程2222(x6)y(x6)y8表示的曲线是_____〔答:双曲线的左支〕2.圆锥曲线的标准方程〔标准方程是指中心〔顶点〕在原点,坐标轴为对称轴时的标准位置的方程〕:方程2222xyyx〔1〕椭圆:焦点在x轴上时1〔ab0〕,焦点在y轴上时=1〔ab0〕。
2222abab22AxByC表示椭圆的充要条件是什么?〔ABC≠0,且A,B,C同号,A≠B〕。
2y2假设x,yR,且3x26,那么xy的最大值是____,2y2x的最小值是___〔答:5,2〕2222xyyx〔2〕双曲线:焦点在x轴上:=1,焦点在y轴上:=1〔a0,b0〕。
方程2222abab 22AxByC表示双曲线的充要条件是什么?〔ABC≠0,且A,B异号〕。
如设中心在坐标原点O,焦点F、F2在坐标轴上,离心率e2的双曲线C过点P(4,10),1那么C的方程为_______〔答:226xy〕〔3〕抛物线:开口向右时22(0)ypxp,开口向左时22(0)ypxp,开口向上时22(0)xpyp,开口向下时22(0) xpyp。
3.圆锥曲线焦点位置的判断〔首先化成标准方程,然后再判断〕:〔1〕椭圆:由x 2,y2分母的大小决定,焦点在分母大的坐标轴上。
22xy如方程1m12m表示焦点在y轴上的椭圆,那么m的取值X围是__〔答:3(,1)(1,)〕2〔2〕双曲线:由x 2,y2项系数的正负决定,焦点在系数为正的坐标轴上;〔3〕抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。
圆锥曲线解题口诀

解题口诀:
1. 确定曲线类型:圆锥曲线包括椭圆、双曲线和抛物线,首先要确定给定曲线的类型。
2. 根据方程确定基本信息:根据给定的方程确定曲线的中心、焦点、顶点、半轴长度等基本信息。
3. 绘制坐标系:根据基本信息在平面上绘制坐标系,并标出曲线的关键点。
4. 分析对称性:判断曲线是否具有对称性,如椭圆的长短轴是否相等,双曲线的两支是否对称等。
5. 求解特殊点:求解曲线与坐标轴交点的坐标,如椭圆的顶点、焦点,双曲线的渐近线等。
6. 求解参数:如果方程中含有参数,需要求解参数的取值范围,以及特定取值时的曲线形态。
7. 判断曲线性质:根据曲线的基本信息和性质进行判断,如椭圆的离心率、焦距,双曲线的渐近线方程等。
8. 解答问题:根据题目要求,利用已知信息进行计算或推导,得出最终的答案。
以上口诀可根据具体题目的要求进行调整和扩展,但基本思路是先确定曲线类型和基本信息,然后在坐标系上绘制曲线,并利用已知信息求解特殊点和参数,最后根据性质和题目要求解答问题。
1。
圆锥曲线的运算技巧总结

圆锥曲线的运算技巧总结龚胜良1.已知椭圆上一点P 00(,)x y ,求过这点的直线l 与椭圆的另一个Q 11(,)x y .方法:将直线l 与椭圆联立得到一个一元二次方程,利用韦达定理求出1x ,再代入直线l ,从而得到1y .2.若过P 00(,)x y 且斜率为k 的直线l 与椭圆联立的相关表达式中.又有过该点且斜率为1k-的直线1l 与椭圆联立的表达式,只需将第一个表达式中的k 换为1k -即可.3.许多情况不宜将直线写成点斜式,这样代入曲线计算量会变大(当然做整体处理计算量也不见得很多,具体见2010年辽宁高考数学理),常常设直线l :y kx m =+,再将点代入直线.4.当过一点P 00(,)x y 引曲线C 的切线(切线有很多条)时,将切线设为一条与曲线相联立,从而得到了关于斜率k 高次方程,将k 解出,若为二次用韦达定理.5.在圆锥曲线中,遇到面积比、线段比时.面积比通过找同底或等高或同角,转化为线段比,线段比通过作梯形或三角形转化为横坐标或者纵坐标的绝对值比,这样问题变简单,计算量变小.6.要会灵活设直线.当斜率为k ,过点M (,0)m 设直线为1x y m k =+.注意用弦长公式时不要弄混.7.当求证:过定点,定值,关系式恒成立时,直接计算或证明计算量很大,那么我们就先讨论直线斜率不存在时,定值,定点,关系式怎么样.再讨论斜率为0时,定值,定点,关系式怎么样.如果情况是一致的,那就上述得到的情形来假设k 存在且不为0时也成立,接下来就证明该结论即可.8.设直线l 与曲线交于A ,B .1l 为A ,B 的垂直平分线且交曲线于C ,D .两点,l 的斜率为k ,11l k k=- 现设1l :代入曲线得到中点,中点在l 上,得到一元二次方程1∆>0,计算量变小很多(1l :x ky b =-+)9.判断直线与椭圆的位置关系时,利用点到直线的距离等于半径.10.许多学生记不下来双曲线的焦半径公式.遵循:左加右减,同负异正(左右指焦点,同异指焦点与曲线的支是否对应)12,F F 为左右焦点,1122(,),(,)P x y Q x y 为曲线的左右两支 11()PF a ex =-+ 21PF a ex =-12QF a ex =+ 22()QF a ex =--11.注重点差法在圆锥曲线中的应用12.相切0∆=有一交点,容易解出交点,也方便计算.13.12||||x x α-=,去掉绝对值得到两根之差12x x - 14.要充分利用向量(线段相等或成倍数关系)。
高中数学《圆锥曲线》解答题解法汇总

高中数学圆锥曲线解答题解法题型一:数形结合确定直线和圆锥曲线的位置关系 题型二:弦的垂直平分线问题 题型三:动弦过定点的问题题型四:过已知曲线上定点的弦的问题 题型五:向量问题 题型六:面积问题题型七:弦或弦长为定值、最值问题 问题八:直线问题 问题九:对称问题 问题十、存在性问题:(存在点,存在直线y=kx+m ,存在实数,存在图形:三角形(等比、等腰、直角),四边形(矩形、菱形、正方形),圆)题型一:数形结合确定直线和圆锥曲线的位置关系(简单题型未总结)题型二:弦的垂直平分线问题例题1、过点T(-1,0)作直线l 与曲线N :2y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE∆是等边三角形,若存在,求出0x ;若不存在,请说明理由。
解:依题意知,直线的斜率存在,且不等于0。
设直线:(1)l y k x =+,0k ≠,11(,)A x y ,22(,)B x y 。
由2(1)y k x y x=+⎧⎨=⎩消y 整理,得2222(21)0k x k x k +-+= ① 由直线和抛物线交于两点,得2242(21)4410k k k ∆=--=-+> 即2104k <<② 由韦达定理,得:212221,k x x k -+=-121x x =。
则线段AB 的中点为22211(,)22k k k--。
线段的垂直平分线方程为:221112()22k y x k k k --=--令y=0,得021122x k =-,则211(,0)22E k -ABE ∆为正三角形,∴211(,0)22E k -到直线AB 的距离d 。
AB=21k=+d=22122kk k+=解得k=53x=。
【涉及到弦的垂直平分线问题】这种问题主要是需要用到弦AB的垂直平分线L的方程,往往是利用点差或者韦达定理........产生弦AB 的中点坐标M,结合弦AB与它的垂直平分线L的斜率互为负倒数,写出弦的垂直平分线L的方程,然后解决相关问题,比如:求L在x轴y轴上的截距的取值范围,求L过某定点等等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《圆锥曲线解题十招全归纳》招式一:弦的垂直平分线问题 (2)招式二:动弦过定点的问题 (4)招式四:共线向量问题 (6)招式五:面积问题 (13)招式六:弦或弦长为定值、最值问题 (16)招式七:直线问题 (20)招式八:轨迹问题 (24)招式九:对称问题 (30)招式十、存在性问题 (33)招式一:弦的垂直平分线问题例题1、过点T(-1,0)作直线l 与曲线N :2y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ∆是等边三角形,若存在,求出0x ;若不存在,请说明理由。
解:依题意知,直线的斜率存在,且不等于0。
设直线:(1)l y k x =+,0k ≠,11(,)A x y ,22(,)B x y 。
由2(1)y k x y x=+⎧⎨=⎩消y 整理,得2222(21)0k x k x k +-+= ① 由直线和抛物线交于两点,得2242(21)4410k k k ∆=--=-+> 即2104k <<② 由韦达定理,得:212221,k x x k -+=-121x x =。
则线段AB 的中点为22211(,)22k k k--。
线段的垂直平分线方程为:221112()22k y x k k k --=--令y=0,得021122x k =-,则211(,0)22E k -ABE ∆为正三角形,∴211(,0)22E k -到直线AB 的距离d 。
AB =21k =+2d k=21k +=k =053x =。
【涉及到弦的垂直平分线问题】这种问题主要是需要用到弦AB 的垂直平分线L 的方程,往往是利用点差或者韦达定理........产生弦AB 的中点坐标M ,结合弦AB 与它的垂直平分线L 的斜率互为负倒数,写出弦的垂直平分线L 的方程,然后解决相关问题,比如:求L 在x 轴y 轴上的截距的取值范围,求L 过某定点等等。
有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB 的中点问题,比如:弦与某定点D 构成以D 为顶点的等腰三角形(即D 在AB 的垂直平分线上)、曲线上存在两点AB 关于直线m 对称等等。
例题分析1:已知抛物线y=-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于解:设直线AB 的方程为y x b =+,由22123301y x x x b x x y x b⎧=-+⇒++-=⇒+=-⎨=+⎩,进而可求出AB的中点11(,)22M b--+,又由11(,)22M b--+在直线0x y+=上可求出1b=,∴220x x+-=,由弦长公式可求出AB==招式二:动弦过定点的问题例题2、已知椭圆C :22221(0)x y a b a b +=>>,且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。
(I )求椭圆的方程;(II )若直线:(2)l x t t =>与x 轴交于点T,点P 为直线l 上异于点T 的任一点,直线PA 1,PA 2分别与椭圆交于M 、N 点,试问直线MN 是否通过椭圆的焦点?并证明你的结论解:(I )由已知椭圆C的离心率2c e a ==,2a =,则得1c b ==。
从而椭圆的方程为2214x y += (II )设11(,)M x y ,22(,)N x y ,直线1A M 的斜率为1k ,则直线1A M 的方程为1(2)y k x =+,由122(2)44y k x x y =+⎧⎨+=⎩消y 整理得222121(14)161640k x k x k +++-=12x -和是方程的两个根,21121164214k x k -∴-=+则211212814k x k -=+,1121414k y k =+,即点M 的坐标为2112211284(,)1414k k k k -++,同理,设直线A 2N 的斜率为k 2,则得点N 的坐标为2222222824(,)1414k k k k --++ 12(2),(2)p p y k t y k t =+=-12122k k k k t -∴=-+,直线MN 的方程为:121121y y y y x x x x --=--, ∴令y=0,得211212x y x y x y y -=-,将点M 、N 的坐标代入,化简后得:4x t =又2t >,∴402t<<椭圆的焦点为4t ∴=3t =故当3t =时,MN 过椭圆的焦点。
招式三:过已知曲线上定点的弦的问题例题4、已知点A 、B 、C 是椭圆E :22221x y a b+= (0)a b >>上的三点,其中点A 是椭圆的右顶点,直线BC 过椭圆的中心O ,且0AC BC =,2BC AC =,如图。
(I)求点C 的坐标及椭圆E 的方程;(II)若椭圆E 上存在两点P 、Q ,使得直线PC 与直线QC 关于直线x =PQ 的斜率。
解:(I)2BC AC =,且BC 过椭圆的中心OOC AC ∴=0AC BC =2ACO π∴∠=又A (23,0)∴点C的坐标为。
A 是椭圆的右顶点,a ∴=222112x y b+= 将点C 代入方程,得24b =,∴椭圆E 的方程为221124x y += (II)直线PC 与直线QC 关于直线x =∴设直线PC 的斜率为k ,则直线QC 的斜率为k -,从而直线PC 的方程为:(y k x=,即)y kxk =-,由22)3120y kx k x y ⎧=-⎪⎨+-=⎪⎩消y ,整理得:222(13)(1)91830k x k x k k ++-+--=3x =是方程的一个根,229183313Pk k x k --∴=+即2P x =同理可得:2Qx = ))P Q P Q yy kx k kx k -=+-++=()P Q k x x +-22P Q xx -=13P Q PQP Q y y k x x -==- 则直线PQ 的斜率为定值13。
招式四:共线向量问题1:如图所示,已知圆M A y x C ),0,1(,8)1(:22定点=++为圆上一动点,点P 在AM 上,点N 在CM 上,且满足N 点,0,2=⋅=的轨迹为曲线E.I )求曲线E 的方程;II )若过定点F (0,2)的直线交曲线E 于不同的两点G 、H (点G 在点F 、H 之间),且满足FH FG λ=,求λ的取值范围. 解:(1).0,2=⋅= ∴NP 为AM 的垂直平分线,∴|NA|=|NM| 又.222||||,22||||>=+∴=+AN CN NM CN ∴动点N 的轨迹是以点 C (-1,0),A (1,0)为焦点的椭圆.且椭圆长轴长为,222=a焦距2c=2. .1,1,22===∴b c a ∴曲线E 的方程为.1222=+y x (2)当直线GH 斜率存在时,设直线GH 方程为,12,222=++=y x kx y 代入椭圆方程得.230.034)21(222>>∆=+++k kx x k 得由设),,(),,(2211y x H y x G)2(216213),1(21821422212221k k x x k k k k x x +=+=+-=+-=+则)2,()2,(,2211-=-∴=y x y x FH FG λλ 又,,2121x x x x =∴=∴λλ,)21(332)21(33221)2()1(2222+=+=++⇒k k k λλ.331.316214.316)21(3324,2322<<<++<∴<+<∴>λλλ解得kk .131,10<<∴<<λλ 又 又当直线GH 斜率不存在,方程为.31,31,0===λx )1,31[,131的取值范围是即所求λλ<≤∴ 2:已知椭圆C 的中心在坐标原点,焦点在x 轴上,它的一个顶点恰好是抛物线214y x =的焦点,离心率(1)求椭圆C 的标准方程;(2)过椭圆C 的右焦点作直线l 交椭圆C 于A 、B 两点,交y 轴于M 点,若1MA AF λ=,2MB BF λ= ,求证:1210λλ+=-.解:设椭圆C 的方程为22221x y a b+= (a >b >0)抛物线方程化为24x y =,其焦点为(0,1),则椭圆C 的一个顶点为(0,1),即 1b =由c e a ===,∴25a =,椭圆C 的方程为 2215x y +=(2)证明:右焦点(2,0)F ,设11220(,),(,),(0,)A x y B x y M y ,显然直线l 的斜率存在,设直线l 的方程为 (2)y k x =-,代入方程2215x y += 并整理,得2222(15)202050k x k x k +-+-=∴21222015k x x k +=+,212220515k x x k-=+ 又110(,)MA x y y =-,220(,)MB x y y =-,11(2,)AF x y =--,22(2,)BF x y =--,而 1MA AF λ=, 2MB BF λ=,即110111(0,)(2,)x y y x y λ--=--,220222(0,)(2,)x y y x y λ--=--∴1112x x λ=-,2222x x λ=-,所以 121212121212122()2102242()x x x x x x x x x x x x λλ+-+=+==----++ 3、已知△OFQ 的面积S=26, 且m FQ OF =∙。
设以O 为中心,F 为焦点的双曲线经过Q ,2)146(,||c m c -==,当||取得最小值时,求此双曲线方程。
解:设双曲线方程为12222=-by a x , Q (x 0, y 0)。
),(00y c x FQ -= , S △OFQ =62||||210=y OF ,∴cy 640±=。
),)(0,(00y c x c FQ OF -=∙=c(x 0-c)=c x c 46)146(02=⇒-。
,32968322202≥+=+=cc y x当且仅当)6,6()6,6(,||,4,968322-==或此时最小时即Q c cc ,所以1124.1241616622222222=-⎪⎩⎪⎨⎧==⇒⎪⎩⎪⎨⎧=+=-y x b a b a ba 故所求的双曲线方程为。
类型1——求待定字母的值例1设双曲线C :)0(1222>=-a y ax 与直线L :x+y=1相交于两个不同的点A 、B ,直线L 与y 轴交于点P ,且PA=PB 125,求a 的值 思路:设A 、B 两点的坐标,将向量表达式转化为坐标表达式,再利用韦达定理,通过解方程组求a 的值。