乙烯生物合成途径中的酶
乙烯的生物合成与信号传递_陈涛

植物学通报 2006, 23 (5): 519 ̄530Chinese Bulletin of Botany基金项目: 国家自然科学基金(No. 30370130)* Author for correspondence. E-mail: jszhang@genetics.ac.cn乙烯的生物合成与信号传递陈涛,张劲松*中国科学院遗传与发育生物学研究所, 国家植物基因组重点实验室, 北京 100101摘要 乙烯是气体植物激素, 它在植物的生长发育过程中有很多作用。
所以了解乙烯的生物合成及其信号转导是非常重要的。
二十年来, 通过筛选有异于正常三重反应的突变体, 人们发现了乙烯信号转导的粗略轮廓。
在拟南芥中, 有5个受体蛋白感受乙烯, ETR1、ERS1、ETR2、ERS2、EIN4。
它们表现出功能冗余, 是乙烯信号的负调控因子, 在植物体内以二聚体的形式存在。
ETR1的N端与乙烯结合时需要铜离子(Ⅰ)的参与。
尽管已经发现ETR1有组氨酸激酶活性, 而其它受体有丝氨酸/苏氨酸激酶活性, 但受体参与乙烯信号转导的机制还不是很清楚。
受体与Raf类蛋白激酶CTR1相互作用, CTR1是乙烯反应的负调控因子。
CTR1蛋白失活使EIN2蛋白活化。
EIN2的N端是跨膜结构域, 与Nramp家族金属离子转运蛋白的跨膜结构域类似。
EIN2的C端是一个新的未知结构域, 与乙烯信号途径的下游组分相互作用。
EIN3位于EIN2的下游, EIN3和EILs诱导ERF1和其它转录因子的表达, 这些转录因子依次激活乙烯反应目的基因的表达, 表现出乙烯的反应。
EIN3受到蛋白酶体介导的蛋白降解途径的调节。
由于乙烯是一种多功能的植物激素, 其信号途径与其它信号途径有多重的交叉。
关键词 乙烯, 信号转导, ETR1, CTR1, EIN2, EIN3, 激酶, 交叉Ethylene Biosynthesis and Signal Pathway ModelTao Chen, Jinsong Zhang*State Key Laboratory of Plant Genomics, Institute of Genetics and Development Biology, Chinese Academyof Sciences, Beijing 100101, ChinaAbstract The gaseous hormone ethylene has numerous effects during plant growth and development. It isimportant to know how ethylene is synthesized and how the signal is transduced. During the past twentyyears, the isolation and characterization of various mutants that show an altered triple-response phenotype hasuncovered a largely linear ethylene signaling pathway with branches in the downstream response pathway. InArabidopsis, perception of ethylene is performed by five receptors, ETR1, ERS1, ETR2, ERS2, EIN4, whichexhibit structural and functional redundancy and are negative regulators of ethylene signaling. The receptors arehomodimer in vivo. The membrane-bound N-terminal of ETR1 binds ethylene with the assistance of a coppercofactor Cu (Ⅰ). Although ETR1 was reported to possess histidine kinase activity whereas other receptorshave serine/theronine kinase activity, the mechanism of ethylene receptors signaling is largely unclear. Thereceptors interact with a Raf-like protein kinase CTR1, which is a negative regulator in the ethylene response.Inactivation of CTR1 leads to activation of EIN2, which consists of a novel C-terminal signaling domain, and aN-terminal transmembrane domain with sequence similarity to the Nramp family of metal ion transporters.综述 . 乙烯52023(5)1 乙烯简介乙烯(CH2=CH2)是最早发现的植物激素之一。
植物生理学试题集与题解

植物生理学试题集与题解第七章细胞信号转导三、名词解释1.信号转导:主要研究植物感受、传导环境刺激的分子途径及其在植物发育过程中调控基因的表达和生理生化反应。
2.受体:受体是存在于细胞表面或亚细胞组分中的天然分子,可特异地识别并结合化学信号物质——配体,并在细胞内放大、传递信号,启动一系列生化反应,最终导致特定的细胞反应。
四、是非题(对的打“√”,错的打“×”)(True or false)1、土壤干旱时,植物根尖合成ABA引起保卫细胞内的胞质钙离子等一系列信号转导,其中ABA是第二信使。
()2、植物细胞中不具有G 蛋白连接受体。
()3、G 蛋白具有放大信号作用。
()4、受刺激后胞质的钙离子浓度会出现短暂的、明显的下降。
()5、少数植物具有双信使系统。
()6、钙调素是一种不耐热的球蛋白。
()7、蛋白质的可逆磷酸化是生物体内一种普遍的翻译后修饰方式。
()8、植物细胞壁中的CaM促进细胞增殖、花粉管萌发和细胞长壁。
()1、×2、×3、√4、×5、√6、×7、√8、√六、填空题(Put the best word in the blanks)1、信号传导的过程包括___信号分子与细胞表面受体结合___、__跨膜信号转换_____、____胞内信号转导网络的信号传递______和生理生化变化等 4 个步骤。
2、__信号____是信息的物质体现形式和物理过程。
3、土壤干旱时,植物根尖合成ABA,引起保卫细胞内的胞质钙离子等一系列信号转导,其中_干旱__是信号转导过程的初级信使。
4、膜信号转换通过______细胞表面受体______与____配体_____结合实现。
5、蛋白由__a _、__B __、__r _三种亚基组成。
6、白质磷酸化与脱磷酸化分别由________蛋白激酶____和_____蛋白磷酸酶______催化完成。
7、据胞外结构区的不同,将类受体蛋白激酶分为3 类:1)_ S 受体激酶___,2)___ 富含亮氨酸受体激酶___,3)___类表皮生长因子受体激酶_____。
乙醛脱氢酶的作用原理-概述说明以及解释

乙醛脱氢酶的作用原理-概述说明以及解释1.引言1.1 概述概述乙醛脱氢酶是一种重要的酶类,它在生物体内起着至关重要的作用。
酶是生物体内催化化学反应的蛋白质,乙醛脱氢酶就是其中一种。
乙醛脱氢酶主要参与乙醛代谢途径中的一个关键步骤,具体来说就是催化乙醛转化为乙酸的反应。
乙醛脱氢酶在多个生物过程中都发挥着重要的作用,比如在能量代谢、脂肪酸合成以及酒精代谢等方面。
乙醛脱氢酶的作用机制主要是通过催化乙醛与辅因子NAD+之间的氧化还原反应来完成的。
乙醛在乙醛脱氢酶的作用下经过氧化反应转化为乙酸,同时NAD+还原为NADH。
这个反应对于维持细胞内氧化还原平衡以及能量代谢都至关重要。
乙醛脱氢酶的结构与功能也是值得关注的一个方面。
乙醛脱氢酶通常由多个亚基组成,每个亚基都承担着特定的功能。
例如,酶的催化中心位于活性中心上,它能够提供适宜的环境来帮助反应的进行。
除此之外,在乙醛脱氢酶的结构中还存在着多个辅助因子,它们能够促进酶的催化效率以及稳定性。
总之,乙醛脱氢酶在细胞内起着至关重要的作用。
它通过催化乙醛与NAD+之间的氧化还原反应来完成乙醛代谢的关键步骤,对细胞内的能量代谢、脂肪酸合成以及酒精代谢等过程有着重要的影响。
对于深入理解乙醛脱氢酶的作用原理,有助于揭示许多生物学过程的机制,并为相关领域的研究提供指导和启示。
1.2 文章结构文章结构部分的内容应该包括对整篇文章的组织和内容进行简要介绍,让读者了解文章的整体安排和主要观点。
以下是关于文章结构的内容:文章结构:本篇文章主要分为引言、正文和结论三个部分。
1. 引言部分将从概述、文章结构和目的三个方面对乙醛脱氢酶的作用原理进行介绍。
概述部分将对乙醛脱氢酶进行简要概括,引起读者的兴趣和好奇心。
文章结构部分将清晰地列出文章的目录和组织结构,以便读者能够对文章的安排有一个整体的了解。
目的部分则说明该篇文章旨在研究和阐述乙醛脱氢酶的作用原理。
2. 正文部分将分为两个小节。
第一小节将介绍乙醛脱氢酶的定义和背景,包括其起源、研究历史、命名原因等内容,为读者提供必要的背景知识。
高中生物高考 2021届小题必练17 植物的激素调节 学生版

(新高考)小题必练17:植物的激素调节本专题是根据近三年(2018~2020)的高考真题情况,去组织和命制题目。
专题中有近三年的高考真题,根据真题加以模仿的题和百强名校对应考点的题。
该专题主要考查生长素及其他植物激素的生理作用等。
重点掌握生长素的生理作用及特点;理解根的向地性和顶端优势的原理;掌握各种激素的生理作用及其相互关系等。
从高考命题角度看,试题多涉及有关植物激素的实验分析或探究等。
1.(2020年山东省高考生物试卷(新高考)·9)植物激素或植物生长调节剂在生产、生活中得到了广泛的应用。
下列说法错误的是()A.提高培养基中细胞分裂素与生长素间含量的比值可促进愈伤组织分化出根B.用适宜浓度的生长素类似物处理未受粉的番茄雌蕊,可获得无子番茄C.用适宜浓度的赤霉素处理休眠的种子可促进种子萌发D.利用成熟木瓜释放的乙烯可催熟未成熟的柿子2.(2020年江苏省高考生物试卷·11)为提高银杏枝条扦插成活率,采用800mg/L吲哚丁酸(IBA)浸泡枝条1小时,然后将其插入苗床。
下图为诱导生根过程的示意图,下列叙述错误..的是()A.枝条下切面的愈伤组织是细胞脱分化形成的B.愈伤组织的形成有利于分化出更多的不定根C.不定根的分化是枝条内多种激素共同调控的结果D.新生的不定根中生长素浓度可能高于800mg/L3.(2020年浙江省高考生物试卷(7月选考)·22)下列关于植物激素应用的叙述,错误的是()A.2,4-D可杀除禾谷类田间双子叶杂草是由于双子叶植物对2,4-D的敏感性强B.双子叶植物花、叶和果实的脱落过程中存在生长素与乙烯的对抗作用C.赤霉素能促进果柄伸长,使无籽葡萄的果实增大D.喷洒脱落酸可延长绿色叶菜类蔬菜的保鲜时间1.下列关于生长素发现实验的理解正确的是()A.温特的实验中,生长素从胚芽鞘尖端进入琼脂块的方式是主动运输B.胚芽鞘感光部位和弯曲生长部位在尖端C.拜尔的实验中,植物的向光性是背光侧生长素比向光侧多所致D.能从人尿中提取出生长素的原因是人体内无分解生长素的酶2.植物生长素是植物体内的一种重要的激素,下列有关叙述正确的是()A.植物茎尖的细胞不可利用色氨酸合成生长素B.胚芽鞘的生长素的横向运输发生在尖端,产生效应的部位也在尖端C.胚芽鞘中生长素的极性运输与光照方向无关D.生长素运送到作用部位会对代谢起催化作用3.胚芽鞘向光弯曲这一反应的一系列因果顺序排列正确的是()a.胚芽鞘尖端合成生长素b.胚芽鞘尖端感受单侧光刺激c.胚芽鞘向光弯曲生长d.生长素在背光一侧分布较多e.背光一侧细胞生长较快f.单侧光照射胚芽鞘尖端A.B.C.D.4.植物具有向光性,通过研究,科学家揭示了其机理。
植物生理学教学中关于几处合酶与合成酶的辨析

植物生理学教学中关于几处合酶与合成酶的辨析作者:王征宏来源:《教育教学论坛》2016年第39期摘要:合酶与合成酶属于两类不同的酶,因其名字只相差一个字,目前许多国内的植物生理学教科书出现了命名的混乱,这种状况不但使青年教师教学时感到迷惑,更使学生无所适从,有必要进行澄清。
本文就植物生理学教材中出现的几处关于合酶的命名加以辨析,供同行和同学们参考。
关键词:合酶;合成酶;辨析中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2016)39-0237-02植物中的各种代谢反应均是由酶催化完成的,合酶(synthase)与合成酶(synthetase)属于性质完全不同的两类酶,因其命名上只相差了一个字,所以经常出现命名混淆的现象。
根据国际生物化学学会对酶命名的原则,合酶属于裂合酶(lyases)类,该类酶主要催化底物非水解方式的断裂作用,从底物上去掉一个基团在其分子或原子团上留下双键,或其逆反应,在双键处加入某基团;而合成酶又称为连接酶(ligases)类,该类酶在水解腺苷三磷酸(ATP)为腺苷二磷酸(ADP)与正磷酸或腺苷单磷酸(AMP)与焦磷酸时,偶联两个底物使两种物质合成为一种物质,新合成的化合物常具有基团转移势能,因此合成酶催化反应的突出特点是有高能化合物ATP的参与[1]。
目前国内许多不同版本《植物生理学》的教科书中出现了关于此酶命名不一致的问题,这主要是由于概念的混淆从而导致了名词的错译或命名的不统一。
这种状况不仅使青年教师教学时感到迷惑,更使学生无所适从,所以这是一个特别值得注意的问题,有必要将这些名词术语加以规范化,以求达到共识。
鉴于此,本文将关于此酶在目前教科书中出现的命名混乱现象进行澄清。
一、ATP合酶ATP合酶(也被称为F1 F0-ATP酶)是生物体内一种最主要的能量转换装置。
关于ATP 合酶的命名,在我们目前所用的植物生理学教材中存在较严重的命名混乱,下面我们对这一酶的命名做以辨析。
植物生理学试题集与题解

第七章细胞信号转导三、名词解释1.信号转导:主要研究植物感受、传导环境刺激的分子途径及其在植物发育过程中调控基因的表达和生理生化反应。
2.受体:受体是存在于细胞表面或亚细胞组分中的天然分子,可特异地识别并结合化学信号物质——配体,并在细胞内放大、传递信号,启动一系列生化反应,最终导致特定的细胞反应。
四、是非题(对的打“√”,错的打“×”)(True or false)1、土壤干旱时,植物根尖合成ABA引起保卫细胞内的胞质钙离子等一系列信号转导,其中ABA是第二信使。
()2、植物细胞中不具有G 蛋白连接受体。
()3、G 蛋白具有放大信号作用。
()4、受刺激后胞质的钙离子浓度会出现短暂的、明显的下降。
()5、少数植物具有双信使系统。
()6、钙调素是一种不耐热的球蛋白。
()7、蛋白质的可逆磷酸化是生物体内一种普遍的翻译后修饰方式。
()8、植物细胞壁中的CaM促进细胞增殖、花粉管萌发和细胞长壁。
()1、×2、×3、√4、×5、√6、×7、√8、√六、填空题(Put the best word in the blanks)1、信号传导的过程包括___信号分子与细胞表面受体结合___、__跨膜信号转换_____、____胞内信号转导网络的信号传递______和生理生化变化等 4 个步骤。
2、__信号____是信息的物质体现形式和物理过程。
3、土壤干旱时,植物根尖合成ABA,引起保卫细胞内的胞质钙离子等一系列信号转导,其中_干旱__是信号转导过程的初级信使。
4、膜信号转换通过______细胞表面受体______与____配体_____结合实现。
5、蛋白由__a _、__B __、__r _三种亚基组成。
6、白质磷酸化与脱磷酸化分别由________蛋白激酶____和_____蛋白磷酸酶______催化完成。
7、据胞外结构区的不同,将类受体蛋白激酶分为3 类:1)_ S 受体激酶___,2)___ 富含亮氨酸受体激酶___,3)___类表皮生长因子受体激酶_____。
植物生理学复习思考题

植物生理学复习思考题1.水分在生命活动中的作用有哪些?水是原生质的重要组成部分;水是植物体内代谢的反应物质;水是对物质吸收和运输的溶剂;水能保持植物的固有姿态;水的理化性质为生命活动带来各种有利条件。
2.影响根系吸水的土壤条件有哪些?,如何影响?土壤中可用水:植物和土竞争水分,植物可吸水,土壤保水;土壤通气状况:短期缺氧可使细胞呼吸减弱,影响根压,长时间缺氧形成无氧呼吸产生和积累较多的酒精,根系中毒受伤吸水减少;土壤温度:降低温度使吸水减少:水分本身黏性增加扩散速率降低,细胞质黏性增大、水分不易通过,呼吸减弱、影响根压,根系生长缓慢、吸水面积减少。
土壤温度过高对根系也不利:高温加速根的老化使根的木化程度和范围加大、减少了根的吸收面积,使根的酶钝化、影响根的主动吸水;土壤溶液浓度:盐碱土,水势低,植物很难吸水,使用化肥过量,有烧苗现象。
3.蒸腾作用的生理意义。
蒸腾作用是植物水分吸收和运输的主要动力(蒸腾拉力);有利于植物吸收矿质盐(矿质盐只有溶解在水中才能被植物吸收和运输);蒸腾作用可以降低植物体的叶片的温度,防止叶片温度过高,烧伤叶片。
4.为什么说气孔蒸腾量大而且是植物蒸腾的主要形式?气孔占叶片面积的1%,所以经过气孔蒸腾的量应该等于与叶同面积自由水面的1%,但实际上气孔的蒸腾量远远大于1%,可达到50%,甚至100%。
5.植物叶片的气孔为什么在光照条件下会张开,在黑暗条件下会关闭?1、淀粉-糖转化学说:光下,保卫细胞光合作用,消耗二氧化碳,使细胞的pH增高,淀粉磷酸化酶水解淀粉为葡萄糖-1-磷酸,细胞水势下降,副卫细胞的水分进入保卫细胞气孔张开;黑暗,呼吸产生的二氧化碳时保卫细胞的pH下降淀粉磷酸化酶又将葡萄糖-1-磷酸合成淀粉,细胞液浓度降低水势提高,水分从保卫细胞中排出,气孔关闭。
1、无机离子吸收学说:白天:光合、ATP增加、K离子泵打开、细胞内K离子浓度上升、细胞浓度增加、水势下降、吸水、气孔打开;晚上相反。
基因工程在食品中的应用

基因工程在食品产业中的应用
一、利用基因工程改善食品原料的品质
二、利用基因工程改进食品生产工艺
三、利用基因工程生产食品添加剂及功能性食品
一、利用基因工程改善食品原料的品质 (一)改良动物食品性状 (二)改造植物性食品原料
(一)改良动物食品性状
1)改良牛奶品质 (1)提高牛奶中k-酪蛋白的含量:奶酪的产率与牛奶中 k-酪蛋白的含量成正比,应用基因工程将k-酪蛋白基因在 奶牛乳腺中表达。 (2)生产无乳糖牛奶:乳糖是牛奶中的主要糖分。对牛 奶过敏的人群就是由于体内缺乏能够消化乳糖的乳糖酶 的缘故。将乳糖酶基因在牛乳腺细胞中表达能产生无乳 糖牛奶。
产生有机酸的酶系
合成多糖的酶系 降低胆固醇的酶系
分解脂肪的酶系等。
(二) 改良乳酸菌遗传特性 4、耐氧相关基因
通过生物工程改变超氧化物歧化酶的调控基因则有可能 提高其耐氧活性。当然将外源SOD基因和过氧化氢酶基 因转入厌氧菌中,也可以起到提高厌氧菌和兼性厌氧菌 对氧的抵抗能力。
(二) 改良乳酸菌遗传特性
(二) 改造植物性食品原料
2、增加食品的甜味
采用化学方法合成出应乐果蛋白基因,它可以编码同时包 括A、B两条链的单链肽段。此融合蛋白在转基因番茄和莴 苣中进行了表达。
(二) 改造植物性食品原料 2、增加食品的甜味
环化糊精(β-cyclodextrin )就是一种新的糖类物质。
将环化糊精糖基转移酶(CGT)的基因转入植物,可以在 转基因植物中获得环化糊精 。
(二) 改造植物性食品原料 1、提高植物性食品氨基酸含量
玉米β-phaseolin富含Met,将此蛋白基因转入豆科植物, 就可以大大提高豆科植物种子贮存蛋白的Met含量,而 Met正是豆科植物种子贮存蛋白所缺少的成分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
乙烯是一种重要的植物激素,其生物合成途径主要有两个,即前体氨基酸途径和前体脂肪酸途径。
其中,前体氨基酸途径是植物生物合成乙烯的主要途径,涉及的酶有以下几种:
丙氨酸合成酶(ACC合成酶):这是合成乙烯的关键酶,它可以将丙氨酸转化为ACC(1-氨基环丙烷-1-羧酸),是前体氨基酸途径中的第一个限速酶。
ACC氧化酶(ACO):ACO是将ACC转化为乙烯的酶,是前体氨基酸途径中的最后一个酶,其催化产生乙烯的反应是生物合成途径中的限速步骤。
S-腺苷甲硫氨酸合成酶(SAM合成酶):这是合成SAM(腺苷甲硫氨酸)的酶,SAM是乙烯生物合成途径中的一个重要物质,可以促进ACC合成酶的活性。
丙酮酸羧化酶(ACS):ACS是将丙酮酸转化为丙氨酸的酶,也是前体氨基酸途径中的一个关键酶。
除此之外,还有一些辅助酶,如天冬氨酸合成酶、甲基丙烯酰基转移酶等,它们的作用是调节前体氨基酸途径中的代谢通路,进一步影响乙烯的生物合成。