《运筹学、运筹学(一)》课程试卷A参考答案及评分标准

合集下载

运筹学试卷及答案完整版

运筹学试卷及答案完整版

《运筹学》模拟试题及参考答案一、判断题(在下列各题中,你认为题中描述的内容为正确者,在题尾括号内写“√”,错误者写“×”。

)1. 图解法提供了求解线性规划问题的通用方法。

( )2. 用单纯形法求解一般线性规划时,当目标函数求最小值时,若所有的检验数C j-Z j ≥0,则问题达到最优。

( )3. 在单纯形表中,基变量对应的系数矩阵往往为单位矩阵。

( )4. 满足线性规划问题所有约束条件的解称为基本可行解。

( )5. 在线性规划问题的求解过程中,基变量和非基变量的个数是固定的。

( )6. 对偶问题的目标函数总是与原问题目标函数相等。

( )7. 原问题与对偶问题是一一对应的。

( )8. 运输问题的可行解中基变量的个数一定遵循m+n-1的规则。

( )9. 指派问题的解中基变量的个数为m+n。

( )10. 网络最短路径是指从网络起点至终点的一条权和最小的路线。

( )11. 网络最大流量是网络起点至终点的一条增流链上的最大流量。

( )12. 工程计划网络中的关键路线上事项的最早时间和最迟时间往往不相等。

( )13. 在确定性存贮模型中不许缺货的条件下,当费用项目相同时,生产模型的间隔时间比订购模型的间隔时间长。

( )14. 单目标决策时,用不同方法确定的最佳方案往往是一致的。

( )15. 动态规划中运用图解法的顺推方法和网络最短路径的标号法上是一致的。

( )三、填空题1. 图的组成要素;。

2. 求最小树的方法有、。

3. 线性规划解的情形有、、、。

4. 求解指派问题的方法是。

5. 按决策环境分类,将决策问题分为、、。

6. 树连通,但不存在。

四、下列表是线性规划单纯形表(求Z max ),请根据单纯形法原理和算法。

1. 计算该规划的检验数2. 计算对偶问题的目标函数值3. 确定上表中输入,输出变量五、已知一个线性规划原问题如下,请写出对应的对偶模型21max 6x x S +=⎪⎩⎪⎨⎧≥≥+≤+0,16327212121x x x x x x六、下图为动态规划的一个图示模型,边上的数字为两点间的距离,请用逆推法求出S 至F 点的最短路径及最短路长。

运筹学课程试卷A卷

运筹学课程试卷A卷

一、填空题(共10空,每空2分,共20分)。

1. 将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左端加入 变量。

2. 对于目标函数极大值型的线性规划问题,用单纯型法求解 时,当基变量检验数δj _ _0时,当前解为最优解。

3.用大M 法求目标函数为极大值的线性规划问题时,引入的人工变量在目标函数中的系数应为 。

4. 在线性规划典式中,所有基变量的目标系数为 。

5. 可以作为表上作业法的初始调运方案的填有数字的方格数应为 个(设问题中含有m 个供应地和n 个需求地)6. 物资调运问题中,有m 个供应地,A l ,A 2…,A m ,A j 的供应量为a i (i=1,2…,m),n 个需求地B 1,B 2,…B n ,B 的需求量为b j (j=1,2,…,n),则供需平衡条件为 。

7.将目标函数12max 5z x x =-转化为求极小值是 。

8.数学模型中,“s ·t ”表示 。

9. 在线性规划问题的基本解中,所有的非基变量等于 。

10.在将线性规划问题的一般形式转化为标准形式时,引入的松驰数量在目标函数中的系数为 。

二、单选题(共10小题,每小题2分,共20分)。

1.在线性规划模型中,其约束条件必是( ).A. 一组线性方程B. 一组变量有非负限制的线性方程组C. 一组线性不等式D. 一组变量有非负限制的线性不等式 2.在目标规划中,目标的正偏变差+d 和负偏变差-d 应满足( )。

A . 0=-d; B ..0=⋅+-d d ; C .0>+d ; D . 0=+d3. 在网络中,设通过弧),(j i v v 的流量和容量分别为ij f 和ijc ,若弧),(j i v v 是非饱和弧,则( )。

A.>ij f B.ijij c f > C.ijij c f < D.ijij c f =4.假设用对偶单纯形法对某线性规划问题求解,所得的最优解表中目标函数的值为Z ,则( )。

《运筹学》课程试卷A及答案

《运筹学》课程试卷A及答案

《运筹学》课程试卷A适用专业: 考试日期:考试时间:120分钟考试形式:闭卷试卷总分:100分一、填空题(每小题2分,共20分):1.若基本可行解中的非零变量的个数小于m,即基变量出现零值时,则此基本可行解称为。

2.运输问题的数学模型和一般数学模型比较,具有的特点是。

3.用矩阵表示线形规划的数学模型,可推算出其解的表达式X B= ;f=.4.处理人工变量的方法有和。

5. 线性规则的数学模型中,基本解的个数最多为个。

6.若原规划问题的变量xj≤0,则对偶问题的约束条件为;变量xj为自由变量,对偶问题的约束条件为。

7.遗憾准则的基本思想是,所选最优方案是。

8.在网络分析中,总开工车项最早可能开始时间t e(1)= ,其余事项的最早可能开始时间t e(j)= 。

9. 确定下图中A2B2空格的闭合回路为。

10.动态规划的基本方程可表述为。

二、计算(80分)1.由下列单纯形表继续迭代,并确定其最优解,其目标函数是Maxf=7X1+12X2 (10分)2.根据表中的作业明细表绘制网络图(10分)3、4台拖拉机中分别完成四块土地耕作任务,每台拖拉机完成每块耕作任务的耗油量列于下表,试用匈牙利法求一个最省油的分配方案。

(10分)4、应用动态规划求解下列的线性模型。

(20分) 24232221X X X X MinZ +++=s.t : X 1+X 2+X 3+X 4≥10 Xi ≥0, i=1,2,3,4,5、现有一饭店转租,价格为20万,有经验的老张想把它租下,如租下需聘请一厨师,如聘王师傅年薪5万,手艺成功率是50%,并且不成功不需要年薪,如聘李师傅年薪7万,手艺成功率是70%,并且不成功也需要年薪,饭店经营额与单地的天气有很大的关系,如天晴,不除去聘请工资及饭店的租金,盈利额为50万,如下雨,盈利额为5万,当地天晴的概率是0.7,下雨的概率是0.3,试用决策树决策老张是否租此饭店,如租下应聘请哪个师傅,期望值是多少?(15分)6.线形规划问题(15分) 3212max x x x z +-=⎪⎩⎪⎨⎧≥≤+-≤++0,,42632121321x x x x x x x x用单纯形法求得最终单纯形表如下表所示 试说明分别发生下列变化时,新的最优解是什么(1)目标函数变为32132m ax x x x z ++=(2)约束条件右端项由 ⎥⎦⎤⎢⎣⎡46 变为⎥⎦⎤⎢⎣⎡43《运筹学》课程试卷A 答案一、填空(20分,每小题2分): 1.退化的基本可行解2. (1)目标值为求最大值;(2)bj 值≥0;(3)aij=1(4)xij 在约束方程中无变量交叉在一个方程中。

运筹学试卷及参考答案

运筹学试卷及参考答案

运筹学试卷及参考答案运筹学试卷一、选择题(每小题2分,共20分)1、下列哪个不是线性规划的标准形式?() A. min z = 3x1 + 2x2B. max z = -4x1 - 3x2C. s.t. 2x1 - x2 <= 1D. s.t. x1 + x2 >= 0答案:C2、以下哪个是最小生成树的Prim算法?() A. 按照权值从小到大的顺序选择顶点 B. 按照权值从大到小的顺序选择顶点 C. 按照距离从小到大的顺序选择顶点 D. 按照距离从大到小的顺序选择顶点答案:B3、下列哪个不是网络流模型的典型应用?() A. 道路交通流量优化 B. 人员部署 C. 最短路径问题 D. 生产计划答案:C4、下列哪个是最小化问题中常用的动态规划解法?() A. 自顶向下的递推求解 B. 自底向上的递推求解 C. 分治算法 D. 回溯法答案:A5、下列哪个是最大流问题的 Ford-Fulkerson 算法?() A. 增广路径的寻找采用深度优先搜索 B. 增广路径的寻找采用广度优先搜索 C. 初始流采用最大边的二分法求解 D. 初始流采用最小边的二分法求解答案:B二、简答题(每小题10分,共40分)1、请简述运筹学在现实生活中的应用。

答案:运筹学在现实生活中的应用非常广泛。

例如,线性规划可以用于生产计划、货物运输和资源配置等问题;网络流模型可以用于解决道路交通流量优化、人员部署和生产计划等问题;动态规划可以用于解决最短路径、货物存储和序列安排等问题;图论模型可以用于解决最大流、最短路径和最小生成树等问题。

此外,运筹学还可以用于医疗资源管理、金融风险管理、军事战略规划等领域。

总之,运筹学的理论和方法可以帮助人们更好地解决实际生活中的问题,提高决策的效率和准确性。

2、请简述单纯形法求解线性规划的过程。

答案:单纯形法是一种求解线性规划问题的常用方法。

它通过不断迭代和修改可行解,最终找到最优解。

具体步骤如下: (1) 将线性规划问题转化为标准形式; (2) 根据标准形式构造初始可行基,通常选取一个非基变量,使其取值为零,其余非基变量的取值均为零; (3) 根据目标函数的系数,计算出目标函数值; (4) 通过比较目标函数值和已选取的非基变量的取值,选取最优的非基变量进行迭代; (5) 在迭代过程中,不断修正基变量和非基变量的取值,直到找到最优解或确定无解为止。

运筹学试卷A试题

运筹学试卷A试题

D、分支定界法在处理整数规划问题时,借用线性规划单纯形法的基本思想,在求相应的线性模型解的同时,逐步加入对各变量的整数要求限制,从而把原整数规划问题通过分支迭代求出最优解。

7、下列变量组是一个闭回路的有()A、{x21,x11,x12,x32,x33,x23}B、{ x11,x12,x23,x34,x41,x13}C、{x21,x13,x34,x41,x12,x14}D、{ x12,x22,x32,x33,x23,x21}8、工序(i,j)的最早开工时间T ES(i,j)等于()A、T E(i)B、max{ T Es(k)+ t ki }C、T L(i)D、min{ T L(j)- t ij }9、对于不确定型的决策,某人采用悲观主义准则进行决策,则应在收益表中()A、大中取小B、大中取大C、小中取小D、小中取大10、以下哪项是决策结果的方法程序()A、收集信息-确定目标-提出方案-方案优化-决策B、确定目标-收集信息-决策-提出方案-优化方案C、确定目标-收集信息-提出方案-方案优化-决策D、确定目标-提出方案-收集信息-方案优化-决策单项选择题答题表二、判断题,正确打√,错误打×, 并将修改建议简写在对应题号下的改错栏。

(20分,每题2分)1、线性规划问题的每一个基可行解对应可行域的一个顶点。

(√)2、图解法同单纯形法虽然求解的形式不同,但从几何上理解,两者是一致的。

(√)3、线性规划模型中增加一个约束条件,可行区域的范围一般将缩小,减少一个约束条件,可行域的范围一般将扩大。

(√)4、紧前工序是前道工序,后序工序是紧后工序。

( )5、在折衷主义准则中,乐观系数α的确定与决策者对风险的偏好有关。

( )6、旅行售货员问题是遍历每一条边的问题。

( )7、按最小元素法给出的初始基可行解,从每一空格出发可以找出而且仅能找出唯一的闭回路。

(√)8、在目标规划模型中,正偏差变量应取正值,负偏差变量应取负值。

《运筹学》课程考试试卷及答案

《运筹学》课程考试试卷及答案

《运筹学》课程考试试卷一、填空题(共10分,每空1分)1、线性规划问题的3个要素是: 、 和 。

2、单纯形法最优性检验和解的判别,当 现有顶点对应的基可行解是最优解,当 线性规划问题有无穷多最优解,当 线性规划问题存在无界解。

4、连通图的是指: 。

5、树图指 ,最小树是 。

6、在产销平衡运输问题中,设产地为m 个,销地为n 个,运输问题的解中的基变量数为 。

二、简答题 简算题(共20分) 1、已知线性规划问题,如下: max Z=71x -22x +53x⎪⎩⎪⎨⎧=≥≤+≤+-3,2,1,084632..31321i x x x x x x t s i请写出其对偶问题。

(10分)2、已知整数规划问题:1212121212max105349..528,0,,z x x x x s t x x x x x x =++≤⎧⎪+≤⎨⎪≥⎩且为整数在解除整数约束后的非整数最优解为(x1, x2)=(1, 1.5),根据分支定界法,请选择一个变量进行分支并写出对应的2个子问题(不需求解)。

(10分)三、计算题(共70分)1、某厂用A1,A2两种原料生产B1,B2,B3三种产品,工厂现有原料,每吨所需原料数量以及每吨产品可得利润如下表。

在现有原料的条件下,应如何组织生产才能使该厂获利最大?(共20分) (1) 写出该线性规划问题的数学模型(4分)(2)将上面的数学模型化为标准形式(2分)(3)利用单纯形法求解上述问题(14分,单纯形表格已给出, 如若不够, 可自行添加)(3)利用单纯形法求解上述问题(14分,单纯形表格已给出, 如若不够, 可自行添加)2、考虑下列运输问题:请用表上作业法求解此问题,要求:使用V ogel法求初始解。

若表格不够可自行添加(15分)3、有4台机器都可以做A、B、C、D四种工作,都所需费用不同,其费用如下表所示。

请用匈牙利法求总费用最小的分配方案。

(10分)4、某工厂内联结6个车间的道路如下图所示,已知每条道路的的距离,求沿部分道路架设6个车间的电话网,使电话线总距离最短。

《运筹学》课程考试试卷试题(含答案)

《运筹学》课程考试试卷试题(含答案)

《运筹学》课程考试试卷试题(含答案)一、选择题(每题5分,共25分)1. 运筹学的核心思想是()A. 最优化B. 系统分析C. 预测D. 决策答案:A2. 在线性规划中,约束条件可以用()表示。

A. 等式B. 不等式C. 方程组D. 矩阵答案:B3. 以下哪个不是运筹学的基本模型?()A. 线性规划B. 整数规划C. 非线性规划D. 随机规划答案:D4. 在目标规划中,以下哪个术语描述的是决策变量的偏离程度?()A. 目标函数B. 约束条件C. 偏差变量D. 权重系数答案:C5. 在动态规划中,以下哪个概念描述的是在决策过程中,某一阶段的最优决策对后续阶段的影响?()A. 最优子结构B. 无后效性C. 最优性原理D. 阶段性答案:B二、填空题(每题5分,共25分)1. 运筹学是一门研究在复杂系统中的______、______和______的科学。

答案:决策、优化、实施2. 在线性规划中,若目标函数为最大化,则其标准形式为______。

答案:max z = c^T x3. 在非线性规划中,若目标函数和约束条件均为凸函数,则该规划问题为______。

答案:凸规划4. 在目标规划中,若决策变量x_i的权重系数为w_i,则目标函数可以表示为______。

答案:min Σ(w_i d_i^+ + w_i d_i^-)5. 在动态规划中,若状态变量为s_n,决策变量为u_n,则状态转移方程可以表示为______。

答案:s_{n+1} = f(s_n, u_n)三、判断题(每题5分,共25分)1. 线性规划问题的最优解一定在可行域的顶点处取得。

()答案:正确2. 在整数规划中,若决策变量为整数,则目标函数和约束条件也必须为整数。

()答案:错误3. 目标规划中的偏差变量可以是负数。

()答案:正确4. 在动态规划中,最优策略具有最优子结构。

()答案:正确5. 在非线性规划中,若目标函数为凸函数,则约束条件也必须为凸函数。

运筹学考试题a卷及答案

运筹学考试题a卷及答案

运筹学期末考试题(a 卷)注意事项:1、答题前,考生务必将自己的姓名、班级填写在答题卡上。

2、答案用钢笔或圆珠笔写在答题卡上,答在试卷上不给分。

3、考试结束,将试卷和答题卡一并交回。

一、 单项选择题(每小题1分,共10分)1:在下面的数学模型中,属于线性规划模型的为( ) ⎪⎩⎪⎨⎧≥≤+=0Y ,X 3XY .t .s Y X 4S max .A ⎪⎩⎪⎨⎧≥-≥-+=0Y ,X 1Y X 2.t .s Y X 3S min .B ⎪⎩⎪⎨⎧≥≤-+=0Y ,X 2Y X .t .s Y X S max .C 22 ⎪⎩⎪⎨⎧≥≥+=0Y ,X 3Y X .t .s XY2S min.D 2.线性规划问题若有最优解,则一定可以在可行域的 ( )上达到。

A .内点 B .顶点 C .外点 D .几何点 3:在线性规划模型中,没有非负约束的变量称为 ( )A .多余变量B .松弛变量 C.自由变量 D .人工变量4:若线性规划问题的最优解同时在可行解域的两个顶点处达到,那么该线性规划问题最优解为( )A.两个B.零个C.无穷多个D.有限多个 5:原问题与对偶问题的最优( )相同。

A .解B .目标值C . 解结构D .解的分量个数 6:若原问题中i x 为自由变量,那么对偶问题中的第i 个约束一定为 ( )A .等式约束B .“≤”型约束C .“≥”约束D .无法确定7:若运输问题已求得最优解,此时所求出的检验数一定是全部( ) A .小于或等于零 B .大于零 C .小于零 D .大于或等于零 8:对于m 个发点、n 个收点的运输问题,叙述错误的是( ) A .该问题的系数矩阵有m ×n 列 B .该问题的系数矩阵有m+n 行 C .该问题的系数矩阵的秩必为m+n-1 D .该问题的最优解必唯一 9:关于动态规划问题的下列命题中错误的是( ) A 、动态规划分阶段顺序不同,则结果不同 B 、状态对决策有影响C 、动态规划中,定义状态时应保证在各个阶段中所做决策的相对独立性D 、动态规划的求解过程都可以用列表形式实现10:若P 为网络G 的一条流量增广链,则P 中所有正向弧都为G 的( ) A .对边 B .饱和边 C .邻边 D .不饱和边 二、 判断题(每小题1分,共10分)1:图解法和单纯形法虽然求解的形式不同,但从几何上理解,两者是一致的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的最优单纯形表如下
2
-1
1
0
0
CB
XB
x1
x2
x3
x4
x5
b
2
x1
1
1
1
1
0
6
0
x5
0
1
-1
-1
1
4
r
0
-3
-1
-2
0
(1)C2由-1变成k时,对最优基、最优解有何影响?(k=考生学号最后一位)
(2)当约束条件右侧系数由 变成 时,对最优基、最优解有何影响?如果有影响请求出最优解。
解:(1)由题意可知:当k<=2时,该最优表中的最优基、最优解不变。




总得分
题分
15
10
10
15
10
15
10
15
100
得分
一、辨析题(本题共5小题,每小题3分,共15分)
1、已知网络上某条链如下图,问:x为何值时,该链不是增流链,为什么?
x=0(1分)。此时后向边为零边,不符合增流链定义(2分)。
2、线性规划模型中,设系数矩阵A= ,则X=(0,1,2,3,4,0)T有无可能是A的基可行解?
- -2 1
显然约束条件中- -2 1不成立,即此对偶问题无可行解,因此所给问题无最优解,它只可以是无界解或者无可行解。然而X=(0,0,0)显然是它的可行解,因此它必定有无界解。
四、已知线性规划问题(15分)
max f =2x1-x2+x3
s.t. x1+x2 0,x2 0,x3 0
(勤奋、求是、创新、奉献)
2007~2008学年第二学期末考查试卷
主考教师:__ _张伯生__
学院_________________班级__________姓名__________学号___________
《运筹学、运筹学(一)》课程试卷A参考答案及评分标准
(本卷考试时间120分钟)
题号






不一定(1分)。因为当对偶问题无可行解时,原问题或具有无界解或无可行解。但一定没有最优解。(2分)
5、m个发点和n个收点的运输问题中,某一非基变量对应多条闭回路。
错(1分)。唯一的一条闭回路(2分)。
二、用图解法求解下列线性规划问题:(10分)
max f =10x1+5x2
s.t. 3x1+4x2 9
(1) (3分)
(2)网路上增流链Ⅰ:(令k=1)
;调整量θ=1,调整后, (2分)
网络上增流链Ⅱ:

调整量θ=1。调整后, (2分)
最终网络图如下图:
(2分)
最大流量=9, 。(2分)
(3)由标号法求出, ,
求出截线如图所示。
而网络上的割C=9,即
所以网络上流为最大流。(4分)
任务
人员
E
J
G
R

2
15
13
4

10
4
14
15

9
14
16
13

7
8
11
9
用匈牙利法求解过程如下:
C=
下找最少覆盖0的直线
=
X=
从而得最优指派:
最少的耗时数z=4+4+9+11=28。
八、已知网络如下图,每条有向边上数组为(cij,fij)(15分)
.
(1)向x为何值时,网路上流为可行流?(2)求网络的最大流、最大流量。(3)证明(2)中得到的结论。(题中k=考生学号最后一位.0号写成10)
不可能(1分)。基可行解中非零值的个数不超过m,(题中m=3),而给定解中X有4个非零值分量。(2分)
3、极大化线性规划模型的某步单纯形表如下所示(x4、x5为松弛变量):
CB
XB
x1
x2
x3
x4
x5
b
4
( )
1
1/2
0
2
–1
20
6
( )
0
1/2
1
–1
1
30
r
0
–3
0
–2
–2
(1)表中,基变量:x1, x3(2分)
六、 二个发点和三个收点的运输问题,发量、收量、单位运价和单位缺货费如下表:(15分)
运价收点
发点
1 2 3
发量
1
2
8 7 4
3 5 9
15
25
收量
单位缺货费
20 10 20
6 5 7
(1)写出运输问题的数学模型;
(2)用最小元素法找出初始基本可行解;
(3)求出初始基本可行解的检验数,找出闭回路,确定调整量;
5x1+2x2 8
x1 0,x2 0
解:
(6分)
最优解X*=(1,3/2)T,最优值f*=17.5(4分)
三、已知线性规划问题(10分)
Max Z = +
- + + 2
-2 + - 1
, , 0
试用对偶理论证明上述线性规划问题有无界解。
证明:所给问题的对偶问题为
Min W=2 +
- -2 1
+ 1
- 0
当k>2时,该最优表中的最优基、最优解发生变化。(5分)
(2)由最优表中的信息可得:
,(2分)
则 ,(2分)
将 代替最优表中的 ,采用对偶单纯形法继续求解得到最终最优表为:
CBXB
X1X2X3X4X5
b
2 X1
1 X3
1 2 0 0 1
0-1 1 1-1
4
2
0 -4 0 -1 -1
(4分)
由此可知:最优解产生了变化,且最优解为 。(2分)
(4)求出最优运输方案和最小总运费。
解:(1)
(5分)
(2)
1
2
3
ai
1
15
15
2
20
5
25
3
5
5
10
20
10
20
(3分)
(3)
v
0
2
4
u
1
2
3
ai
0
1
8
5

15
3
2


2
25
3
3
3

(5)
10
bj
20
10
20
(4分)
(3分)
七、有一份说明书,需译成英、日、德、俄四种文字。现有甲、乙、丙、丁四个人,他们将说明书译成不同文字所需的时间如下表。问应指派哪个人完成哪项工作,使所需的总时间最少?(10分)
(2)目标函数 max f =4x1+2x2+6x3(2分)
(3)表中的解X=(20,0,30,0,0,)T(2分)
(4)X是否为最优解?为什么?
是。对于极大化线性规划模型来说,所有非基变量检验数 0,即达到最优。(2分)
4、已知一个求极大化线性规划对偶问题无可行解,问原问题是否有可行解?是否有最优解?为什么?
相关文档
最新文档