一元二次方程单元测试题(Word版 含解析)
一元二次方程单元测试题(含答案)

一元二次方程单元测试题(含答案)第二章一元二次方程测试题(1)一、选择题(每题3分,共30分)1.以下方程属于一元二次方程的是(A)(x-2)·x=x2 (B) ax+bx+c=0 (C) x+=5 (D) x2=02.方程x(x-1)=5(x-1)的解是(C)1或53.2a-1的值是(B)44.把方程x2-4x-6=0配方,化为(x+m)2=n的形式应为(B)(x-2)2=45.以下方程中,无实数根的是(D)2x2-x-1=06.今世数式x2+3x+5的值为7时,代数式3x2+9x-2的值是(A)47.方程(x+1)(x+2)=6的解是(D)x1=2,x2=38.若是关于x的一元二次方程x2+px+q=0的两根分别为x1=3,x2=1,那么这个一元二次方程是(C)x2+4x-3=09.某市计划经过两年时间,绿地面积增加44%,这两年平均每年绿地面积的增加率是20%10.在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5,400cm2,设金色纸边的宽为xcm,那么x满足的方程是(A)x2+130x-1,400=0二、填空题(每题3分,共24分)11.方程2x2-x-2=0的二次项系数是2,一次项系数是-1,常数项是-2.1.若方程 $ax^2+bx+c=0$ 的一个根为 $-1$,则 $a-b+c=2a+a-b+c=2a-(-1)^2-b(-1)+c=2a-b+c+1=0$,所以 $2a-b+c=-1$。
2.已知 $x^2-2x-3=x+7$,移项得 $x^2-3x-10=0$,因此$(x-5)(x+2)=0$,所以 $x=5$ 或 $x=-2$。
3.设一元二次方程为 $ax^2+bx+c=0$,两根为 $-2$ 和 $3$,则可以列出方程组:begin{cases}a(-2)^2+b(-2)+c=0 \\a3^2+b3+c=0end{cases}化XXX:begin{cases}4a-2b+c=0 \\9a+3b+c=0end{cases}解得 $a=-1$,$b=2$,$c=-3$,因此所求方程为 $-x^2+2x-3=0$。
一元二次方程单元测试题及答案

一元二次方程单元测试题及答案一、选择题1. 一元二次方程的一般形式是:A. ax^2 + bx + c = 0B. ax^2 + bx = 0C. ax^2 + c = 0D. ax + b = 0答案:A2. 下列哪个方程不是一元二次方程?A. x^2 - 3x + 2 = 0B. x^2 - 5 = 0C. 2x + 5 = 0D. 3x^2 - 7x = 0答案:C3. 一元二次方程 ax^2 + bx + c = 0 的判别式是:A. b^2 - 4acB. b^2 + 4acC. a^2 - 4bcD. a^2 + 4bc答案:A二、填空题4. 解一元二次方程 x^2 - 5x + 6 = 0,其判别式为 _______ 。
答案:15. 如果一元二次方程的根是 x1 = 2 和 x2 = 3,那么这个方程可以写成 _______ 。
答案:x^2 - 5x + 6 = 0三、解答题6. 解一元二次方程 2x^2 - 7x + 3 = 0。
解:首先计算判别式Δ = b^2 - 4ac = (-7)^2 - 4 * 2 * 3 = 49 - 24 = 25。
由于Δ > 0,方程有两个不相等的实数根。
根据求根公式 x = (-b ± √Δ) / (2a),我们得到:x1 = (7 + √25) / 4 = (7 + 5) / 4 = 12 / 4 = 3,x2 = (7 - √25) / 4 = (7 - 5) / 4 = 2 / 4 = 0.5。
7. 已知方程 x^2 + 4x + k = 0 的一个根是 x = -2,求 k 的值。
解:将 x = -2 代入方程,得到 (-2)^2 + 4 * (-2) + k = 0。
简化得 4 - 8 + k = 0,解得 k = 4。
四、应用题8. 一个长方形的长是宽的两倍,面积是 24 平方米,求这个长方形的长和宽。
解:设宽为 x 米,长为 2x 米。
(word完整版)一元二次方程经典测试题(含答案)(2),推荐文档

(word完整版)⼀元⼆次⽅程经典测试题(含答案)(2),推荐⽂档评卷⼈得分⼀ ?选择题(共12⼩题,每题3分,共36分) 1 ?⽅程x (x - 2) =3x 的解为()A. x=5 B . x i =O , X 2=5 C. x i =2, X 2=0 D . x i =O , X 2=- 5 2?下列⽅程是⼀元⼆次⽅程的是()A. a?+bx+c=O B . 3x 2 - 2x=3 (x 2- 2) C . x 3 - 2x - 4=0 D. (x - 1) 2+仁0 3.关于x 的⼀元⼆次⽅程x 2+a 2 -仁0的⼀个根是0,则a 的值为( )A.- 1 B . 1 C . 1 或-1 D . 34 .某旅游景点的游客⼈数逐年增加,据有关部门统计,2015年约为12万⼈次,若2017年约为17万⼈次,设游客⼈数年平均增长率为 X ,则下列⽅程中正确的是( ) A. 12 (1+x ) =17 B . 17 (1 - x ) =12C . 12 (1+x ) 2=17D . 12+12 (1+x ) +12 (1+x ) 2=175. 如图,在⼛ABC 中,/ABC=90, AB=8cm, BC=6cm 动点P ,Q 分别从点 A , B 同时开始移动,点P 的速度为1cm/秒,点Q 的速度为2cm/秒,点Q 移动到点C 后停⽌,点P 也随之停⽌运动.下列时间瞬间中,能使△ PBQ 的⾯积为15cm 2的是( )A. 2秒钟B. 3秒钟C. 4秒钟D. 5秒钟6. 某幼⼉园要准备修建⼀个⾯积为 210平⽅⽶的矩形活动场地,它的长⽐宽多 12⽶,设场地的长为x ⽶,可列⽅程为()A . x (x+12) =210 B. x (x - 12) =210 C. 2x+2 (x+12) =210D . 2x+2 (x - 12) =2107. —元⼆次⽅程x 2+bx - 2=0中,若b v 0,则这个⽅程根的情况是( )A .有两个正根 B.有⼀正根⼀负根且正根的绝对值⼤ C .有两个负根 D .有⼀正根⼀负根且负根的绝对值⼤8.X 1, X 2是⼀元⼆次⽅程测试题考试范围:题号得分元⼆次⽅程;考试时间:120分钟;命题⼈:瀚博教育总分第I 卷(选择题)C⽅程?+x+k=0的两个实根,若恰X12+X1x2+X22=2k2成⽴,k的值为( )A . — 1B .丄或—1 C.⼇ D .—丄或19. ⼀元⼆次⽅程ax 2+bx+c=0中,若a >0, b v 0, c v 0,则这个⽅程根的情况是() A .有两个正根B.有两个负根C .有⼀正根⼀负根且正根绝对值⼤D .有⼀正根⼀负根且负根绝对值⼤10. 有两个⼀元⼆次⽅程:M : ax 2+bx+c=0; N : cW+bx+an ,其中a —⽢0,以下列四个结论中,错误的是()如果⽅程M 有两个不相等的实数根,那么⽅程 N 也有两个不相等的实数根A . 7B . 11 C. 12 D . 1612.设关于x 的⽅程ax 2+ (a+2) x+9a=0,有两个不相等的实数根 X 1、X 2,且x 1 v 1 v x 2,那么实数a 的取值范围是()A .⾗寻B.孕C ⾢>售 D .孑W11 7 5 5 11第U 卷(⾮选择题)评卷⼈得分⼆.填空题(共8⼩题,每题3分,共24分)13 .若X 1,沁是关于x 的⽅程x 2 — 2x- 5=0的两根,则代数式X 12- 3X 1 - X 2 -6的值是 _________ . 14.已知X 1, X 2是关于x 的⽅程x 2+ax- 2b=0的两实数根,且X 1+X 2=— 2, X 1 ?X 2=1,贝U b a 的值是 ______ .15 .已知2x |m| —2+3=9是关于x 的⼀元⼆次⽅程,则m= ________ .16 .已知x 2+6x=— 1可以配成(x+p ) 2=q 的形式,贝U q= ____ .17. 已知关于x 的⼀元⼆次⽅程(m - 1) X 2 — 3x+仁0有两个不相等的实数根,且关于 x 的不等式组 2的解集是x v — 1,则所有符合条件的整数 m 的个数是__________ .j?+4>3Cx+2)18. 关于x 的⽅程(m - 2) x 2+2x+仁0有实数根,则偶数 m 的最⼤值为 ______ . 19. 如图,某⼩区有⼀块长为18⽶,宽为6⽶的矩形空地,计划在其中修建两块相同的矩形A . 如果⽅程M 有两根符号相同,那么⽅程 N 的两根符号也相同如果5是⽅程M 的⼀个根,那么■;-是⽅程N 的⼀个根如果⽅程M 和⽅程N 有⼀个相同的根,那么这个根必是x=111.已知m , n 是关于x 的⼀元⼆次⽅程x 2 — 2tx+t 2— 2t+4=0的两实数根,则(m+2)(n+2)的最⼩值是()B .C .D .绿地,它们⾯积之和为60⽶2,两块绿地之间及周边留有宽度相等的⼈⾏通道,则⼈⾏道的宽度为 ______ ⽶.EH1$⽶20.如图是⼀次函数y=kx+b的图象的⼤致位置,试判断关于x的⼀元⼆次⽅程的根的判别式△ _______ 0 (填:、”或“我N”).评卷⼈得分x2—2x+kb+1=0三.解答题(共8⼩题)21. (6分)解下列⽅程.(1)x2—14x=8 (配⽅法)(2) x2—7x—18=0(公式法)(3) (2x+3) 2=4 (2x+3)(因式分解法)22. (6分)关于x的⼀元⼆次⽅程(m- 1)x2—x—2=0(1)若x=—1是⽅程的⼀个根,求m的值及另⼀个根. (2)当m为何值时⽅程有两个不同的实数根.23. (6分)关于x的⼀元⼆次⽅程(a- 6) x2-8x+9=0有实根.(1)求a的最⼤整数值;(2)当a取最⼤整数值时,①求出该⽅程的根;②求2x2- 1 的值.24. (6分)关于x的⽅程x2-( 2k- 3) x+k2+1=0有两个不相等的实数根x i、x?.(1)求k的取值范围;(2)若x i x2+|x i|+| X2|=7,求k 的值.25. (8分)某茶叶专卖店经销⼀种⽇照绿茶,每千克成本80元,据销售⼈员调查发现,每⽉的销售量y (千克)与销售单价x (元/千克)之间存在如图所⽰的变化规律.(1)求每⽉销售量y与销售单价x之间的函数关系式.(2)若某⽉该茶叶点销售这种绿茶获得利润1350元,试求该⽉茶叶的销售单价x为多少元.26. (8分)如图,为美化环境,某⼩区计划在⼀块长⽅形空地上修建⼀个⾯积为1500平⽅⽶的长⽅形草坪,并将草坪四周余下的空地修建成同样宽的通道,已知长⽅形空地的长为60⽶, 宽为40⽶.(1)求通道的宽度;(2)晨光园艺公司承揽了该⼩区草坪的种植⼯程,计划种植四季青”和⿊麦草”两种绿草,该公司种植四季青”的单价是30元/平⽅⽶,超过50平⽅⽶后,每多出5平⽅⽶,所有四季青” 的种植单价可降低1元,但单价不低于20元/平⽅⽶,已知⼩区种植四季青”的⾯积超过了50 平⽅⽶,⽀付晨光园艺公司种植四季青”的费⽤为2000元,求种植四季青”的⾯积.通G咪27. ( 10分)某商店经销甲、⼄两种商品,现有如下信息:信息1:甲、⼄两种商品的进货单价之和是3元;信息2:甲商品零售单价⽐进货单价多1元,⼄商品零售单价⽐进货单价的2倍少1元;信息3:按零售单价购买甲商品3件和⼄商品2件,共付了12元.请根据以上信息,解答下列问题:(1)求甲、⼄两种商品的零售单价;(2)该商店平均每天卖出甲⼄两种商品各500件,经调查发现,甲种商品零售单价每降0.1 元,甲种商品每天可多销售100件,商店决定把甲种商品的零售单价下降m (m>0)元.在不考虑其他因素的条件下,当m为多少时,商店每天销售甲、⼄两种商品获取的总利润为1000 元?28. (10分)已知关于x的⼀元⼆次⽅程x2-( m+6) x+3m+9=0的两个实数根分别为x i, X2. ( 1)求证:该⼀元⼆次⽅程总有两个实数根;(2)若n=4 (x i+x2)- x i x2,判断动点P (m, n)所形成的函数图象是否经过点 A (1, 16), 并说明理由.。
浙教版七年级数学下册第二章一元二次方程测试卷(Word版含答案)

浙教版七下第二章 一元二次方程测试卷(含解析)一.选择题(共10小题,满分30分,每小题3分)1.(3分)方程236ax y x -=+是二元一次方程,a 必须满足( ) A .0a ≠B .3a ≠-C .3a ≠D .2a ≠2.(3分)关于二元一次方程48x y +=的解,下列说法正确的是( ) A .任意一对有理数都是它的解 B .有无数个解 C .只有一个解D .只有两个解3.(3分)下列方程组中属于二元一次方程组的有( )(1)211x y y z -=⎧⎨=+⎩(2)03x y =⎧⎨=⎩(3)0235x y x y -=⎧⎨+=⎩(4)212 1.x y x y ⎧+=⎨+=-⎩.A .1个B .2个C .3个D .4个4.(3分)解方程组①216511y x x y =+⎧⎨+=-⎩;②2310236x y x y +=⎧⎨-=-⎩比较简便的方法是( )A .均用代入法B .均用加减法C .①用代入法,②用加减法D .①用加减法,②用代入法5.(3分)若2x y m=-⎧⎨=⎩是方程64nx y +=的一个解,则代数式31m n -+的值是( )A .3B .2C .1D .1-6.(3分)由方程组43x m y m +=⎧⎨-=⎩可得出x 与y 的关系是( )A .1x y +=B .1x y +=-C .7x y +=D .7x y +=-7.(3分)已知278ax by cx y +=⎧⎨-=⎩的解为32x y =⎧⎨=-⎩,某同学由于看错了c 的值,得到的解为22x y =-⎧⎨=⎩,则a b c ++的值为( )A .7B .8C .9D .108.(3分)已知x ,y 满足方程组36x m y m +=⎧⎨-=⎩,则无论m 取何值,x ,y 恒有关系式是( )A .1x y +=B .1x y +=-C .9x y +=D .9x y +=-9.(3分)《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的23,那么乙也共有钱50.问:甲,乙两人各带了多少钱?设甲,乙两人持钱的数量分别为x ,y ,则可列方程组为()A.2502503x yx y+=⎧⎪⎨+=⎪⎩B.15022503x yy x⎧+=⎪⎪⎨⎪+=⎪⎩C.15022503x yx y⎧-=⎪⎪⎨⎪-=⎪⎩D.2502503x yx y-=⎧⎪⎨-=⎪⎩10.(3分)文峰超市以同样的价格卖出同样的牙刷和牙膏,以下是4天的记录:第1天,卖出13支牙刷和7盒牙膏,收入132元;第2天,卖出26支牙刷和14盒牙膏,收入264元;第3天,卖出39支牙刷和21盒牙膏,收入393元;第4天,卖出52支牙刷和28盒牙膏,收入528元;其中记录有误的是()A.第1天B.第2天C.第3天D.第4天二.填空题(共8小题,满分24分,每小题3分)11.(3分)已知95xy=⎧⎨=⎩是关于x、y的方程23x ay-=的一个解,则a的值是.12.(3分)试写出一个关于x、y的的二元一次方程,使它的一个解为12xy=⎧⎨=⎩,这个方程为.13.(3分)已知x、y满足方程组52723x yx y+=⎧⎨-=⎩,则x y+的值为.14.(3分)若22(24)()|4|0x x y z y-+++-=,则x y z++等于.15.(3分)若21xy=⎧⎨=⎩是方程组75ax bybx cy+=⎧⎨+=⎩的解,则a与c的关系是.16.(3分)请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”若诗句中谈到的鸦为x只,树为y棵,则可列出方程组为.17.(3分)我国明代数学读本《算法统宗》有一道题,其题意为:客人一起分银子,若每人7两,还剩4两;若每人9两,则差8两.银子共有两.18.(3分)元旦期间,忠县永辉超市对三种风味的酸奶(原味、果粒味、大红枣味)进行A、B、C三种套餐的促销活动.已知A种套餐由3盒原味、4盒果粒味、5盒大红枣味搭配而成;B种套餐由2盒原味、8盒果粒味、8盒大红枣味搭配而成;C种套餐由5盒原味、4盒果粒味、6盒大红枣味搭配而成,每一种套餐的费用就是搭配该套餐的三种风味酸奶费用的总和.若一个A种套餐需35元,那么小明同学要买2个A种套餐、1个B种套餐和2个C种套餐共需费用元.三.解答题(共6小题,满分53分)19.(6分)已知方程1352x y+=,请你写出一个二元一次方程,使它与已知方程所组成的方程组的解为41xy=⎧⎨=⎩.20.(12分)解下列方程组:(1)124x yx y+=⎧⎨-=-⎩(2)1234()5()38x y x yx y x y+-⎧+=⎪⎨⎪+--=-⎩21.(7分)已知方程组27431x yx y+=⎧⎨-=-⎩的解也是关于x,y的二元一次方程3x y a=+的解,求(1)(1)7a a+-+的值.22.(8分)本地某快递公司规定:寄件不超过1千克的部分按起步价计费:寄件超过1千克的部分按千克计费.小文分别寄快递到上海和北京,收费标准及实际收费如表:收费标准:目的地起步价(元)超过1千克的部分(元/千克)上海7b北京104b+目的地质量(千克)费用(元)上海26a-北京37a+23.(10分)疫情期间为保护学生和教师的健康,某学校储备“抗疫物资”,用19000元购进甲、乙两种医用口罩共计900盒,甲、乙两种口罩的售价分别是20元/盒,25元/盒.(1)求甲、乙两种口罩各购进了多少盒?(2)现已知甲、乙两种口罩的数量分别是20个/盒,25个/盒,按照市教育局要求,学校必须储备足够使用10天的口罩,该校师生共计900人,每人每天2个口罩,问购买的口罩数量是否能满足市教育局的要求?24.(10分)为了提倡节约用水,某市制定了两种收费方式:当每户每月用水量不超过312m时,按一级单价收费;当每户每月用水量超过312m时,超过部分按二级单价收费.已知李阿姨家五月份用水量为310m,缴纳水费32元.七月份因孩子放假在家,用水量为314m,缴纳水费51.4元.(1)问该市一级水费,二级水费的单价分别是多少?(2)某户某月缴纳水费为64.4元时,用水量为多少?浙教版七下第二章一元二次方程测试卷(含解析)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)方程236ax y x-=+是二元一次方程,a必须满足() A.0a≠B.3a≠-C.3a≠D.2a≠【解答】解:方程236ax y x-=+变形为(3)260a x y---=,根据二元一次方程的定义,得30a-≠,解得3a≠.故选:C.2.(3分)关于二元一次方程48x y+=的解,下列说法正确的是() A.任意一对有理数都是它的解B.有无数个解C.只有一个解D.只有两个解【解答】解:对于二元一次方程48x y+=,有无数个解,故选:B.3.(3分)下列方程组中属于二元一次方程组的有()(1)211x yy z-=⎧⎨=+⎩(2)3xy=⎧⎨=⎩(3)235x yx y-=⎧⎨+=⎩(4)212 1.x yx y⎧+=⎨+=-⎩.A.1个B.2个C.3个D.4个【解答】解:(1)本方程组中含有3个未知数;故本选项错误;(2)有两个未知数,方程的次数是1次,所以是二元一次方程组;(3)有两个未知数,方程的次数是1次,所以是二元一次方程组;(4)第一个方程未知项2x的次数为2,故不是二元一次方程组.共2个属于二元一次方程组.故选:B.4.(3分)解方程组①216511y xx y=+⎧⎨+=-⎩;②2310236x yx y+=⎧⎨-=-⎩比较简便的方法是()A.均用代入法B.均用加减法C.①用代入法,②用加减法D.①用加减法,②用代入法【解答】解:解方程组①216511y xx y=+⎧⎨+=-⎩比较简便的方法为代入法;②2310236x yx y+=⎧⎨-=-⎩比较简便的方法加减法,故选:C.5.(3分)若2x y m=-⎧⎨=⎩是方程64nx y +=的一个解,则代数式31m n -+的值是( )A .3B .2C .1D .1-【解答】解:2x y m =-⎧⎨=⎩是方程64nx y +=的一个解, ∴代入得:264n m -+=,32m n ∴-=, 31213m n ∴-+=+=,故选:A .6.(3分)由方程组43x m y m+=⎧⎨-=⎩可得出x 与y 的关系是( )A .1x y +=B .1x y +=-C .7x y +=D .7x y +=-【解答】解:原方程可化为43x m y m +=⎧⎨-=⎩①②,①+②得,7x y +=. 故选:C .7.(3分)已知278ax by cx y +=⎧⎨-=⎩的解为32x y =⎧⎨=-⎩,某同学由于看错了c 的值,得到的解为22x y =-⎧⎨=⎩,则a b c ++的值为( )A .7B .8C .9D .10【解答】解:根据题意得:322222a b a b -=⎧⎨-+=⎩,解得:45a b =⎧⎨=⎩,将3x =,2y =-代入得:3148c +=, 解得:2c =-,则4527a b c ++=+-=. 故选:A .8.(3分)已知x ,y 满足方程组36x m y m +=⎧⎨-=⎩,则无论m 取何值,x ,y 恒有关系式是( )A .1x y +=B .1x y +=-C .9x y +=D .9x y +=-【解答】解:36x m y m +=⎧⎨-=⎩①②,把②代入①得,63x y +-=,整理得,9x y+=,故选:C.9.(3分)《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的23,那么乙也共有钱50.问:甲,乙两人各带了多少钱?设甲,乙两人持钱的数量分别为x,y,则可列方程组为()A.2502503x yx y+=⎧⎪⎨+=⎪⎩B.15022503x yy x⎧+=⎪⎪⎨⎪+=⎪⎩C.15022503x yx y⎧-=⎪⎪⎨⎪-=⎪⎩D.2502503x yx y-=⎧⎪⎨-=⎪⎩【解答】解:设甲需持钱x,乙持钱y,根据题意,得:15022503x yy x⎧+=⎪⎪⎨⎪+=⎪⎩,故选:B.10.(3分)文峰超市以同样的价格卖出同样的牙刷和牙膏,以下是4天的记录:第1天,卖出13支牙刷和7盒牙膏,收入132元;第2天,卖出26支牙刷和14盒牙膏,收入264元;第3天,卖出39支牙刷和21盒牙膏,收入393元;第4天,卖出52支牙刷和28盒牙膏,收入528元;其中记录有误的是()A.第1天B.第2天C.第3天D.第4天【解答】解:设每支牙刷x元,每盒牙膏y元.第1天:137132x y+=;第2天:2614264x y+=;第3天:3921393x y+=;第4天:5228528x y+=.假设第1天的记录正确,则第2天、第4天的记录也正确;假设第1天的记录错误,则第2天、第4天的记录也错误.故选:C.二.填空题(共8小题,满分24分,每小题3分)11.(3分)已知95xy=⎧⎨=⎩是关于x、y的方程23x ay-=的一个解,则a的值是3.5y =⎩移项得:5318a -=-, 合并得:515a -=-, 解得:3a =. 故答案为:3.12.(3分)试写出一个关于x 、y 的的二元一次方程,使它的一个解为12x y =⎧⎨=⎩,这个方程为3x y +=(答案不唯一) .【解答】解:根据题意:3x y +=(答案不唯一), 故答案为:3x y +=(答案不唯一)13.(3分)已知x 、y 满足方程组52723x y x y +=⎧⎨-=⎩,则x y +的值为 1 .【解答】解:527(1)23(2)x y x y +=⎧⎨-=⎩,(1)-(2)得:444x y +=, 1x y ∴+=,故答案为:1.14.(3分)若22(24)()|4|0x x y z y -+++-=,则x y z ++等于 12- .【解答】解:22(24)()|4|0x x y z y -+++-=, ∴240040x x y z y -=⎧⎪+=⎨⎪-=⎩, 解得:2212x y z ⎧⎪=⎪=-⎨⎪⎪=-⎩,则112222x y z ++=--=-. 故答案为:12-.15.(3分)若21x y =⎧⎨=⎩是方程组75ax by bx cy +=⎧⎨+=⎩的解,则a 与c 的关系是 49a c -= .1y =⎩5bx cy +=⎩得2725a b b c +=⎧⎨+=⎩①②,①2⨯-②,得49a c -=. 故答案为:49a c -=.16.(3分)请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”若诗句中谈到的鸦为x 只,树为y 棵,则可列出方程组为 355(1)x y x y =+⎧⎨=-⎩.【解答】解:设诗句中谈到的鸦为x 只,树为y 棵,则可列出方程组为: 355(1)x y x y =+⎧⎨=-⎩. 故答案为:355(1)x y x y =+⎧⎨=-⎩.17.(3分)我国明代数学读本《算法统宗》有一道题,其题意为:客人一起分银子,若每人7两,还剩4两;若每人9两,则差8两.银子共有 46 两. 【解答】解:设有x 人,银子y 两, 由题意得:7498y x y x =+⎧⎨=-⎩,解得646x y =⎧⎨=⎩,故答案为46.18.(3分)元旦期间,忠县永辉超市对三种风味的酸奶(原味、果粒味、大红枣味)进行A 、B 、C 三种套餐的促销活动.已知A 种套餐由3盒原味、4盒果粒味、5盒大红枣味搭配而成;B 种套餐由2盒原味、8盒果粒味、8盒大红枣味搭配而成;C 种套餐由5盒原味、4盒果粒味、6盒大红枣味搭配而成,每一种套餐的费用就是搭配该套餐的三种风味酸奶费用的总和.若一个A 种套餐需35元,那么小明同学要买2个A 种套餐、1个B 种套餐和2个C 种套餐共需费用 210 元.【解答】解:设1盒原味的价格为x 元,1盒果粒味的价格为y 元,1盒大红枣味的结果为z 元, 由题意得:34535x y z ++=,则小明同学要买2个A 种套餐、1个B 种套餐和2个C 种套餐共需费用为: 2352882(546)x y z x y z ⨯++++++ 70121620x y z =+++ 704(345)x y z =+++ 70435=+⨯210=(元),故答案为:210.三.解答题(共6小题,满分53分)19.(6分)已知方程1352x y+=,请你写出一个二元一次方程,使它与已知方程所组成的方程组的解为41xy=⎧⎨=⎩.【解答】解:经验算41xy=⎧⎨=⎩是方程1352x y+=的解,再写一个方程,如3x y-=.20.(12分)解下列方程组:(1)124x yx y+=⎧⎨-=-⎩(2)1234()5()38x y x yx y x y+-⎧+=⎪⎨⎪+--=-⎩【解答】解:(1)在1(1)24(2)x yx y+=⎧⎨-=-⎩中,(1)+(2)得:33x=-,解得:1x=-,把1x=-代入(1)得:2y=.∴方程组的解为12xy=-⎧⎨=⎩.(2)在1(1)234()5()38(2)x y x yx y x y+-⎧+=⎪⎨⎪+--=-⎩中,由(1)得:56x y+=(3),由(2)得:938x y-+=-,938x y∴=+,将938x y=+代入(3)得:46184y=-, 4y∴=-.把4y=-代入938x y=+,得2x=.∴方程组的解为24xy=⎧⎨=-⎩.21.(7分)已知方程组27431x yx y+=⎧⎨-=-⎩的解也是关于x,y的二元一次方程3x y a=+的解,求(1)(1)7a a+-+的值.【解答】解:方程组27431x y x y +=⎧⎨-=-⎩①②, ①3⨯+②得:1020x =,即2x =,把2x =代入①得:3y =,把2x =,3y =代入方程得:63a =+,即3a =,则原式21791715a =-+=-+=.22.(8分)本地某快递公司规定:寄件不超过1千克的部分按起步价计费:寄件超过1千克的部分按千克计费.小文分别寄快递到上海和北京,收费标准及实际收费如表: 收费标准: 目的地起步价(元) 超过1千克的部分(元/千克) 上海7 b 北京10 4b + 目的地质量(千克) 费用(元) 上海2 6a - 北京3 7a +【解答】解:依题意得:7(21)610(31)(4)7b a b a +-=-⎧⎨+-+=+⎩, 解得:152a b =⎧⎨=⎩. 答:a 的值为15,b 的值为2.23.(10分)疫情期间为保护学生和教师的健康,某学校储备“抗疫物资”,用19000元购进甲、乙两种医用口罩共计900盒,甲、乙两种口罩的售价分别是20元/盒,25元/盒.(1)求甲、乙两种口罩各购进了多少盒?(2)现已知甲、乙两种口罩的数量分别是20个/盒,25个/盒,按照市教育局要求,学校必须储备足够使用10天的口罩,该校师生共计900人,每人每天2个口罩,问购买的口罩数量是否能满足市教育局的要求?【解答】解:(1)设甲种口罩购进了x 盒,乙种口罩购进了y 盒,依题意得:900202519000x y x y +=⎧⎨+=⎩, 解得:700200x y =⎧⎨=⎩,答:甲种口罩购进了700盒,乙种口罩购进了200盒.(2)207002520014000500019000⨯+⨯=+=(个),29001018000⨯⨯=(个), 1900018000>,∴购买的口罩数量能满足市教育局的要求.24.(10分)为了提倡节约用水,某市制定了两种收费方式:当每户每月用水量不超过312m时,按一级单价收费;当每户每月用水量超过312m时,超过部分按二级单价收费.已知李阿姨家五月份用水量为310m,缴纳水费32元.七月份因孩子放假在家,用水量为314m,缴纳水费51.4元.(1)问该市一级水费,二级水费的单价分别是多少?(2)某户某月缴纳水费为64.4元时,用水量为多少?【解答】解:(1)设该市一级水费的单价为x元,二级水费的单价为y元,依题意得:103212(1412)51.4xx y=⎧⎨+-=⎩,解得:3.26.5xy=⎧⎨=⎩.答:该市一级水费的单价为3.2元,二级水费的单价为6.5元.(2) 3.21238.4⨯=(元),38.464.4<,∴用水量超过312m.设用水量为a3m,依题意得:38.4 6.5(12)64.4a+-=,解得:16a=.答:当缴纳水费为64.4元时,用水量为316m.。
一元二次方程单元试卷(word版含答案)

一元二次方程单元试卷(word 版含答案)一、初三数学 一元二次方程易错题压轴题(难)1.如图,在长方形ABCD 中,边AB 、BC 的长(AB <BC )是方程x 2-7x +12=0的两个根.点P 从点A 出发,以每秒1个单位的速度沿△ABC 边 A →B →C →A 的方向运动,运动时间为t (秒).(1)求AB 与BC 的长;(2)当点P 运动到边BC 上时,试求出使AP 长为10时运动时间t 的值;(3)当点P 运动到边AC 上时,是否存在点P ,使△CDP 是等腰三角形?若存在,请求出运动时间t 的值;若不存在,请说明理由.【答案】(1) AB =3,BC =4;(2) t =4;(3) t 为10秒或9.5秒或535秒时,△CDP 是等腰三角形. 【解析】试题分析:(1)解一元二次方程即可求得边长; (2)结合图形,利用勾股定理求解即可;(3)根据题意,分为:PC =PD ,PD =PC ,PD =CD ,三种情况分别可求解. 试题解析:(1)∵x 2-7x +12=(x -3)(x -4)=0 ∴1x =3或2x =4 . 则AB =3,BC =4(2)由题意得()223t-310?+=() ∴14t =,22t =(舍去) 则t =4时,AP 10.(3)存在点P ,使△CDP 是等腰三角形. ①当PC =PD =3时, t =3431++ =10(秒). ②当PD =PC(即P 为对角线AC 中点)时,AB =3,BC =4. 2234+=5,CP 1= 12AC =2.5 ∴t=34 2.51++ =9.5(秒)③当PD=CD=3时,作DQ⊥AC于Q.1341221552DQ⨯⨯==⨯,22129355PQ⎛⎫=-=⎪⎝⎭∴PC=2PQ=18 5∴183453515t++==(秒)可知当t为10秒或9.5秒或535秒时,△CDP是等腰三角形.2.(1)课本情境:如图,已知矩形AOBC,AB=6cm,BC=16cm,动点P从点A出发,以3cm/s的速度向点O运动,直到点O为止;动点Q同时从点C出发,以2cm/s的速度向点B运动,与点P同时结束运动,出发时,点P和点Q之间的距离是10cm;(2)逆向发散:当运动时间为2s时,P,Q两点的距离为多少?当运动时间为4s时,P,Q 两点的距离为多少?(3)拓展应用:若点P沿着AO→OC→CB移动,点P,Q分别从A,C同时出发,点Q从点C移动到点B停止时,点P随点Q的停止而停止移动,求经过多长时间△POQ的面积为12cm2?【答案】(1)85s或245s(2)62cm;213cm(3)4s或6s【解析】【分析】(1)过点P作PE⊥BC于E,得到AP=3t,CQ=2t,PE=6,EQ=16﹣3t﹣2t=16﹣5t,利用勾股定理得到方程,故可求解;(2)根据运动时间求出EQ、PE,利用勾股定理即可求解;(3) 分当点P在AO上时,当点P在OC上时和当点P在CB上时,根据三角形的面积公式列出方程即可求解.【详解】解:(1)设运动时间为t秒时,如图,过点P作PE⊥BC于E,由运动知,AP=3t,CQ=2t,PE=6,EQ=16﹣3t﹣2t=16﹣5t,∵点P 和点Q 之间的距离是10 cm , ∴62+(16﹣5t )2=100, 解得t 1=85,t 2=245, ∴t =85s 或245s . 故答案为85s 或245s(2)t=2时,由运动知AP =3×2=6 cm ,CQ =2×2=4 cm , ∴四边形APEB 是矩形, ∴PE =AB =6,BE =6,∴EQ =BC ﹣BE ﹣CQ =16﹣6﹣4=6, 根据勾股定理得PQ=2262PE EQ +=, ∴当t =2 s 时,P ,Q 两点的距离为62 cm ;当t =4 s 时,由运动知AP =3×4=12 cm ,CQ =2×4=8cm , ∴四边形APEB 是矩形, ∴PE =AB =6,BQ =8,CE=OP=4 ∴EQ =BC ﹣CE ﹣BQ =16﹣4﹣8=4, 根据勾股定理得PQ=22213PE EQ +=, P ,Q 两点的距离为213cm .(3)点Q 从C 点移动到B 点所花的时间为16÷2=8s , 当点P 在AO 上时,S △POQ =2PO CO ⋅=(163)62t -⋅=12, 解得t =4.当点P 在OC 上时,S △POQ =2PO CQ ⋅=(316)22t t-⋅=12, 解得t =6或﹣23(舍弃). 当点P 在CB 上时,S △POQ =2PQ CO ⋅=(2223)62t t +-⨯=12, 解得t =18>8(不符合题意舍弃),综上所述,经过4 s 或6 s 时,△POQ 的面积为12 cm 2. 【点睛】此题主要考查勾股定理的应用、一元二次方程与动点问题,解题的关键是熟知勾股定理的应用,根据三角形的面积公式找到等量关系列出方程求解.3.如图,在平面直角坐标系中,O 为原点,点A (0,8),点B (m ,0),且m >0.把△AOB 绕点A 逆时针旋转90°,得△ACD ,点O ,B 旋转后的对应点为C ,D , (1)点C 的坐标为 ;(2)①设△BCD 的面积为S ,用含m 的式子表示S ,并写出m 的取值范围; ②当S=6时,求点B 的坐标(直接写出结果即可).【答案】(1)C (8,8);(2)①S=0.5m 2﹣4m (m >8),或S=﹣0.5m 2+4m (0<m <8);②点B 的坐标为(7,0)或(2,0)或(6,0). 【解析】 【分析】(1)由旋转的性质得出AC =AO =8,∠OAC =90°,得出C (8,8)即可;(2)①由旋转的性质得出DC =OB =m ,∠ACD =∠AOB =90°,∠OAC =90°,得出∠ACE =90°,证出四边形OACE 是矩形,得出DE ⊥x 轴,OE =AC =8,分三种情况:a 、当点B 在线段OE 的延长线上时,得出BE =OB−OE =m−8,由三角形的面积公式得出S =0.5m 2−4m (m >8)即可;b 、当点B 在线段OE 上(点B 不与O ,E 重合)时,BE =OE−OB =8−m ,由三角形的面积公式得出S =−0.5m 2+4m (0<m <8)即可;c 、当点B 与E 重合时,即m =8,△BCD 不存在;②当S =6,m >8时,得出0.5m 2−4m =6,解方程求出m 即可; 当S =6,0<m <8时,得出−0.5m 2+4m =6,解方程求出m 即可. 【详解】(1)∵点A(0,8),∴AO=8,∵△AOB绕点A逆时针旋转90°得△ACD,∴AC=AO=8,∠OAC=90°,∴C(8,8),故答案为(8,8);(2)①延长DC交x轴于点E,∵点B(m,0),∴OB=m,∵△AOB绕点A逆时针旋转90°得△ACD,∴DC=OB=m,∠ACD=∠AOB=90°,∠OAC=90°,∴∠ACE=90°,∴四边形OACE是矩形,∴DE⊥x轴,OE=AC=8,分三种情况:a、当点B在线段OE的延长线上时,如图1所示:则BE=OB﹣OE=m﹣8,∴S=0.5DC•BE=0.5m(m﹣8),即S=0.5m2﹣4m(m>8);b、当点B在线段OE上(点B不与O,E重合)时,如图2所示:则BE=OE﹣OB=8﹣m,∴S=0.5DC•BE=0.5m(8﹣m),即S=﹣0.5m2+4m(0<m<8);c、当点B与E重合时,即m=8,△BCD不存在;综上所述,S=0.5m2﹣4m(m>8),或S=﹣0.5m2+4m(0<m<8);②当S=6,m>8时,0.5m2﹣4m=6,解得:m=4±27(负值舍去),∴m=4+27;当S=6,0<m<8时,﹣0.5m2+4m=6,解得:m=2或m=6,∴点B的坐标为(4+27,0)或(2,0)或(6,0).【点睛】本题是三角形综合题目,考查了坐标与图形性质、旋转的性质、矩形的判定与性质、三角形面积公式、一元二次方程的解法等知识;本题综合性强,有一定难度.4.如图,在△ABC 中,∠B=90°,AB=12 cm,BC=16 cm.点 P从点 A 开始沿 AB 边向点 B 以1 cm/s的速度移动,点 Q从点 B开始沿 BC 边向点 C以 2 cm/s的速度移动.如果 P、 Q分别从 A、B同时出发,当一个点到达终点时,另一个点也随之停止运动.设运动的时间为 t 秒.(1)当 t 为何值时,△PBQ的面积等于 35cm2?(2)当 t 为何值时,PQ的长度等82cm?(3)若点 P,Q的速度保持不变,点 P在到达点 B后返回点 A,点 Q在到达点 C后返回点B,一个点停止,另一个点也随之停止.问:当 t为何值时,△PCQ的面积等于 32cm2?【答案】(1)t为5或7;(2)t为45或4;(3)t为4或16【解析】【分析】(1)分别用含t的代数式表示PB,BQ的长,利用面积公式列方程求解即可.(2)分别用含t的代数式表示PB,BQ的长,利用勾股定理列方程求解即可.(3)分段要清楚,,P,Q都没有返回,表示好PB,CQ的长,用面积公式列方程,,P不返回,Q返回,表示好PB,CQ的长,用面积公式列方程,,两点都返回,表示好PB,CQ的长,用面积公式列方程即可得到答案.【详解】解:(1),.根据三角形的面积公式,得,即,整理,得,解得,.故当为5或7时,的面积等于35.(2)根据勾股定理,得,整理,得,解得,.故当为或4时,的长度等于.(3)①当时,,,由题意,得,解得:,(舍去).②当时,,,由题意,得,次方程无解.③当时,,,由题意,得,解得:(舍去),.综上所述,当为4或16时,的面积等于.【点睛】本题考查的是在运动过程中应用一元二次方程解决实际问题,建立正确情境下的几何模型是解决问题的关键,特别是最后一问,关键是弄懂分段的时间界点,才能正确的表示PB ,CQ 的长.5.某连锁超市派遣调查小组在春节期间调查某种商品的销售情况,下面是调查后小张与其 他两位成员交流的情况.小张:“该商品的进价为 24元/件.”成员甲:“当定价为 40元/件时,每天可售出 480件.”成员乙:“若单价每涨 1元,则每天少售出 20件;若单价每降 1元,则每天多售出 40件.” 根据他们的对话,请你求出要使该商品每天获利 7680元,应该怎样合理定价? 【答案】要使该商品每天获利7680元,应定价为36元/件、40元/件或48元/件 【解析】 【分析】设每件商品定价为x 元,则在每件40元的基础上涨价时每天的销售量是[]48020(40)x --件,每件商品的利润是(24)x -元,在每件40元的基础上降价时每天的销量是[]48040(40)x +-件,每件的利润是(24)x -元,从而可以得到答案.【详解】解:设每件商品定价为x 元.①当40x ≥时,[](24)48020(40)7680x x ---= , 解得:1240,48;x x ==②当40x <时,[](24)48040(40)7680x x -+-=, 解得:1236,40x x ==(舍去),.答:要使该商品每天获利7680元,应定价为36元/件、40元/件或48元/件. 【点睛】本题考查的是一元二次方程中的升降价对销售量产生影响方面的应用,用含有未知数的代数式表示销售量是这一类题的关键.6.机械加工需用油进行润滑以减小摩擦,某企业加工一台设备润滑用油量为90kg ,用油的重复利用率为60%,按此计算,加工一台设备的实际耗油量为36kg ,为了倡导低碳,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际油耗量进行攻关. (1)甲车间通过技术革新后,加工一台设备润滑油用油量下降到70kg ,用油的重复利用率仍然为60%,问甲车间技术革新后,加工一台设备的实际油耗量是多少千克?(2)乙车间通过技术革新后,不仅降低了润滑油用油量,同时也提高了用油的重复利用率,并且发现在技术革新前的基础上,润滑用油量每减少1kg ,用油的重复利用率将增加1.6%,例如润滑用油量为89kg 时,用油的重复利用率为61.6%. ①润滑用油量为80kg ,用油量的重复利用率为多少?②已知乙车间技术革新后实际耗油量下降到12kg ,问加工一台设备的润滑用油量是多少千克?用油的重复利用率是多少? 【答案】(1)28(2)①76%②75,84% 【解析】试题分析:(1)直接利用加工一台设备润滑油用油量下降到70kg ,用油的重复利用率仍然为60%,进而得出答案;(2)①利用润滑用油量每减少1kg ,用油的重复利用率将增加1.6%,进而求出答案; ②首先表示出用油的重复利用率,进而利用乙车间技术革新后实际耗油量下降到12kg ,得出等式求出答案.试题解析:(1)根据题意可得:70×(1﹣60%)=28(kg ); (2)①60%+1.6%(90﹣80)=76%; ②设润滑用油量是x 千克,则 x{1﹣[60%+1.6%(90﹣x )]}=12, 整理得:x 2﹣65x ﹣750=0, (x ﹣75)(x+10)=0, 解得:x 1=75,x 2=﹣10(舍去), 60%+1.6%(90﹣x )=84%,答:设备的润滑用油量是75千克,用油的重复利用率是84%. 考点:一元二次方程的应用7.已知关于x 的一元二次方程()222130x k x k --+-=有两个实数根.()1求k 的取值范围;()2设方程两实数根分别为1x ,2x ,且满足221223x x +=,求k 的值.【答案】(1)134k ≤;(2)2k =-. 【解析】 【分析】()1根据方程有实数根得出()()22[2k 1]41k 38k 50=---⨯⨯-=-+≥,解之可得.()2利用根与系数的关系可用k 表示出12x x +和12x x 的值,根据条件可得到关于k 的方程,可求得k 的值,注意利用根的判别式进行取舍. 【详解】 解:()1关于x 的一元二次方程()222130x k x k --+-=有两个实数根,0∴≥,即()()22[21]4134130k k k ---⨯⨯-=-+≥,解得134k ≤. ()2由根与系数的关系可得1221x x k +=-,2123x x k =-,()222222121212()2(21)23247x x x x x x k k k k ∴+=+-=---=-+, 221223x x +=,224723k k ∴-+=,解得4k =,或2k =-,134k ≤, 4k ∴=舍去, 2k ∴=-. 【点睛】本题考查了一元二次方程2ax bx c 0(a 0,++=≠a ,b ,c 为常数)根的判别式.当0>,方程有两个不相等的实数根;当0=,方程有两个相等的实数根;当0<,方程没有实数根.以及根与系数的关系.8.已知关于x 的二次函数22(21)1y x k x k =--++的图象与x 轴有2个交点.(1)求k 的取值范围;(2)若图象与x 轴交点的横坐标为12,x x ,且它们的倒数之和是32-,求k 的值. 【答案】(1)k <-34;(2)k=﹣1 【解析】试题分析:(1)根据交点得个数,让y=0判断出两个不相等的实数根,然后根据判别式△= b 2-4ac 的范围可求解出k 的值;(2)利用y=0时的方程,根据一元二次方程的根与系数的关系,可直接列式求解可得到k 的值.试题解析:(1)∵二次函数y=x 2-(2k-1)x+k 2+1的图象与x 轴有两交点, ∴当y=0时,x 2-(2k-1)x+k 2+1=0有两个不相等的实数根. ∴△=b 2-4ac=[-(2k-1)]2-4×1×(k 2+1)>0. 解得k <-34; (2)当y=0时,x 2-(2k-1)x+k 2+1=0. 则x 1+x 2=2k-1,x 1•x 2=k 2+1, ∵=== 32-,解得:k=-1或k= 13-(舍去), ∴k=﹣19.已知关于x 的一元二次方程x 2﹣x +a ﹣1=0. (1)当a=﹣11时,解这个方程;(2)若这个方程有两个实数根x 1,x 2,求a 的取值范围;(3)若方程两个实数根x 1,x 2满足[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,求a 的值. 【答案】(1)123,4x x =-=(2)54a ≤(3)-4 【解析】 【分析】(1)根据一元二次方程的解法即可求出答案; (2)根据判别式即可求出a 的范围; (3)根据根与系数的关系即可求出答案. 【详解】(1)把a =﹣11代入方程,得x 2﹣x ﹣12=0, (x +3)(x ﹣4)=0, x +3=0或x ﹣4=0, ∴x 1=﹣3,x 2=4;(2)∵方程有两个实数根12x x ,, ∴△≥0,即(﹣1)2﹣4×1×(a ﹣1)≥0, 解得54a ≤:; (3)∵12x x ,是方程的两个实数根,222211221122101011x x a x x a x x a x x a -+-=-+-=∴-=--=-,,,. ∵[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,∴221122229x x x x ⎡⎤⎡⎤+-+-=⎣⎦⎣⎦, 把22112211x x a x x a -=--=-,代入,得:[2+a ﹣1][2+a ﹣1]=9,即(1+a )2=9, 解得:a =﹣4,a =2(舍去), 所以a 的值为﹣4.点睛:本题考查了一元二次方程,解题的关键是熟练运用判别式以及根与系数的关系.10.如图直线y =kx +k 交x 轴负半轴于点A ,交y 轴正半轴于点B ,且AB =2 (1)求k 的值;(2)点P 从A 出发,以每秒1个单位的速度沿射线AB 运动,过点P 作直线AB 的垂线交x 轴于点Q ,连接OP ,设△PQO 的面积为S ,点P 运动时间为t ,求S 与t 的函数关系式,并直接写出t的取值范围;(3)在(2)的条件下,当P在AB的延长线上,若OQ+AB=7(BQ﹣OP),求此时直线PQ的解析式.【答案】(1)k32)当0<t<12时,S=12•OQ•P y=12(1﹣2t3=﹣323.当t>12时,S=12OQ•P y=12(2t﹣1)•32t=32t2﹣34t.(3)直线PQ的解析式为y 353.【解析】【分析】(1)求出点B的坐标即可解决问题;(2)分两种情形①当0<t<12时,②当t>12时,根据S=12OQ•P y,分别求解即可;(3)根据已知条件构建方程求出t,推出点P,Q的坐标即可解决问题.【详解】解:(1)对于直线y=kx+k,令y=0,可得x=﹣1,∴A(﹣1,0),∴OA=1,∵AB=2,∴OB223AB OA-=∴k3(2)如图,∵tan ∠BAO =3OB OA= ∴∠BAO =60°,∵PQ ⊥AB ,∴∠APQ =90°,∴∠AQP =30°,∴AQ =2AP =2t , 当0<t <12时,S =12•OQ •P y =12(1﹣2t 3323. 当t >12时,S =12OQ •P y =12(2t ﹣1)•32t =32t 2﹣34t . (3)∵OQ +AB 7(BQ ﹣OP ),∴2t ﹣1+22221373(21)(1)24t t t +--+ ∴2t +1271t t -+∴4t 2+4t +1=7t 2﹣7t +7,∴3t 2﹣11t +6=0,解得t =3或23(舍弃), ∴P (1233Q (5,0), 设直线PQ 的解析式为y =kx +b ,则有133250k b k b ⎧+=⎪⎨⎪+=⎩解得353k b ⎧=⎪⎪⎨⎪=⎪⎩,∴直线PQ 的解析式为33y x =-+. 【点睛】 本题属于一次函数综合题,考查了一次函数的性质,三角形的面积,无理方程等知识,解题的关键是学会利用参数构建方程解决问题.。
一元二次方程单元试卷(word版含答案)

一元二次方程单元试卷(word 版含答案)一、初三数学 一元二次方程易错题压轴题(难)1.如图,在平面直角坐标系中,()4,0A -,()0,4B ,四边形ABCO 为平行四边形,4,03D ⎛⎫- ⎪⎝⎭在x 轴上一定点,P 为x 轴上一动点,且点P 从原点O 出发,沿着x 轴正半轴方向以每秒43个单位长度运动,已知P 点运动时间为t . (1)点C 坐标为________,P 点坐标为________;(直接写出结果,可用t 表示) (2)当t 为何值时,BDP ∆为等腰三角形;(3)P 点在运动过程中,是否存在t ,使得ABD OBP ∠=∠,若存在,请求出t 的值,若不存在,请说明理由!【答案】(1)(4,4),(43t ,0);(2)1101-,4; (3)存在,3109t【解析】 【分析】(1)利用平行四边形的性质和根据P 点的运动速度,利用路程公式求解即可; (2)分三种情况:①当BD BP 时,②当BD DP =时,③当BP DP =时,分别讨论求解,即可得出结果; (3)过D 点作DF BP 交BP 于点F ,设OP x =,则可得224BPx ,43DPx ,453DF,利用1122BDPS DP BO BP DF ,即可求出OP 的长,利用路程公式可求得t 的值。
【详解】解:(1)∵()4,0-A ,()0,4B ,四边形ABCO 为平行四边形, ∴点C 坐标为(4,4),又∵P 为x 轴上一动点,点P 从原点O 出发,沿着x 轴正半轴方向以每秒43个单位长度运动,P 点运动时间为t ,∴P 点坐标为(43t ,0), (2)∵B ,D 的坐标分别为:()0,4B ,4,03D ⎛⎫- ⎪⎝⎭, ∴4OB =,43OD =, 由勾股定理有:22224441033DB OBOD, 当BDP ∆为等腰三角形时, ①如图所示,当BDBP 时,OD OP =,∴P 点坐标为(43,0), ∴1t =②如图所示,当BD DP =时,∵4103DB ,OP DP OD∴44410101333OP ,∴101t③如图所示,当BP DP =时,设P 点坐标为:(x ,0) 则有:2224BP x,2243DPx, ∴222443xx,解之得:163x = ∴P 点坐标为(163,0), ∴4t =综上所述,当t 为1,101-,4时,BDP ∆为等腰三角形;(3)答:存在t ,使得ABD OBP ∠=∠。
九年级上册数学 一元二次方程单元测试卷 (word版,含解析)

九年级上册数学一元二次方程单元测试卷(word版,含解析)一、初三数学一元二次方程易错题压轴题(难)1.“父母恩深重,恩怜无歇时”,每年5月的第二个星期日即为母亲节,节日前夕巴蜀中学学生会计划采购一批鲜花礼盒赠送给妈妈们.(1)经过和花店卖家议价,可在原标价的基础上打八折购进,若在花店购买80个礼盒最多花费7680元,请求出每个礼盒在花店的最高标价;(用不等式解答)(2)后来学生会了解到通过“大众点评”或“美团”同城配送会在(1)中花店最高售价的基础上降价25%,学生会计划在这两个网站上分别购买相同数量的礼盒,但实际购买过程中,“大众点评”网上的购买价格比原有价格上涨52m%,购买数量和原计划一样:“美团”网上的购买价格比原有价格下降了920m元,购买数量在原计划基础上增加15m%,最终,在两个网站的实际消费总额比原计划的预算总额增加了152m%,求出m的值.【答案】(1)120;(2)20.【解析】试题分析:(1)本题介绍两种解法:解法一:设标价为x元,列不等式为0.8x•80≤7680,解出即可;解法二:根据单价=总价÷数量先求出1个礼盒最多花费,再除以折扣可求出每个礼盒在花店的最高标价;(2)先假设学生会计划在这两个网站上分别购买的礼盒数为a个礼盒,表示在“大众点评”网上的购买实际消费总额:120a(1﹣25%)(1+52m%),在“美团”网上的购买实际消费总额:a[120(1﹣25%)﹣920m](1+15m%);根据“在两个网站的实际消费总额比原计划的预算总额增加了152m%”列方程解出即可.试题解析:(1)解:解法一:设标价为x元,列不等式为0.8x•80≤7680,x≤120;解法二:7680÷80÷0.8=96÷0.8=120(元).答:每个礼盒在花店的最高标价是120元;(2)解:假设学生会计划在这两个网站上分别购买的礼盒数为a个礼盒,由题意得:120×0.8a(1﹣25%)(1+52m%)+a[120×0.8(1﹣25%)﹣920m](1+15m%)=120×0.8a(1﹣25%)×2(1+ 152m%),即72a(1+52m%)+a(72﹣920m)(1+15m%)=144a(1+152m%),整理得:0.0675m2﹣1.35m=0,m2﹣20m=0,解得:m1=0(舍),m2=20.答:m的值是20.点睛:本题是一元二次方程的应用,第二问有难度,正确表示出“大众点评”或“美团”实际消费总额是解题关键.2.随着人们经济收入的不断提高及汽车产业的快速发展,汽车已越来越多地进入普通家庭.据某市交通部门统计,2008年底该市汽车拥有量为75万辆,而截止到2010年底,该市的汽车拥有量已达108万辆.(1)求2008年底至2010年底该市汽车拥有量的年平均增长率;(2)为了保护城市环境,缓解汽车拥堵状况,该市交通部门拟控制汽车总量,要求到2012年底全市汽车拥有量不超过125.48万辆;另据统计,从2011年初起,该市此后每年报废的汽车数量是上年底汽车拥有量的10%假设每年新增汽车数量相同,请你估算出该市从2011 年初起每年新增汽车数量最多不超过多少万辆.【答案】解:(1)2008年底至2010年底该市汽车拥有量的年平均增长率是20% (2)从2011年初起每年新增汽车数量最多不超过20万辆 【解析】 【分析】(1)设年平均增长率x ,根据等量关系“2008年底汽车拥有量×(1+年平均增长率)×(1+年平均增长率)”列出一元二次方程求得.(2)设从2011年初起每年新增汽车的数量y ,根据已知得出2011年报废的车辆是2010年底拥有量×10%,推出2011年底汽车拥有量是2010年底拥有量-2011年报废的车辆=2010年拥有量×(1-10%),得出等量关系是: 2010年拥有量×(1-10%)+新增汽车数量]×(1-10%)+新增汽车数量”,列出一元一次不等式求得. 【详解】解:(1)设该市汽车拥有量的年平均增长率为x . 根据题意,得75(1+x )2=108,则1+x=±1.2 解得x 1=0.2=20%,x 2=﹣2.2(不合题意,舍去). 答:该市汽车拥有量的年平均增长率为20%.(2)设全市每年新增汽车数量为y 万辆,则2010年底全市的汽车拥有量为(108×90%+y )万辆,2011年底全市的汽车拥有量为[(108×90%+y )×90%+y]万辆. 根据题意得(108×90%+y )×90%+y≤125.48, 解得y≤20.答:该市每年新增汽车数量最多不能超过20万辆.3.已知关于x 的一元二次方程()221210m x m x +-+=有两个不相等的实数根.(1)求实数m 的取值范围;(2)若原方程的两个实数根分别为1x ,2x ,且满足1212215x x x x +=-,求m 的值. 【答案】(1)14m <且0m ≠;(2)15m =-【解析】 【分析】(1)根据一元二次方程的定义和判别式的意义得到:()22140m m ∴∆=-->且20m ≠,然后求出两个不等式解集的公共部分即可.(2)利用根与系数的关系得到12221m x x m -+=, 1221x x m=,加上14m <且0m ≠,则可判断10x <,20x <,所以1212215x x x x --=-,2221215m m m--=-,然后解方程求出m 即可得到满足条件的m 的值. 【详解】(1)因为方程()221210m x m x +-+=有两个不相等的实数根,()221240m m ∴∆=-->,解得14m <; 又因为是一元二次方程,所以20m ≠,0m ∴≠.m ∴的取值范围是14m <且0m ≠. (2)1x ,2x 为原方程的两个实数根,12221m x x m -∴+=,1221x x m = 14m <且0m ≠,122210m x x m -∴+=<,12210x x m=>,10x ∴<,20x <. 1212215x x x x +=-,1212215x x x x --=-,2221215m m m -∴-=-,215210m m ∴--=,解得113m =,215m =-, 14m <且0m ≠,113m ∴=不合题意,舍去,15m ∴=-. 【点睛】 此题主要考查一元一次方程的定义和判别式的意义,正确理解概念和熟练运用根的判别式是解题的关键.4.某连锁超市派遣调查小组在春节期间调查某种商品的销售情况,下面是调查后小张与其 他两位成员交流的情况.小张:“该商品的进价为 24元/件.”成员甲:“当定价为 40元/件时,每天可售出 480件.”成员乙:“若单价每涨 1元,则每天少售出 20件;若单价每降 1元,则每天多售出 40件.” 根据他们的对话,请你求出要使该商品每天获利 7680元,应该怎样合理定价? 【答案】要使该商品每天获利7680元,应定价为36元/件、40元/件或48元/件 【解析】 【分析】设每件商品定价为x 元,则在每件40元的基础上涨价时每天的销售量是[]48020(40)x --件,每件商品的利润是(24)x -元,在每件40元的基础上降价时每天的销量是[]48040(40)x +-件,每件的利润是(24)x -元,从而可以得到答案.【详解】解:设每件商品定价为x 元.①当40x ≥时,[](24)48020(40)7680x x ---= , 解得:1240,48;x x ==②当40x <时,[](24)48040(40)7680x x -+-=, 解得:1236,40x x ==(舍去),.答:要使该商品每天获利7680元,应定价为36元/件、40元/件或48元/件. 【点睛】本题考查的是一元二次方程中的升降价对销售量产生影响方面的应用,用含有未知数的代数式表示销售量是这一类题的关键.5.已知关于x 的一元二次方程(x ﹣3)(x ﹣4)﹣m 2=0. (1)求证:对任意实数m ,方程总有2个不相等的实数根; (2)若方程的一个根是2,求m 的值及方程的另一个根.【答案】(1)证明见解析;(2)m 的值为±2,方程的另一个根是5. 【解析】 【分析】(1)先把方程化为一般式,利用根的判别式△=b 2-4ac 证明判断即可;(2)根据方程的根,利用代入法即可求解m 的值,然后还原方程求出另一个解即可. 【详解】 (1)证明:∵(x ﹣3)(x ﹣4)﹣m 2=0, ∴x 2﹣7x+12﹣m 2=0,∴△=(﹣7)2﹣4(12﹣m 2)=1+4m 2, ∵m 2≥0, ∴△>0,∴对任意实数m ,方程总有2个不相等的实数根; (2)解:∵方程的一个根是2, ∴4﹣14+12﹣m 2=0,解得m=±,∴原方程为x 2﹣7x+10=0,解得x=2或x=5,即m 的值为±,方程的另一个根是5.【点睛】此题主要考查了一元二次方程根的判别式,熟练掌握一元二次方程的根的判别式与根的关系是关键.当△=b2-4ac>0时,方程有两个不相等的实数根;当△=b2-4ac=0时,方程有两个相等的实数根;当△=b2-4ac<0时,方程没有实数根.6.如图直线y=kx+k交x轴负半轴于点A,交y轴正半轴于点B,且AB=2(1)求k的值;(2)点P从A出发,以每秒1个单位的速度沿射线AB运动,过点P作直线AB的垂线交x轴于点Q,连接OP,设△PQO的面积为S,点P运动时间为t,求S与t的函数关系式,并直接写出t的取值范围;(3)在(2)的条件下,当P在AB的延长线上,若OQ+AB=7(BQ﹣OP),求此时直线PQ的解析式.【答案】(1)k32)当0<t<12时,S=12•OQ•P y=12(1﹣2t3=﹣3 2t2+34t.当t>12时,S=12OQ•P y=12(2t﹣13=323.(3)直线PQ的解析式为y 353.【解析】【分析】(1)求出点B的坐标即可解决问题;(2)分两种情形①当0<t<12时,②当t>12时,根据S=12OQ•P y,分别求解即可;(3)根据已知条件构建方程求出t,推出点P,Q的坐标即可解决问题.【详解】解:(1)对于直线y=kx+k,令y=0,可得x=﹣1,∴A(﹣1,0),∴OA=1,∵AB=2,∴OB =223AB OA -=∴k =3. (2)如图,∵tan ∠BAO =3OBOA= ∴∠BAO =60°, ∵PQ ⊥AB , ∴∠APQ =90°, ∴∠AQP =30°, ∴AQ =2AP =2t , 当0<t <12时,S =12•OQ •P y =12(1﹣2t 3323. 当t >12时,S =12OQ •P y =12(2t ﹣13=323. (3)∵OQ +AB 7(BQ ﹣OP ),∴2t ﹣1+22221373(21)(1)24t t t +--+∴2t +1271t t -+∴4t 2+4t +1=7t 2﹣7t +7, ∴3t 2﹣11t +6=0, 解得t =3或23(舍弃), ∴P (1233Q (5,0), 设直线PQ 的解析式为y =kx +b ,则有133250k b k b ⎧+=⎪⎨⎪+=⎩解得33533kb⎧=-⎪⎪⎨⎪=⎪⎩,∴直线PQ的解析式为353y x=-+.【点睛】本题属于一次函数综合题,考查了一次函数的性质,三角形的面积,无理方程等知识,解题的关键是学会利用参数构建方程解决问题.7.如图,在ABC∆中,90ACB∠=︒,以点B为圆心,BC的长为半径画弧,交线段AB于点D,以点A为圆心,AD长为半径画弧,交线段AC于点E,连结CD.(1)若28A∠=︒,求ACD∠的度数;(2)设BC a=,AC b=;①线段AD的长度是方程2220x ax b+-=的一个根吗?说明理由.②若线段AD EC=,求ab的值.【答案】(1)ACD∠=31︒;(2)①是;②34ab=.【解析】【分析】(1)根据三角形内角和定理求出∠B,根据等腰三角形的性质求出∠BCD,计算即可;(2)①根据勾股定理求出AD,利用求根公式解方程,比较即可;②根据勾股定理列出算式,计算即可.【详解】(1)在ABC∆中,90ACB∠=︒.∴90B A∠=︒-∠9028=︒-︒62=︒,∵BC BD=,∴1802BBCD BDC︒-∠∠=∠=180622︒-︒=59=︒.∴DCA ACB BCD ∠=∠-∠9059=︒-︒ 31=︒.(2)①BD BC a ==, ∴AD AB BD =- AB a =-.在Rt ABC ∆中,90ACB ∠=︒,AB ==∵2220x ax b +-=,∴x =a =- a AB =-±.∴线段AD 的长度是方程2220x ax b +-=的一个根. ②∵AE AD =, 又∵AD EC =, ∴2b AE EC ==, ∴2b AD =. 在Rt ABC ∆中,222AB AC BC =+,∴2222b a b a ⎛⎫+=+ ⎪⎝⎭, 22224b a ab b a ++=+,∴234b ab =. ∵0b >, ∴34b a =, ∴34a b =.【点睛】本题考查的是勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.8.如图,在矩形ABCD 中,6AB = ,10BC = ,将矩形沿直线EF 折叠.使得点A 恰好落在BC 边上的点G 处,且点E 、F 分别在边AB 、AD 上(含端点),连接CF . (1)当32BG = 时,求AE 的长; (2)当AF 取得最小值时,求折痕EF 的长;(3)连接CF ,当△FCG 是以CG 为底的等腰三角形时,直接写出BG 的长.【答案】(1)92AE =;(2)62EF =3)185BG =. 【解析】 【分析】(1)根据折叠得出AE=EG ,据此设AE=EG=x ,则有BE=6-x ,由勾股定理求解可得; (2)由FG ⊥BC 时FG 的值最小,即此时AF 能取得最小值,显然四边形AEGF 是正方形,从而根据勾股定理可得答案;(3)由△CFG 是以FG 为一腰的等腰三角形,可知应分两种情况讨论:①FG=FC ;②FG=GC ;分别求解可得. 【详解】(1)由折叠易知,AE EG =,设AE EG x ==,则有6BE x =-, 由勾股定理,得()(222632x x =-+,解得92x =,即92AE = (2)由折叠易知,AF FG =,而当FG BC ⊥时,FG 的值最小,即此时AF 能取得最小值,当FG BC ⊥时,FG 的值最小,即此时AF 能取得最小值, 当FG BC ⊥时,点E 与点B 重合, 此时四边形AEGF 是正方形,∴折痕226662EF =+=(3)由△CFG 是以FG 为一腰的等腰三角形,可知应分两种情况讨论: ①当FG=FC 时,如图2,过F 作FH ⊥CG 于H ,则有:AF=FG=FC ,CH=DF=GH 设AF=FG=FC=x ,则DF=10-x=CH=GH 在Rt △CFH 中 ∵CF 2=CH 2+FH 2 ∴x 2=62+(10-x )2 解得:x=345, ∴DF=CH=GH=10-165, 即BG=10-165×2=185, ②当FG=GC 时,则有:AF=FG=GC=x ,CH=DF=10-x ; ∴GH=x-(10-x )=2x-10,在Rt △FGH 中,由勾股定理易得:x 2=62+(2x-10)2, 化简得:3x 2-40x+136=0, ∵△=(-40)2-4×3×136=-32<0, ∴此方程没有实数根. 综上可知:BG=185. 【点睛】本题主要考查四边形的综合问题,解题的关键是掌握矩形和翻折变换的性质、正方形的判定与性质、勾股定理、一元二次方程根与系数的关系等知识点,也考查了分类讨论的数学思想.9.已知关于x 的方程230x x a ++=①的两个实数根的倒数和等于3,且关于x 的方程2(1)320k x x a -+-=②有实数根,又k 为正整数,求代数式2216k k k -+-的值.【答案】0. 【解析】 【分析】由于关于x 的方程x 2+3x +a =0的两个实数根的倒数和等于3,利用根与系数的关系可以得到关于a 的方程求出a ,又由于关于x 的方程(k -1)x 2+3x -2a =0有实数根,分两种情况讨论,该方程可能是一次方程、有可能是一元二次方程,又k 为正整数,利用判别式可以求出k ,最后代入所求代数式计算即可求解.【详解】解:设方程①的两个实数根分别为x 1、x 2则12123940x x x x a a +-⎧⎪⎨⎪-≥⎩=== , 由条件,知12121211x x x x x x ++==3, 即33a -=,且94a ≤, 故a =-1, 则方程②为(k -1)x 2+3x +2=0,Ⅰ.当k -1=0时,k =1,x =23-,则22106k k k -=+-. Ⅱ.当k -1≠0时,∆=9-8(k -1)=17-6-8k ≥0,则178k ≤, 又k 是正整数,且k ≠1,则k =2,但使2216k k k -+-无意义. 综上,代数式2216k k k -+-的值为0 【点睛】本题综合考查了根的判别式和根与系数的关系,在解方程时一定要注意所求k 的值与方程判别式的关系.要注意该方程可能是一次方程、有可能是一元二次方程,10.定南县某楼盘准备以每平方米4000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米3240元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?【答案】(1)10%;(2)方案②【解析】试题分析:首先设下调的百分率为x ,根据题意列出方程进行求解,得出答案;分别求出两种方案所需要花费的钱数,然后进行比较.试题解析:(1)设平均每次下调的百分率是x ,依题意得,4000(1-x )2=3240解之得:x=0.1=10%或x=1.9(不合题意,舍去)答:平均每次下调的百分率是10%.(2)方案①实际花费=100×3240×98%=317520元方案②实际花费=100×3240-100×80=316000元∵317520>316000 ∴方案②更优惠考点:一元二次方程的应用。
一元二次方程测试卷[含答案及解析]
![一元二次方程测试卷[含答案及解析]](https://img.taocdn.com/s3/m/18b71339f78a6529647d537b.png)
一元二次方程测试题一、填空题:(每题2分共50分)1.一元二次方程(1-3x )(x +3)=2x 2+1化为一般形式为:,二次项系数为:,一次项系数为:,常数项为:。
2.若m 是方程x 2+x -1=0的一个根,试求代数式m 3+2m 2+2013的值为。
3.方程0132mx xm m是关于x 的一元二次方程,则m 的值为。
4.关于x 的一元二次方程04222ax xa的一个根为0,则a 的值为。
5.若代数式5242x x 与122x的值互为相反数,则x 的值是。
6.已知322y y的值为2,则1242y y的值为。
7.若方程112xm x m 是关于x 的一元二次方程,则m 的取值范围是。
8.已知关于x 的一元二次方程002acbx ax的系数满足b c a ,则此方程必有一根为。
9.已知关于x 的一元二次方程x 2+bx+b ﹣1=0有两个相等的实数根,则b 的值是。
10.设x 1,x 2是方程x 2﹣x ﹣2013=0的两实数根,则= 。
11.已知x=﹣2是方程x 2+mx ﹣6=0的一个根,则方程的另一个根是。
12.若,且一元二次方程kx 2+ax+b=0有两个实数根,则k 的取值范围是。
13.设m 、n 是一元二次方程x 2+3x -7=0的两个根,则m 2+4m +n =。
14.一元二次方程(a+1)x 2-ax+a 2-1=0的一个根为0,则a=。
15.若关于x 的方程x 2+(a ﹣1)x+a 2=0的两根互为倒数,则a =。
16.关于x 的两个方程x 2﹣x ﹣2=0与有一个解相同,则a =。
17.已知关于x 的方程x 2﹣(a+b )x+ab ﹣1=0,x 1、x 2是此方程的两个实数根,现给出三个结论:①x1≠x2;②x1x 2<ab ;③.则正确结论的序号是.(填上你认为正确结论的所有序号)18.a 是二次项系数,b 是一次项系数,c 是常数项,且满足1a +(b -2)2+|a+b+c|=0,满足条件的一元二次方程是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程单元测试题(Word 版 含解析)一、初三数学 一元二次方程易错题压轴题(难)1.如图,在平面直角坐标系中,()4,0A -,()0,4B ,四边形ABCO 为平行四边形,4,03D ⎛⎫- ⎪⎝⎭在x 轴上一定点,P 为x 轴上一动点,且点P 从原点O 出发,沿着x 轴正半轴方向以每秒43个单位长度运动,已知P 点运动时间为t . (1)点C 坐标为________,P 点坐标为________;(直接写出结果,可用t 表示) (2)当t 为何值时,BDP ∆为等腰三角形;(3)P 点在运动过程中,是否存在t ,使得ABD OBP ∠=∠,若存在,请求出t 的值,若不存在,请说明理由!【答案】(1)(4,4),(43t ,0);(2)1101-,4; (3)存在,3109t【解析】 【分析】(1)利用平行四边形的性质和根据P 点的运动速度,利用路程公式求解即可; (2)分三种情况:①当BD BP 时,②当BD DP =时,③当BP DP =时,分别讨论求解,即可得出结果; (3)过D 点作DF BP 交BP 于点F ,设OP x =,则可得224BPx ,43DPx ,453DF,利用1122BDPS DP BO BP DF ,即可求出OP 的长,利用路程公式可求得t 的值。
【详解】解:(1)∵()4,0-A ,()0,4B ,四边形ABCO 为平行四边形, ∴点C 坐标为(4,4),又∵P 为x 轴上一动点,点P 从原点O 出发,沿着x 轴正半轴方向以每秒43个单位长度运动,P 点运动时间为t ,∴P 点坐标为(43t ,0), (2)∵B ,D 的坐标分别为:()0,4B ,4,03D ⎛⎫- ⎪⎝⎭, ∴4OB =,43OD =, 由勾股定理有:22224441033DB OBOD, 当BDP ∆为等腰三角形时, ①如图所示,当BDBP 时,OD OP =,∴P 点坐标为(43,0), ∴1t =②如图所示,当BD DP =时,∵4103DB ,OP DP OD∴44410101333OP ,∴101t③如图所示,当BP DP =时,设P 点坐标为:(x ,0) 则有:2224BP x,2243DPx, ∴222443xx,解之得:163x = ∴P 点坐标为(163,0), ∴4t =综上所述,当t 为1,101-,4时,BDP ∆为等腰三角形;(3)答:存在t ,使得ABD OBP ∠=∠。
证明:∵A ,B 两点坐标分别为:()4,0-A ,()0,4B , ∴OA OB =,45ABO ∠=, 又∵ABD OBP ∠=∠∴ABD OBD OBP OBD ∠+∠=∠+∠ 即有:45ABODBP,如图示,过D 点作DFBP 交BP 于点F,∵4103DB , ∴453DF, 设OP x =,根据勾股定理有:224BPx ,并且43DP x ,则:1122BDPS DP BO BP DF∴224444533x x , 化简得:2610x x +-=, 解之得:310x (取正值),即43103t ∴331031094t.【点睛】本题考查的是平行四边形的性质,等腰三角形的性质,勾股定理,三角形的面积公式,一元二次方程得解等知识点,在(2)中懂得分类讨论,在(3)中能做出垂线,利用面积求解是解题的关键.2.如图,直角坐标系xOy 中,一次函数y kx b =+的图象1l 分别与x 轴,y 轴交于A ,B 两点,点A 坐标为()9,0,正比例函数12y x =的图象2l 与1l 交于点(),3C m ,点(),0N n 在x 轴上一个动点,过点N 作x 轴的垂线与直线1l 和2l 分别交于P 、Q 两点.(1)求m 的值及直线1l 所对应的一次函数表达式; (2)当03PQ <时,求n 的取值范围; (3)求出当n 为何值时,PQC ∆面积为12?【答案】(1)6m =;9y x =-+;(2)46n <或68n <;(3)2n =或10. 【解析】 【分析】(1)直接将点C 代入正比例函数,可求得m 的值,然后将点C 和点A 代入一次函数,可求得一次函数解析式;(2)用含n 的式子表示出PQ 的长,然后解不等式即可;(3)用含有n 的式子表示出△PQC 的底边长和高的长,然后求解算式即可得. 【详解】(1)将点C(m ,3)代入正比例函数12y x =得: 3=1m 2,解得:m=6 则点C(6,3) ∵A(9,0)将点A ,C 代入一次函数y kx b =+得:0936k bk b =+⎧⎨=+⎩解得:k=-1,b=9∴一次函数解析式为:y=-x+9 (2)∵N(n ,0) ∴P(n ,9-n),Q(n ,12n ) ∴PQ=192n n -- ∵要使03PQ <∴0<1932n n --≤ 解得:46n <或68n <(3)在△PQC 中,以PQ 的长为底,则点C 到PQ 的距离为高,设为h 第(2)已知:PQ=139922n n n --=- 由图形可知,h=6n - ∵△PQC 的面积为12 ∴12=136922nn -- 情况一:当n <6是,则原式化简为:12=()136922n n ⎛⎫--⎪⎝⎭ 解得:n=2或n=10(舍)情况二:当n ≥6时,则原式化简为:12=()136922n n ⎛⎫-- ⎪⎝⎭解得:n=2(舍)或n=10 综上得:n=2或n=10.【点睛】本题考查一次函数的综合,用到了解一元二次方程,求三角形面积等知识点,解题关键是用含n的算式表示出PQ的长度,注意需要添加绝对值符号.3.近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从去年年底至今年3月20日,猪肉价格不断走高,3月20日比去年年底价格上涨了60%.某市民在今年3月20日购买2.5千克猪肉至少要花200元钱,那么去年年底猪肉的最低价格为每千克多少元?(2)3月20日,猪肉价格为每千克60元,3月21日,某市决定投入储备猪肉并规定其销售价在每千克60元的基础上下调a%出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克60元的情况下,该天的两种猪肉总销量比3月20日增加了a%,且储备猪肉的销量占总销量的34,两种猪肉销售的总金额比3月20日提高了1%10a,求a的值.【答案】(1)去年年底猪肉的最低价格为每千克50元;(2)a的值为20.【解析】【分析】(1)设去年年底猪肉价格为每千克x元;根据题意列出一元一次不等式,解不等式即可;(2)设3月20日两种猪肉总销量为1;根据题意列出方程,解方程即可.【详解】解:(1)设去年年底猪肉价格为每千克x元;根据题意得:2.5×(1+60%)x≥200,解得:x≥50.答:去年年底猪肉的最低价格为每千克50元;(2)设3月20日的总销量为1;根据题意得:60(1﹣a%)×34(1+a%)+60×14(1+a%)=60(1+110a%),令a%=y,原方程化为:60(1﹣y)×34(1+y)+60×14(1+y)=60(1+110y),整理得:5y2﹣y=0,解得:y=0.2,或y=0(舍去),则a%=0.2,∴a=20;答:a的值为20.【点睛】本题考查了一元一次不等式的应用、一元二次方程的应用;根据题意列出不等式和方程是解决问题的关键.4.随着人们经济收入的不断提高及汽车产业的快速发展,汽车已越来越多地进入普通家庭.据某市交通部门统计,2008年底该市汽车拥有量为75万辆,而截止到2010年底,该市的汽车拥有量已达108万辆.(1)求2008年底至2010年底该市汽车拥有量的年平均增长率;(2)为了保护城市环境,缓解汽车拥堵状况,该市交通部门拟控制汽车总量,要求到2012年底全市汽车拥有量不超过125.48万辆;另据统计,从2011年初起,该市此后每年报废的汽车数量是上年底汽车拥有量的10%假设每年新增汽车数量相同,请你估算出该市从2011 年初起每年新增汽车数量最多不超过多少万辆.【答案】解:(1)2008年底至2010年底该市汽车拥有量的年平均增长率是20% (2)从2011年初起每年新增汽车数量最多不超过20万辆 【解析】 【分析】(1)设年平均增长率x ,根据等量关系“2008年底汽车拥有量×(1+年平均增长率)×(1+年平均增长率)”列出一元二次方程求得.(2)设从2011年初起每年新增汽车的数量y ,根据已知得出2011年报废的车辆是2010年底拥有量×10%,推出2011年底汽车拥有量是2010年底拥有量-2011年报废的车辆=2010年拥有量×(1-10%),得出等量关系是: 2010年拥有量×(1-10%)+新增汽车数量]×(1-10%)+新增汽车数量”,列出一元一次不等式求得. 【详解】解:(1)设该市汽车拥有量的年平均增长率为x . 根据题意,得75(1+x )2=108,则1+x=±1.2 解得x 1=0.2=20%,x 2=﹣2.2(不合题意,舍去). 答:该市汽车拥有量的年平均增长率为20%.(2)设全市每年新增汽车数量为y 万辆,则2010年底全市的汽车拥有量为(108×90%+y )万辆,2011年底全市的汽车拥有量为[(108×90%+y )×90%+y]万辆. 根据题意得(108×90%+y )×90%+y≤125.48, 解得y≤20.答:该市每年新增汽车数量最多不能超过20万辆.5.已知关于x 的二次函数22(21)1y x k x k =--++的图象与x 轴有2个交点.(1)求k 的取值范围;(2)若图象与x 轴交点的横坐标为12,x x ,且它们的倒数之和是32-,求k 的值. 【答案】(1)k <-34;(2)k=﹣1 【解析】试题分析:(1)根据交点得个数,让y=0判断出两个不相等的实数根,然后根据判别式△= b 2-4ac 的范围可求解出k 的值;(2)利用y=0时的方程,根据一元二次方程的根与系数的关系,可直接列式求解可得到k 的值.试题解析:(1)∵二次函数y=x 2-(2k-1)x+k 2+1的图象与x 轴有两交点, ∴当y=0时,x 2-(2k-1)x+k 2+1=0有两个不相等的实数根. ∴△=b 2-4ac=[-(2k-1)]2-4×1×(k 2+1)>0. 解得k <-34; (2)当y=0时,x 2-(2k-1)x+k 2+1=0. 则x 1+x 2=2k-1,x 1•x 2=k 2+1, ∵=== 32-, 解得:k=-1或k= 13-(舍去), ∴k=﹣16.有n 个方程:x 2+2x ﹣8=0;x 2+2×2x ﹣8×22=0;…x 2+2nx ﹣8n 2=0. 小静同学解第一个方程x 2+2x ﹣8=0的步骤为:“①x 2+2x=8;②x 2+2x+1=8+1;③(x+1)2=9;④x+1=±3;⑤x=1±3;⑥x 1=4,x 2=﹣2.” (1)小静的解法是从步骤 开始出现错误的.(2)用配方法解第n 个方程x 2+2nx ﹣8n 2=0.(用含有n 的式子表示方程的根) 【答案】(1)⑤;(2)x 1=2n ,x 2=﹣4n . 【解析】 【分析】(1)根据移项要变号,可判断;(2)先把常数项移到方程的右边,再把方程两边都加上一次项系数的一半,使左边是一个完全平方式,然后用直接开平方法求解. 【详解】解:(1)小静的解法是从步骤⑤开始出现错误的, 故答案为⑤; (2)x 2+2nx ﹣8n 2=0, x 2+2nx=8n 2, x 2+2nx+n 2=8n 2+n 2, (x+n )2=9n 2, x+n=±3n , x 1=2n ,x 2=﹣4n .7.如图,在ABC ∆中,90ACB ∠=︒,以点B 为圆心,BC 的长为半径画弧,交线段AB 于点D ,以点A 为圆心,AD 长为半径画弧,交线段AC 于点E ,连结CD .(1)若28A ∠=︒,求ACD ∠的度数; (2)设BC a =,AC b =;①线段AD 的长度是方程2220x ax b +-=的一个根吗?说明理由. ②若线段AD EC =,求ab的值. 【答案】(1)ACD ∠=31︒;(2)①是;②34a b =. 【解析】 【分析】(1)根据三角形内角和定理求出∠B ,根据等腰三角形的性质求出∠BCD ,计算即可; (2)①根据勾股定理求出AD ,利用求根公式解方程,比较即可; ②根据勾股定理列出算式,计算即可. 【详解】(1)在ABC ∆中,90ACB ∠=︒. ∴90B A ∠=︒-∠9028=︒-︒ 62=︒,∵BC BD =,∴1802BBCD BDC ︒-∠∠=∠=180622︒-︒=59=︒.∴DCA ACB BCD ∠=∠-∠ 9059=︒-︒ 31=︒.(2)①BD BC a ==, ∴AD AB BD =-AB a =-.在Rt ABC ∆中,90ACB ∠=︒,22AB AC BC =+22a b =+∵2220x ax b +-=,∴x =a =-a AB =-±.∴线段AD 的长度是方程2220x ax b +-=的一个根. ②∵AE AD =, 又∵AD EC =, ∴2b AE EC ==, ∴2b AD =. 在Rt ABC ∆中,222AB AC BC =+,∴2222b a b a ⎛⎫+=+ ⎪⎝⎭, 22224b a ab b a ++=+,∴234b ab =. ∵0b >, ∴34b a =, ∴34a b =. 【点睛】本题考查的是勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.8.如图,在平面直角坐标系中,正方形ABCD 的顶点A 在y 轴正半轴上,顶点B 在x 轴正半轴上,OA 、OB 的长分别是一元二次方程x 2﹣7x+12=0的两个根(OA >OB ). (1)求点D 的坐标. (2)求直线BC 的解析式.(3)在直线BC 上是否存在点P ,使△PCD 为等腰三角形?若存在,请直接写出点P 的坐标;若不存在,说明理由.【答案】(1)D(4,7)(2)y=3944x (3)详见解析【解析】试题分析:(1)解一元二次方程求出OA、OB的长度,过点D作DE⊥y于点E,根据正方形的性质可得AD=AB,∠DAB=90°,然后求出∠ABO=∠DAE,然后利用“角角边”证明△DAE 和△ABO全等,根据全等三角形对应边相等可得DE=OA,AE=OB,再求出OE,然后写出点D的坐标即可;(2)过点C作CM⊥x轴于点M,同理求出点C的坐标,设直线BC的解析式为y=kx+b (k≠0,k、b为常数),然后利用待定系数法求一次函数解析式解答;(3)根据正方形的性质,点P与点B重合时,△PCD为等腰三角形;点P为点B关于点C 的对称点时,△PCD为等腰三角形,然后求解即可.试题解析:(1)x2﹣7x+12=0,解得x1=3,x2=4,∵OA>OB,∴OA=4,OB=3,过D作DE⊥y于点E,∵正方形ABCD,∴AD=AB,∠DAB=90°,∠DAE+∠OAB=90°,∠ABO+∠OAB=90°,∴∠ABO=∠DAE,∵DE⊥AE,∴∠AED=90°=∠AOB,∵DE⊥AE∴∠AED=90°=∠AOB,∴△DAE≌△ABO(AAS),∴DE=OA=4,AE=OB=3,∴OE=7,∴D(4,7);(2)过点C作CM⊥x轴于点M,同上可证得△BCM≌△ABO,∴CM=OB=3,BM=OA=4,∴OM=7,∴C(7,3),设直线BC的解析式为y=kx+b(k≠0,k、b为常数),代入B(3,0),C(7,3)得,,解得,∴y=x﹣;(3)存在.点P与点B重合时,P1(3,0),点P与点B关于点C对称时,P2(11,6).考点:1、解一元二次方程;2、正方形的性质;3、全等三角形的判定与性质;4、一次函数9.如图,某农家拟用已有的长为8m的墙或墙的一部分为一边,其它三边用篱笆围成一个面积为12m2的矩形园子.设园子中平行于墙面的篱笆长为ym(其中y≥4),另两边的篱笆长分别为xm.(1)求y关于x的函数表达式,并求x的取值范围.(2)若仅用现有的11m长的篱笆,且恰好用完,请你帮助设计围制方案.【答案】(1)y=;1.5≤x≤3;(2)长为8m,宽为1.5m.【解析】【分析】(1)由矩形的面积公式可得出y 关于x 的函数表达式,结合4≤y ≤8可求出x 的取值范围; (2)由篱笆的长可得出y =(11﹣2x )m ,利用矩形的面积公式结合矩形园子的面积,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论.【详解】(1)∵矩形的面积为12m 2,∴y =.∵4≤y ≤8,∴1.5≤x ≤3.(2)∵篱笆长11m ,∴y =(11﹣2x )m .依题意,得:xy =12,即x (11﹣2x )=12,解得:x 1=1.5,x 2=4(舍去),∴y =11﹣2x =8.答:矩形园子的长为8m ,宽为1.5m .【点睛】本题考查了一元二次方程的应用以及反比例函数的应用,解题的关键是:(1)利用矩形的面积公式,找出y 关于x 的函数表达式;(2)找准等量关系,正确列出一元二次方程.10.如图1,已知△ABC 中,AB=10cm,AC=8cm,BC=6 cm ,如果点P 由B 出发沿BA 方向向点A 匀速运动,同时点Q 由A 出发沿AC 方向向点C 匀速运动,它们的速度均为2cm /s ,连接PQ ,设运动的时间为t (单位:s )(0≤t≤4).解答下列问题:(1)当t 为何值时,PQ∥BC.(2)是否存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分?若存在求出此时t 的值;若不存在,请说明理由.(3)如图2,把△APQ 沿AP 翻折,得到四边形AQPQ′.那么是否存在某时刻t 使四边形AQPQ′为菱形?若存在,求出此时菱形的面积;若不存在,请说明理由.【答案】(1)当BF PC ⊥s 时,PQ∥BC.(2)不存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分.(3)存在时刻t ,使四边形AQPQ′为菱形,此时菱形的面积为1372-cm 2. 【解析】(1)证△APQ∽△ABC,推出AP AB =AQ AC ,代入得出10210t -=28t ,求出方程的解即可;(2)假设存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分,得出方程-56t 2+6t=12×12×8×6,求出此方程无解,即可得出答案. (3)首先根据菱形的性质及相似三角形比例线段关系,求得PQ 、OD 、和PD 的长度;然后在Rt△PQD 中,根据勾股定理列出方程(8-185t )2-(6-65t )2=(2t )2,求得时间t 的值;最后根据菱形的面积等于△AQP 的面积的2倍,进行计算即可.解:(1)BP=2t ,则AP=10﹣2t .∵PQ∥BC,∴△APQ∽△ABC,∴AP AB =AQ AC , 即10210t -=28t , 解得:t=209, ∴当t=209时,PQ∥BC. (2)如答图1所示,过P 点作PD⊥AC 于点D .∴PD∥BC,∴F ,即B ,解得6PD 6-5t =. 216625S PD AQ t t =⨯=-, 假设存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分,则有S △AQP = C S △ABC ,而S △ABC =12AC•BC=24,∴此时S △AQP =12. 而S △AQP 2665t t =-, ∴266125t t -=,化简得:t 2﹣5t+10=0, ∵△=(﹣5)2﹣4×1×10=﹣15<0,此方程无解,∴不存在某时刻t,使线段PQ恰好把△ABC的面积平分.(3)假设存在时刻t,使四边形AQPQ′为菱形,则有AQ=PQ=BP=2t.如答图2所示,过P点作PD⊥AC于点D,则有PD∥BC,∴D,即COD∆,解得:OC,h,∴QD=AD﹣AQ=t.在Rt△PQD中,由勾股定理得:QD2+PD2=PQ2,即h,化简得:13t2﹣90t+125=0,解得:t1=5,t2=t,∵t=5s时,AQ=10cm>AC,不符合题意,舍去,∴t=52.由(2)可知,S△AQP=5 4∴S菱形AQPQ′=2S△AQP=2×258337+cm2.所以存在时刻t,使四边形AQPQ′为菱形,此时菱形的面积为1372-cm2.“点睛”本题考查了三角形的面积,勾股定理的逆定理,相似三角形的性质和判定的应用,主要考查学生综合运用进行推理和计算的能力.解决问题的关键是作辅助线构造相似三角形以及直角三角形,根据相似三角形的对应边成比例以及勾股定理进行列式求解.。