(完整)八年级数学一元二次方程单元练习题
【必刷题】2024八年级数学上册一元二次方程解法专项专题训练(含答案)

【必刷题】2024八年级数学上册一元二次方程解法专项专题训练(含答案)试题部分一、选择题:1. 已知方程x^2 5x + 6 = 0,下列哪个选项是它的一个解?A. x = 2B. x = 3C. x = 4D. x = 52. 方程2x^2 4x + 1 = 0的解为:A. x = 1B. x = 1/2C. x = 1/2D. x = 13. 下列哪个方程是一元二次方程?A. x^2 + 3x 2 = 0B. 2x + 5 = 0C. 3x^3 2x^2 + x 1 = 0D. x^2 + y^2 = 14. 一元二次方程x^2 3x + 1 = 0的解为:A. x = 1,x = 2B. x = 1,x = 1C. x = 2,x = 2D. x = 3,x = 35. 方程x^2 4x + 4 = 0的解是:A. x = 2B. x = 2C. x = 0D. x = 2(重根)6. 已知方程x^2 (2a+1)x + a^2 = 0,若a为正数,则方程的解为:A. x = a,x = 1B. x = a,x = aC. x = a+1,x = a1D. x = 2a,x = 2a7. 方程x^2 5x + 6 = 0的解中,较大的是:A. 2B. 3C. 4D. 58. 若方程x^2 (2k+1)x + k^2 = 0有两个不相等的实数根,则k 的取值范围是:A. k > 0B. k < 0C. k ≠ 0D. k = 09. 方程x^2 2x 3 = 0的解为:A. x = 3,x = 1B. x = 3,x = 1C. x = 3,x = 1D. x = 3,x = 110. 方程x^2 6x + 9 = 0的解是:A. x = 3B. x = 3C. x = 0D. x = 3(重根)二、判断题:1. 一元二次方程的解一定是两个实数根。
2. 方程x^2 2x + 1 = 0的解为x = 1。
八年级数学下册《一元二次方程》单元测试卷(附答案解析)

八年级数学下册《一元二次方程》单元测试卷(附答案解析)一.选择题(共8小题,满分40分)1.若关于x的方程ax2﹣2ax+1=0的一个根是﹣1,则a的值是()A.1 B.﹣1 C.﹣D.﹣32.用配方法解方程3x2﹣6x+2=0,将方程变为(x﹣m)2=的形式,则m的值为()A.9 B.﹣9 C.1 D.﹣13.三角形的两边长分别为3和6,第三边的长是方程x2﹣6x+8=0的一个根,则这个三角形的周长是()A.9 B.11 C.13 D.144.关于x的方程x2﹣2mx﹣m﹣1=0的根的情况()A.没有实数根B.有两个不相等的实数根C.有两个相等的实数根D.不能确定5.在下列方程中,有一个方程有两个实数根,且它们互为相反数,这个方程是()A.x﹣1=0 B.x2+x=0 C.x2﹣1=0 D.x2+1=06.若关于x的一元二次方程方程(k﹣1)x2+2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k≥0 B.k>0且k≠1 C.k≤0且k≠﹣1 D.k>07.设方程x2+x﹣2=0的两个根为α,β,那么(α﹣2)(β﹣2)的值等于()A.﹣4 B.0 C.4 D.28.有两个人患了流感,经过两轮传染后共有242个人患了流感,设每轮传染中平均一个人传染了x个人,则x满足的方程是()A.(1+x)2=242 B.(2+x)2=242C.2(1+x)2=242 D.(1+2x)2=242二.填空题(共8小题,满分40分)9.若x2﹣6x+7=(x﹣3)2+n,则n=.10.如果关于x的一元二次方程ax2+bx﹣1=0的一个解是x=1,则2021﹣a﹣b=.11.若(x2+y2﹣1)2=4,则x2+y2=.12.关于x的一元二次方程kx2﹣(2k+1)x+k=0总有两个实数根,则常数k的取值范围是.13.对于实数a、b、c、d,我们定义运算=ad﹣bc,例如:=2×5﹣1×3=7,上述记号就叫做二阶行列式.若=4,则x=.14.等腰(非等边)三角形的边长都是方程x2﹣6x+8=0的根,则此三角形的面积为.15.已知菱形ABCD的一条对角线的长为4,边AB的长是x2﹣5x+6=0的一个根,则菱形ABCD的周长为.16.如图,在一个长20m,宽10m的矩形草地内修建宽度相等的小路(阴影部分),若剩余草地(空白部分)的面积171m2,则小路的宽度为m.三.解答题(共5小题,满分40分)17.解下列方程:(1)(x﹣2)2﹣9=0;(2)3x2﹣2x﹣2=0(用公式法);(3)x(2x﹣5)=2x﹣5;(4)x2+4x﹣3=0(用配方法).18.仿照例子解题:“已知(x2+2x﹣1)(x2+2x+2)=4,求x2+2x的值”,在求解这个题目中,运用数学中的整体换元可以使问题变得简单,具体方法如下:解:设x2+2x=y,则原方程可变为:(y﹣1)(y+2)=4整理得y2+y﹣2=4即:y2+y﹣6=0解得y1=﹣3,y2=2∴x2+2x的值为﹣3或2请仿照上述解题方法,完成下列问题:已知:(x2+y2﹣3)(2x2+2y2﹣4)=24,求x2+y2的值.19.已知,关于x的一元二次方程x2+ax﹣a﹣1=0.(1)求证:方程总有两个实数根;(2)若该方程有一个根是负数,求a的取值范围.20.已知关于x的一元二次方程x2﹣(2k+1)x+2k=0.(1)求证:方程总有两个实数根;(2)记该方程的两个实数根为x1和x2,若以x1,x2,3为三边长的三角形是直角三角形,求k的值.21.某水果经销商批发了一批水果,进货单价为每箱50元,若按每箱60元出售,则可销售80箱.现准备提价销售,经市场调研发现:每箱每提价1元,销量就会减少2箱,为保护消费者利益,物价部门规定,销售利润不能超过50%,设该水果售价为每箱x(x>60)元.(1)用含x的代数式表示提价后平均每天的销售量为箱;(2)现在预算要获得1200元利润,应按每箱多少元销售?参考答案与解析一.选择题(共8小题,满分40分)1.解:∵关于x的方程ax2﹣2ax+1=0的一个根是﹣1,∴a+2a+1=0,∴3a+1=0,解得a=﹣,故选:C.2.解:方程3x2﹣6x+2=0,变形得:x2﹣2x=﹣,配方得:x2﹣2x+1=,即(x﹣1)2=,则m=1.故选:C.3.解:解方程x2﹣6x+8=0得,x=2或4,∴第三边长为2或4.当第三边为2时,∵2+3<6,∴边长为2,3,6不能构成三角形;当第三边为4时,∵3+4>6,∴边长为3,4,6能构成三角形;∴三角形的周长为3+4+6=13,故选:C.4.解:关于x的方程x2﹣2mx﹣m﹣1=0中,a=1,b=﹣2m,c=﹣m﹣1,∴Δ=b2﹣4ac=(﹣2m)2﹣4×(﹣m﹣1)=(2m+1)2+3>0.∴有两个不相等的实数根.故选:B.5.解:A、x﹣1=0是一次方程,方程有一个实数根,故选项不合题意;B、∵一次项的系数为1,故选项不合题意;C、∵Δ=0﹣4×1×(﹣1)=4>0,且一次项系数为0,故此选项符合题意;D、∵Δ=0﹣4×1×1=﹣4<0,故此选项不合题意.故选:C.6.解:∵关于x的一元二次方程(k﹣1)x2+2x﹣1=0有两个不相等的实数根,∴,解得:k>0且k≠1.故选:B.7.解:∵方程x2+x﹣2=0的两个根为α,β,∴α+β=﹣1,α•β=﹣2,∴(α﹣2)(β﹣2)=α•β﹣2(α+β)+4=﹣2﹣2×(﹣1)+4=4.故选:C.8.解:依题意得:2(1+x)2=242.故选:C.二.填空题(共8小题,满分40分)9.解:已知等式整理得:x2﹣6x+7=(x﹣3)2﹣2=(x﹣3)2+n,则n=﹣2,故答案为:﹣210.解:把x=1代入方程ax2+bx﹣1=0得a+b﹣1=0,所以a+b=1,所以2021﹣a﹣b=2021﹣(a+b)=2021﹣1=2020.故答案为:2020.11.解:两边开方得x2+y2﹣1=±2,∴x2+y2=3或x2+y2=﹣1,∵x2+y2≥0,∴x2+y2=3.故答案为3.12.解:∵Δ=b2﹣4ac=[﹣(2k+1)]2﹣4k×k≥0,解得k≥﹣,∵二次项系数k≠0,∴k≥﹣且k≠0.故答案为:k≥﹣且k≠0.13.解:根据题中的新定义得:=x2﹣6(x﹣2)=4,即x2﹣6x+8=0,分解因式得:(x﹣4)(x﹣2)=0,解得:x=4或2.故答案为:2或4.14.解:x2﹣6x+8=0,(x﹣2)(x﹣4)=0,解得x1=2,x2=4,由题意得:这个三角形的三边长分别为2,2,4或2,4,4,(1)当这个三角形的三边长分别为2,2,4时,∵2+2=4,∴不满足三角形的三边关系,舍去;(2)当这个三角形的三边长分别为2,4,4时,∵2+4>4,∴满足三角形的三边关系,如图,设这个三角形为等腰△ABC,其中AB=AC=4,BC=2,过点A作AD⊥BC于点D,则BD=CD=BC=1(等腰三角形的三线合一),∴AD===,∴S△ABC===,即此三角形的面积为,故答案为:.15.解:x2﹣5x+6=0,(x﹣2)(x﹣3)=0,x﹣2=0或x﹣3=0,解得x1=2,x2=3,∵菱形ABCD的一条对角线的长为4,∴AB的长为3,∴菱形ABCD的周长=4×3=12.16.解:设小路的宽度为xm,根据题意列方程得(20﹣x)(10﹣x)=171,整理得:x2﹣30x+29=0,解得:x1=1,x2=29(不合题意,舍去).故小路的宽度为1m.故答案为:1.三.解答题(共5小题,满分40分)17.(1)解:∵(x﹣2)2﹣9=0,∴(x﹣2)2=9,∴x﹣2=±3,∴x﹣2=3或x﹣2=﹣3,∴x1=5,x2=﹣1,(2)3x2﹣2x﹣2=0,∵a=3,b=﹣2,c=﹣2,∴△=(﹣2)2﹣4×3×(﹣2)=4+24=28,∴x==,∴x1=,x2=;(3)∵x(2x﹣5)=2x﹣5,∴(2x﹣5)(x﹣1)=0,∴2x﹣5=0或x﹣1=0,∴x1=,x2=1,(4)∵x2+4x﹣3=0,∴x2+4x=3,∴x2+4x+4=3+4,∴(x+2)2=7,∴x+2=,∴x1=﹣2+,x2=﹣2﹣.18.解:设x2+y2=m,则原方程可变为:(m﹣3)(2m﹣4)=24∴2(m﹣3)(m﹣2)=24.∴m2﹣5m+6=12.∴m2﹣5m﹣6=0解得m1=6,m2=﹣1∵x2+y2≥0∴x2+y2的值为6.19.(1)证明:∵Δ=a2﹣4×(﹣a﹣1)=(a+2)2≥0,∴无论a为何值,方程总有两个实数根;(2)∵方程有一个根是负数,∴﹣a﹣1<0,解得,a>﹣1.∴a的取值范围为a>﹣1.20.(1)证明:∵Δ=[﹣(2k+1)]2﹣4•2k=4k2+1+4k﹣8k=4k2﹣4k+1=(2k﹣1)2≥0,∴无论k取何值,方程总有两个实数根;(2)解:∵x2﹣(2k+1)x+2k=0,∴(x﹣2k)(x﹣1)=0,∴x1=2k,x2=1.∵以x1,x2,3为三边长的三角形是直角三角形,当3为斜边时,则(2k)2+12=32,解得k=(负数舍去),当2k为斜边时,则(2k)2=12+32,解得k=(负数舍去).综上,k的值为,.21.解:(1)平均每天的销售量为80﹣2(x﹣60)=(200﹣2x)(箱).故答案为:(200﹣2x).(2)依题意得:(x﹣50)(200﹣2x)=1200,整理得:x2﹣150x+5600=0,解得:x1=70,x2=80.当x=70时,利润率=×100%=40%<50%,符合题意;当x=80时,利润率=×100%=60%>50%,不合题意,舍去.答:应按每箱70元销售.。
(完整版)一元二次方程全章测试题(基础卷)

一元二次方程(一)一、选择题1.一元二次方程2210x x --=的根的情况为( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根2.若关于z 的一元二次方程 2.20x x m -+=没有实数根,则实数m 的取值范围是 ( )A .m<lB .m>-1C .m>lD .m<-1 3.一元二次方程x 2+x +2=0的根的情况是 ( ) A .有两个不相等的正根 B .有两个不相等的负根 C .没有实数根D .有两个相等的实数根4.用配方法解方程2420x x -+=,下列配方正确的是( )A .2(2)2x -=B .2(2)2x +=C .2(2)2x -=-D .2(2)6x -=5.已知函数2y ax bx c =++的图象如图(7)所示,那么关于x 的方程220ax bx c +++=的根的情况是A .无实数根B .有两个相等实数根C .有两个异号实数根D .有两个同号不等实数根6.关于x 的方程20x px q ++=的两根同为负数,则( )A .0p >且q >0B .0p >且q <0C .0p <且q >0D .0p <且q <07.若关于x 的一元二次方程22430x kx k ++-=的两个实数根分别是12,x x ,且满足1212x x x x +=.则k 的值为( )A.-1或34B.-1C.34D.不存在 8.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( )A.x 2+4=0B.4x 2-4x +1=0C.x 2+x +3=0D.x 2+2x -1=09.某商品原价200元,连续两次降价a %后售价为148元,下列所列方程正确的是( )A.200(1+a%)2=148B.200(1-a%)2=148图(7)C.200(1-2a%)=148D.200(1-a 2%)=148 10.下列方程中有实数根的是( ) A.x 2+2x +3=0B.x 2+1=0C.x 2+3x +1=0D.111x x x =-- 11.已知关于x 的一元二次方程22x m x -= 有两个不相等的实数根,则m 的取值范围 是 ( ) A . m >-1 B . m <-2 C .m ≥0 D .m <0 12.如果2是一元二次方程x 2=c 的一个根,那么常数c 是( ) A.2 B.-2 C.4 D.-4二、填空题13.已知一元二次方程22310x x --=的两根为1x 、2x ,则12x x += 14.方程()214x -=的解为 。
一元二次方程经典练习题(6套)附带详细答案

、选择题:(每小题3分,共24分)1. 下列方程中,常数项为零的是()A.x 2+x=1B.2x-x-12=12 ; C.2(x -1)=3(x-1) D.2(x2+1)=x+2N- 31 22—2x2. 下列万程:①x =0,② —-2=0,③2 x +3x=(1+2x)(2+x),④3x - J x =0,⑤ ------------ 8x+ 1=0xx中,一元二次方程的个数是() A.1 个 B2 个 C.3 个 D.4 个3.把方程(x- J5) (x+J5) +(2x-1) 2=0化为一元二次方程的一般形式是 ()A.5x 2-4x-4=0B.x -5=0C.5x -2x+1=0D.5x2-4x+6=04. 方程x 2=6x 的根是()A.x =0,x =-6B.x=0,x =6 C.x=6D.x=05. 方2x-3x+1=0经为(x+a) 2=b 的形式,正确的是() A. fx —3j=16; B. 2「x —V 2=1; C.f x WT=【;D.以上都不对2,416. 4 166.若两个连续整数的积是 56,则它们的和是()A.11B.15C.-15D.土 1510. 关于x 的一元二次方程 x 2+bx+c=0有实数解的条件是 . 11. 用 法解方程3(x-2) =2x-4比较简便.12. 如果2x+1与4x 2-2x-5互为相反数,则x 的值为 . 13.如果关于 x 的一元二次方程2x(kx-4)-x +6=0没有实数根,那么k 的最小整数值是14. 如果关于x 的方程4mx-mx+1= 0有两个相等实数根,那么它的根是练习一7. 不解方程判断下列方程中无实数根的是 ()A.-x =2x-1B.4x+4x+— =0; C. 、、2x 2 - X -、3 =048. 某超市一月份的营业额为 200万元,已知第一季度的总营业额共增长率为x,则由题意列方程应为() A.200(1+x) =1000 B.200+200 X 2x=1000 C.200+200 X 3x=1000D.200[1+(1+x)+(1+x)]=1000二、填空题:(每小题3分,共24分)一(x -1)2 5 9. 万程 ----- - +3x =—化为一元二次方程的一般形式是 D.(x+2)(x-3)==-51000万元,如果平均每月,它的一次项系数是15. 若一元二次方程(k-1)x 2-4x-5=0有两个不相等实数根,则k 的取值范围是 .16. 某种型号的微机,原售价7200元/台,经连续两次降价后,现售价为3528元/台,则平均每 次降价的百分率为 . 三、 解答题(2分)17. 用适当的方法解下列一元二次方程 .(每小题5分,共15分) (1)5x(x-3)=6-2x;(2)3y2+1=2^3y ; ⑶(x-a)2=1-2a+a(a 是常数)18. (7分)已知关于x 的一元二次方程 x 2+mx+n=0的一个解是2,另一个解是正数,而且也是方程(x+4) -52=3x 的解,你能求出m 和n 的值吗? 19. (10分)已知关于x 的一元二次方程 x 2-2kx+ - k 2-2=0.2(1) 求证:不论k 为何值,方程总有两不相等实数根. (2) 设x ,x 是方程的根,且x -2kx +2xx=5,求k 的值.四、 列方程解应用题(每题10分,共20分)20. 某电视机厂计划用两年的时间把某种型号的电视机的成本降低 36%,若每年下降的百分数相同,求这个百分数. 21.某商场今年1月份销售额为100万元,2月份销售额下降了10%,该商场马上采取措施, 改进经营管理,使月销售额大幅上升,4月份的销售额达到129.6万元,求3, 4月份平均每 月销售额增长的百分率.答案一、 DAABC ,DBD 二、9. x 2+4x-4=0,4 10. b 2 -4c —0 11. 因式分解法 1或-32 181 lk >一且k #15 30%12. 13. 14. 15.16.17. (1) 3, —2 ; (2) —; (3) 1, 2a-15 318. m=-6,n=819. (1) △ =2k2+8>0, 不论k为何值,方程总有两不相等实数根(2) k = .14四、20. 20%21. 20%练习二一、选择题(共8题,每题有四个选项,其中只有一项符合题意。
完整版)一元二次方程100道计算题练习(附答案)

完整版)一元二次方程100道计算题练习(附答案)1、(x+4)=5(x+4)^22、(x+1)=4x3、(x+3)=(1-2x)^24、2x^2-10x=35、x^2=646、(x+5)^2=167、2(2x-1)-x(1-2x)=08、5x^2-2/5=09、8(3-x)^2-72=010、3x(x+2)=5(x+2)11、(1-3y)^2+2(3y-1)=012、x^2+2x+3=013、x^2+6x-5=014、x^2-4x+3=015、x^2-2x-1=016、2x^2+3x+1=017、3x^2+2x-1=018、5x^2-3x+2=019、3x-3=020、-2x+12=021、x^2-6x+9=022、3x-2=2x+323、x-2x-4=024、x=3/425、3x^2+8x-3=026、3x^2+11x+14=027、x=-9 or x=-228、2(x-3)^2=x^2-929、-3x^2+22x-24=030、4t^2-4t+1=031、(2x-3)^2-121=032、x^2-4x=033、(x+2)^2=8x34、x=1/3 or x=-235、7x^2+2x-36=036、x=1 or x=-1 or x=3/237、4(x-3)^2+x(x-3)=038、6x^2-31x+35=039、x=1/2 or x=140、2x^2-23x+65=0这是一组一元二次方程的计算题练,需要用不同的方法来解决这些问题。
为了方便,我们可以将这些方程按照不同的方法分类。
一种方法是因式分解法,另一种方法是开平方法,还有一种方法是配方法,最后一种方法是公式法。
根据不同的题目,我们可以选择不同的方法来解决问题。
例如,对于方程(x-2)^2=(2x-3)^2,我们可以使用因式分解法来解决。
将方程化简后,得到x=5/3或x=-1/3.对于方程2x^2-5x+2=0,我们可以使用配方法来解决。
将方程化简后,得到x=1/2或x=2.对于方程-3x^2+22x-24=0,我们可以使用公式法来解决。
(完整版)_一元二次方程单元测试题(含答案)

第二章一元二次方程测试题(1)姓名学号一、选择题(每题 3 分,共 30 分)1.以下方程属于一元二次方程的是().( A )( x2- 2)·x=x 2 (B ) ax2 +bx+c=01( D )x2=0 ( C)x+ =5x2.方程 x( x-1 ) =5( x-1 )的解是().(A)1 (B)5 (C)1或 5 ( D)无解3.已知 x=2 是对于 x 的方程 3 x2- 2a=0 的一个根,则2a-1 的值是().2(A)3(B)4(C)5(D)64.把方程 x2-4x-6=0 配方,化为( x+m )2=n 的形式应为().( A)( x-4 )2=6 ( B)( x-2 )2=4 ( C)( x-2 )2=0 (D)( x- 2)2=10 5.以下方程中,无实数根的是().( A) x2+2x+5=0 ( B) x2-x-2=0 ( C) 2x2+x-10 =0 ( D) 2x2-x-1=06.今世数式 x2+3x+5 的值为 7 时,代数式3x2+9x-2 的值是().(A)4 (B)0 (C)-2 (D)-47.方程( x+1)( x+2) =6 的解是().( A )x =- 1, x =- 2 ( B )x =1, x =- 4 ( C) x =- 1, x =4 ( D) x =2 , x =31 2 1 2 1 2 1 28.假如对于 x 的一元二次方程 2 的两根分别为 1 2 ,?那么这个一元二次x +px+q=0 x =3 ,x =1 方程是().( A )x2+3x+4=0 ( B) x2-4x+3= 0 ( C) x2+4x-3= 0 (D ) x2+3x -4=09.某市计划经过两年时间,绿地面积增添44% , ?这两年均匀每年绿地面积的增添率是().(A ) 19% ( B) 20% ( C)21% (D ) 22% 10.在一幅长80cm,宽 50cm 的矩形景色画的周围镶一条金色纸边, ?制成一幅矩形挂图,如下图.假如要使整个挂图的面积是 5 400cm2,设金色纸边的宽为 xcm, ?那么 x 知足的方程是().( A) x2+130x-1 40 0=0 ( B) x2+65x-350=0( C) x2-130x-1 400=0 ( D) x2-65x-350=0二、填空题(每题 3 分,共 24 分)11.方程 2x2-x-2=0 的二次项系数是 ________,一次项系数是 ________, ?常数项是 ________.12.若方程ax2+bx+c=0 的一个根为 -1 ,则 a-b+c=_ ______.13.已知 x2-2x-3与x+7的值相等,则x 的值是 ________.14.请写出两根分别为-2 , 3 的一个一元二次方程_________.15.假如( 2a+2b+1)( 2a+2b-1 ) =63,那么 a+b 的值是 ________.16.已知 x2+y2-4x+6y+13=0 , x, y 为实数,则x y=_________.17.已知三角形的两边分别是 1 和 2,第三边的数值是方程2x2 -5x+3=0 的根,则这个三角形的周长为 _______.18.若 -2 是对于 x 的一元二次方程(k2-1 ) x2+2kx+4=0 的一个根,则k=________ .三、解答题(共46 分)19.解方程:8x2=24x(x+2) 2=3x+6(7x-1) 2 =9x2(3x-1)2=10x2+6x=1-2x2+13x-15=0 .x2 2 2x 2 2 x21x 136 2 20.(此题 8 分)李先生计入银行 1 万元,先存一个一年按期,?一年后将本息自动转存另一个一年按期,两年后共得本息 1.045 5 万元.存款的年利率为多少?(?不考虑利息税)21.(此题 8 分)现将进货为 40 元的商品按 50 元售出时,就能卖出 500 件. ?已知这批商品每件涨价 1 元,其销售量将减少 10 个.问为了赚取 8 000 元收益,售价应定为多少?这时应进货多少件?第二章一元二次方程测试题(2)一、选择题(每题 3 分,共 30 分)1 .方程( y+8)2 =4y+(2y-1 )2 化成一般式后 a,b,c 的值是()A .a=3,b=-16 ,c=-63;B . a=1,b=4,c=(2y-1 )2C .a=2,b=-16 ,c=-63;D . a=3,b=4,c=(2y-1 )22 .方程 x2-4x+4=0 根的状况是()A .有两个不相等的实数根 ;B .有两个相等的实数根 ;C .有一个实数根 ;D .没有实数根3 .方程 y2+4y+4=0 的左侧配成完整平方后得()A .(y+4)2 =0B .(y-4 )2 =0C .(y+2)2=0D .( y-2 )2=04 .设方程 x2+x-2=0 的两个根为α,β,那么(α -1 )(β -1 )的值等于()A.-4B.-2 C .0 D .25 .以下各方程中,无解的方程是()A . x 2 =-1B . 3( x-2 )+1=0C .x2-1=0D .x=2 x 16 .已知方程 x x 3 =0,则方程的实数解为()A.3 B.0 C.0,1 D .0,37 .已知 2y 2+y-2 的值为 3,则 4y 2+2y+1 的值为( ) 8 A .10 B .11 C .10或 11 D .3或 11) .方程 x 2有两个不相等的实根,则 , 知足的关系式是( +2px+q=0 p q A .p 2-4q>0 B .p 2-q ≥0 C .p 2-4q ≥ 0 D . p 2-q>09 .已知对于 x 的一元二次方程( m-1)x 2+x+m 2+2m-3=0的一个根为 0,则 m 的值为( )A .1B .-3C .1 或-3D .不等于 1 的随意实数10 .已知 m 是整数,且知足2m1 0,则对于 x 的方程 m 2x 2-4x-2= ( m+2)5 2m 1x 2+3x+4 的解为( )6D .x 13 或 A .x 1 , 2=- 3 B .x 1 , 2 = 3 C . x=- , 2=-2 x 2 =2 x 2=-2x =27x=673 分,共 30 分)二、填空题(每题11.一元二次方程 x 2+2x+4=0的根的状况是 ________.12.方程 x 2( x-1 )( x-2 )=0 的解有 ________个. 13.假如( 2a+2b+1)( 2a+2b-2) =4,那么 a+b 的值为 ________.14.已知二次方程 3x 2-(2a-5 )x-3a-1=0 有一个根为 2,则另一个根为 ________. 15.对于 x 的一元二次方程 x 2 +bx+c=0的两根为 -1 ,3,则 x 2+bx+c?分解因式的结果为 _________.16.若方程 x 2-4x+m=0有两个相等的实数根,则 m 的值是 ________. 17.若 b (b ≠0)是方程 x 2+cx+b=0 的根,则 b+c 的值为 ________.18.一元二次方程( 1-k )x 2-2x-1=?0? 有两个不相等的实根数, ?则 k?的取值范围是 ______.19.若对于 x 的一元二次方程 x 2+bx+c=0 没有实数根,则切合条件的一组 b , c 的实数值能够是 b=______,c=_______.20.等腰三角形 ABC 中, BC=8,AB , AC 的长是对于 x 的方程 x 2-10x+m=0 的两根,则 m?的值是 ________. 三、解答题21.(12 分)采用适合的方法解以下方程:(1)(x+1)( 6x-5 ) =0; ( 2) 2x 2+ 3 x-9=0 ;(3)2(x+5)2=x ( x+5);(4) 2 x 2-4 3 x-2 2 =0.22.(5 分)不解方程,鉴别以下方程的根的状况:(1)2x 2+3x-4=0;(2)16y 2+9=24y ;(3) 3 x 2- 2 x+2=0;(4)3t 2-3 6 t+2=0 ;(5)5(x 2+1) -7x=0 .23.(4 分)已知一元二次方程 ax 2+bx+c=0(a ≠0)的一个根是 1,且 a ,b 满 足 b= a 2 + 2 a -3 ,?求对于 y 的方程 1y 2-c=0 的根.424.(4 分)已知方程 x 2+kx-6=0 的一个根是 2,求它的另一个根及 k 的值. 25.(4 分)某村的粮食年产量,在两年内从 60 万千克增添到 72.6 万千克,问 均匀每年增添的百分率是多少?26.(5 分)为了合理利用电力资源,缓解用电紧张状况,我市电力部门出台了 使用“峰谷电”的政策及收费标准(见表) .已知王老师家 4 月份使用“峰谷 电”95kMh ,缴电费 43.40 元,问王老师家 4 月份“峰电”和“谷电”各用了 多少 kMh ?峰电 08:00 —22:00 元 /kWh 谷电 22:00 —08:00元 /kWh27.(6 分)印刷一张矩形的张贴广告(如图) ,?它的印刷面积是 32dm 2,?上 下空白各 1dm ,两边空白各,设印刷部分从上到下的长是 xdm ,周围空白处的面积为 Sdm 2.( 1)求 S 与 x 的关系式;2( 2)当要求周围空白的面积为 18dm 时,求用来印刷这张广告的纸张的长和宽各是多少?。
八年级数学下册《一元二次方程》单元检测卷(附含答案)

八年级数学下册《一元二次方程》单元检测卷(附含答案)一、单选题1.若方程x 2+kx -6=0的一个根是-3,则k 的值是( )A .-1B .1C .2D .-22.下列方程中,两实数根之和为-4的是( )A .x 2+2x -4=0B .x 2-4x +4=0C .4x 2+x +10=0D .x 2+4x -5=03.若关于x 的方程220x x a ++=有两个不相等的实数根,则a 的值可以是( )A .3B .2C .1D .04.一元二次方程22x x =的解为( )A .-2B .2C .0或-2D .0或25.如图,在一块长12m ,宽8m 的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路分别与矩形的一条边平行),剩余部分栽种花草,且栽种花草的面积为277m ,设道路的宽为xm ,则根据题意,可列方程为( )A .2128128277x x x ⨯--+=B .128122877x x ⨯--⨯=C .(12)(8)77x x --=D .(8)(122)77x x --=6.在下列关于x 的一元二次方程中,有两个相等实数根的方程是( )A .2210x x --=B .2360x x ++=C .28160x x ++=D .()219x -=7.将方程x 2-8x +10=0配方为(x +a)2=b 的形式,正确的是( )A .(x -4)2=6B .(x -8)2=6C .(x -4)2=-6D .(x -8)2=548.若关于x 的一元二次方程2210ax x -+=有实数根,则a 应满足( )A .1a ≤B .1a ≥C .1a ≥-且0a ≠D .1a ≤且0a ≠9.今年为庆祝共青团成立100周年,教体局举行篮球友谊赛,初赛采用单循环制(每两支球队之间都进行一场比赛),据统计,比赛共进行了28场,则一共邀请了多少支球队参加比赛?设一共邀请了x 支球队参加比赛.根据题意可列方程是( ) A .(1)282x x += B .()128x x -=C .(1)282x x -= D .()328x x -=10.一次会议上,每两个参加会议的人都互相握了一次手,有人统计一共共握66次手.若设这次会议到会的人数为x 人,依题意可列方程( ) A .12x (x ﹣1)=66 B .21(1)2x +=66 C .x (1+x )=66D .x (x ﹣1)=66二、填空题11.关于x 的方程20x mx +=的一个根是-2,则m 的值为 .12.市政府为了解决市民看病难的问题,决定下调药品的价格.某种药品经过连续两次降价后,由每盒300元下调至192元,则这种药品平均每次降价的百分率为 .13.若m ,n 为一元二次方程2220x x --=的两个实数根,则()()11m n ++的值为 . 14.如图,在宽为20m ,长为32m 的矩形地面上修筑同样宽的道路,余下的部分种上草坪,要使草坪的面积为540m 2,求道路的宽若设道路宽为xm ,则根据题意可列方程为三、解答题15.解方程 x 2-6x+5=016.求证 无论k 取何值,关于x 的方程 210x kx k ++-= 都有两个实数根.17.已知 关于x 的方程2380x mx +-=有一个根是-4,求另一个根及m 的值.18.某超市老板以4800元购进一批玩具.“六一”儿童节期间,按进价增加20%作为销售价,销售了50件,之后把最后几件以低于进价10元作为售价,售完所有玩具.全部售完后共盈利700元,求每个玩具的进价是多少元?19.用配方法解一元二次方程 22310.x x ++=小明同学的解题过程如下解 231x x 022++= 2399102442x x ++-+= 237(x )24+=37x 22+=±137x 2+=-237x 2-=-20.目前,以5G 为代表的战略性新兴产业蓬勃发展,某市2019年底有5G 用户2万户,计划到2021年底5G 用户数达到9.68万户,求这两年全市5G 用户数的年平均增长率.21.如图,某农场有两堵互相垂直的墙,长度分别为27米和15米.该农场打算借这两堵墙建一个长方形饲养场ABCD ,其中AD 和AB 两边借助墙体且不超出墙体,其余部分用 总长45米的木栏围成.中间预留1米宽的通道,在EH 和FG 边上各留1米宽的门.设AB 长x 米.(1)求BC 的长度(用含x 的代数式表示).(2)若饲养场ABCD 的面积为180平方米,求x 的值.22.已知关于x 的一元二次方程x 2-(a +2)x +a +1=0.(1)求证 方程总有两个实数根.(2)若方程的两个根都是正整数,求a 的最小值.23.2022年北京冬奥会吉祥物深受大家的喜欢,某特许零售店的冬奥会吉祥物销售量日益火爆.据统计,该店2022年1月的“冰墩墩”销量为1万件,2022年3月的“冰墩墩”销量为1.21万件.(1)求该店“冰墩墩”销量的月平均增长率;(2)该零售店4月将采用提高售价的方法增加利润,根据市场调研得出结论如果将进价80元的“冰墩墩”按每件100元出售,每天可销售500件,在此基础上售价每涨1元,那么每天的销售量就会减少10件,该零售店要想每天获得12000元的利润,且销量尽可能大,则每件商品的售价应该定为多少元?参考答案1.【答案】B【解析】【解答】解 ∵ 方程x 2+kx -6=0的一个根是-3∴将x=-3代入得9-3k -6=0 解得k=1. 故答案为 B.【分析】根据方程根的概念,将x=-3代入原方程,可得关于字母k 的方程,求解即可.2.【答案】D【解析】【解答】解 设方程的两根为x 1与x 2A 、∵122bx x a+=-=- ∴此选项不符合题意; B 、∵124bx x a+=-= ∴此选项不符合题意; C 、∵1214b x x a +=-=- ∴此选项符合题意; D 、∵124bx x a+=-=- ∴此选项符合题意. 故答案为 D.【分析】设方程的两根为x 1与x 2,然后根据根与系数的关系12bx x a+=-一一判断即可得出答案. 3.【答案】D【解析】【解答】解 ∵关于x 的一元二次方程220x x a ++=有两个不相等的实数根∴44144a a =-⨯⨯=-当a=3时,4444380a -=-⨯=-<方程没有实数根,A 不符合题意; 当a=2时,4444240a -=-⨯=-<方程没有实数根,B 不符合题意; 当a=1时,444410a -=-⨯=方程由两个相等的实根,C 不符合题意; 当a=0时,4444040a -=-⨯=>方程有两个不相等的实数根,D 符合题意. 故答案为 D .【分析】利用一元二次方程根的判别式列出不等式求解即可。
八年级数学下册《一元二次方程》单元检测卷(附答案)

八年级数学下册《一元二次方程》单元检测卷(附答案)一、选择题:(本题包括12小题,每小题3分,共36分) 是一元二次方程,则m 的值为( ) 1.已知关于x 的方程A .1B .﹣1C .±1D .不能确定 2.有下列关于x 的方程:①ax 2+bx+c=0,②3x (x ﹣4)=0,③x 2+y ﹣3=0,④ +x=2,⑤x 3﹣3x+8=0,⑥ x 2﹣5x+7=0,⑦(x ﹣2)(x+5)=x 2﹣1.其中是一元二次方程的有( )个.A .2B .3C .4D .5 3.一元二次方程2660x x --=配方后化为( )A .2(3)15x -= B .2(3)3x -= C. 2(3)15x += D .2(3)3x +=4.一元二次方程(x+1)2﹣2(x ﹣1)2=7的根的情况是( ) A .无实数根 B .有一正根一负根C .有两个正根D .有两个负根5.设1x ,2x 是一元二次方程0322=--x x 的两根,则2221x x +=( )A .6B .8C .10D .126.若关于x 的方程0632=+-m x x 有两个不相等的实数根,则m 的取值范围在数轴上表示正确的是().7.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( ) A .9人 B .10人 C .11人 D .12人8.若x 1,x 2是一元二次方程x 2﹣2x ﹣1=0的两个根,则x 12﹣x 1+x 2的值为( ) A .﹣1 B .0 C .2 D .3 9.等腰三角形三边长分别为2a b 、、,且a b 、是关于x 的一元二次方程2610x x n -+-=的两根,则n 的值为( )A .9B .10C .9或10D .8或1010.若关于x 的一元二次方程0122=++-kb x x 有两个不相等的实数根,则一次函数b kx y +=的大致图象可能是 ( )A B C D 11.某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x 株,则可以列出的方程是( ) A .(3+x )(4﹣0.5x )=15 B .(x+3)(4+0.5x )=15 C .(x+4)(3﹣0.5x )=15 D .(x+1)(4﹣0.5x )=1512.某种植基地2022年蔬菜产量为80吨,预计2023年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x ,则可列方程为( )()032112=++-+x x m mA .80(1+x )2=100B .100(1﹣x )2=80C .80(1+2x )=100 D .80(1+x 2)=100二.填空题(本大题共6个小题,每小题3分,共18分)13.关于x 的一元二次方程22(21)(1)0x k x k +-+-=无实数根,则k 的取值范围为 .14.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m= .15.一个三角形的两边长分别为3和6,第三边长是方程x 2﹣10x+21=0的根,则三角形的周长为 . 16.若m ,n 是方程210x x +-=的两个实数根,则22m m n ++的值为 .17.关于x 的一元二次方程01222=+-+m x x 的两实数根之积为负,则实数m 的取值范围是 .18.将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第 个图形有94个小圆.(用含n 的代数式表示)三、解答题:(共66分)19.解下列方程(每小题4分,满分16分):(1)3x 2-7x =0 ; (2)0432=-+x x(3))5(2)5(2-=-x x (4)22(3)5x x -+=20.(6分)关于x 的方程0832=-+mx x 有一个根是32,求另一个根及m 的值.21.(8分)已知一元二次方程0222=-+-m mx mx . (1)若方程有两实数根,求m 的范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(C)2,-6,-3(D)2,3,6
(3)下列方程是不完全的一元二次方程的是()
(A) (B)
(C) (D)
三、用开平方法解方程:(本题15分)
1、
2、
3、
4、
5、
*6、
四、用配方法解方程:(本题18分)
1、
2、
3、
4、
*5、
*6、
7、用配方法将下列各式化成 的形式
(1)
二、
(1)D(2)C(3)D
三、
1、解
2、解:
3、解3x-1=3-2x 3x-1=2x-3
5x=4
4、解
2x-3=x-3或2x-3=3-x
5、解:
x-2a=±b
6、
x-a=a+b
x-a=-a-b
四、
1、解:
2、解:
3、解
4、解
∴
5、解
6、解
=3a
7、①原式
②原式
五、
1、a=1,b=2,c=-8
2、a=1,b=1,c=-12
八年级数学一元二次方程单元练习题
一、判断下列方程是否是关于x的一元二次方程(本题8分)
(1) ()
(2) ()
(3) (m为实数)()
(4) ()
(5) ()
(6)
(7)
(8) ()
二、选择题:(本题6分)
(1)方程 的常数项是不是()
(A)5(B)3
(C)-3(D)0
(2)方程 化成一般形式,并写出a,b,c的值是()。
∴m=1
则方程为
5、证:∵
∵
∴
即
6、解
由题
∴a=0或a=-1
∵a≠0∴a=-1
∴
3、 ,b=-4,
六、
1、
2、6x+1=0
3、
b=-1
4、(2x+1+(2x+1-3)=0
5、无实根
6、|x|=1 |x|=3
x=±1
七、
1、由题3d+1≠0 d≠
2、解(x+y)(5x-6y)=0
∴x+y=0或5x-6y=0
∴5x=6y
得x=-y
y=x=-1
3、由题
∴n=2或n=3
4、解一根为0
*5、试证明关于x的方程 ,不论a的取何值,该方程都是一元二次方程。
*6、如果关于x的一元二次方程(ax+1)(x-a)=a-2的各项系数之和等于3,求a的值并解此方程。
说明:画*号题做对加30分“√”题为后10名同学必会题
参考答案
一、
(1)是(2)是(3)不(4)是(5)不(6)不(7)是(8)是
(2)
五、用公式法解方程:(本题9分)
1、
2、x(x+1)=12
3、
六、选用适当方法解方程:(本题24分)
1、
2、
3、
4、
5、
6、
七、解答题:(本题20分)
1、当d为何值时,关于x的方程 是一元二次方程。
2、已知: ,求 。
3、要使 与 是同类项,则n的值为多少?
4、关于x的方程(2x-m)(mx+1)=(3x+1)(mx-1)有一个根为零。求m的值并求出另一个根。