周期循环与数表规律

合集下载

奥数知识点总结(非常全面)

奥数知识点总结(非常全面)

小学奥数知识点总结2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

}关键问题:根据题目中的条件确定并求出单一量;4.植树问题5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):!②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

雪帆提示:鸡兔同笼的公式千万不要死记硬背,因为它的变形更多!\6.盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差\③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。

关键问题:确定对象总量和总的组数。

7.牛吃草问题基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。

小学奥数全能解法及训练精讲-周期循环与数表规律

小学奥数全能解法及训练精讲-周期循环与数表规律

平年
闰年
一年有365天。 年份不能被4整 除;如果年份能 被100整除,但 不能被400整除。
一年有366天。 年份能被4整除; 如果年份能被100 整除,则年份必须 能被400整除。
精讲4
解法精讲
典例精析
例1 8名队员围成一圈做传球游戏,从⑴号开始,按顺时针方
向向下一个人传球。在传球的同时,按顺序报数。当报到
76时,球在几号队员手上?

1

8

2
析7
3
6
4
5
答案揭秘
76 ÷8=9 …4 余数是4 球应在4号队员手上。
例2
某年的二月份有五个星期日,这
年六月一日是星期____。
根据4×7=28,这年 二月份应为29天,2 月1日和2月29日均 为星期天,所以3月 1日为星期一。
思路 分析

从三月一日到六月一日共有:
小学奥数全能解法及训练
周期循环与数表规律
精讲1
周期
解法精讲
意义:我们把连续两次出现 所经过的时间叫周期。
现象:事物在运动变化的过程中, 某些特征有规律循环出现。
关键:确定循环周期。
精讲2
解题 思路
1
正确理解 题意,从 中找准变 化规律。
2
利用这些 规律作为 解题的依 据。
3
确定解题 的突破口。
精讲3
12月5日是星期日。
周期循环与数表规律
意义
现象
应用
规律总结
7颗珠子为一个 周期,75颗珠 子总共循环了 10次。
练习2
1989年12月5日是星期二,那么再 过十年的12月5日是星期__日____。

小学奥数30类知识详解

小学奥数30类知识详解

小学奥数30类知识详解1.和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

(完整版)小学奥数知识点汇总大全

(完整版)小学奥数知识点汇总大全

小学数学奥数知识点汇总大全! 1.、小升初奥数知识点(年龄问题的三大特征) ①两个人的年龄差是不变的; ②两个人的年龄是同时增加或者同时减少的; ③两个人的年龄的倍数是发生变化的; 2、小升初奥数知识点(植树问题总结): 基本类型: 在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树。

3、鸡兔同笼问题 基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来; 基本思路: ①设,即假设某种现象存在(甲和乙一样或者乙和甲一样): ②假设后,发生了和题目条件不同的差,找出这个差是多少; ③每个事物造成的差是固定的,从而找出出现这个差的原因; ④再根据这两个差作适当的调整,消去出现的差。

基本公式: ①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数) ②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数) 关键问题:找出总量的差与单位量的差。

4、奥数知识点(盈亏问题) 盈亏问题 基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于 分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量. 基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量. 基本题型: ①一次有余数,另一次不足; 基本公式:总份数=(余数+不足数)÷两次每份数的差 ②当两次都有余数; 基本公式:总份数=(较大余数一较小余数)÷两次每份数的差 ③当两次都不足; 基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差 基本特点:对象总量和总的组数是不变的。

关键问题:确定对象总量和总的组数。

小学数学奥数35个专题题型分类及解题技巧

小学数学奥数35个专题题型分类及解题技巧

小学奥数辅导35个专题汇总1.和差倍问题2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。

关键问题:确定对象总量和总的组数。

7.牛吃草问题基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。

小学数学的30个知识点很简单【满分必备】

小学数学的30个知识点很简单【满分必备】

小学数学的30个知识点很简单【满分必备】小学数学题看起来题目很多,但是知识点也不多,掌握好了这30条知识点,并多加练习,不管试题如何千变万化,都能迎刃而解。

1.倍问题和差问题、和倍问题、差倍问题∙已知条件:几个数的和与差、几个数的和与倍数、几个数的差与倍数∙公式适用范围:已知两个数的和,差,倍数关系∙公式:①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数∙关键问题:求出同一条件下的和与差、和与倍数、差与倍数2.年龄问题的三个基本特征①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点∙问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

∙关键问题:根据题目中的条件确定并求出单一量;4.植树问题∙基本类型:在直线或者不封闭的曲线上植树,两端都植树;在直线或者不封闭的曲线上植树,两端都不植树;在直线或者不封闭的曲线上植树,只有一端植树;封闭曲线上植树。

∙基本公式:棵数=段数+1 棵距×段数=总长棵数=段数-1 棵距×段数=总长棵数=段数棵距×段数=总长∙关键问题:确定所属类型,从而确定棵数与段数的关系。

5.鸡兔同笼问题∙基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来。

∙基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样);②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

∙基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)∙关键问题:找出总量的差与单位量的差。

小学六年级奥数周期循环与数表规律问题专项强化训练题(中难度)

小学六年级奥数周期循环与数表规律问题专项强化训练题(中难度)例题1:某数表如下所示:1, 4, 7, 10, ...若数表继续按照规律进行下去,请写出数表的第20项是多少。

解析:观察数表可知,每一项与前一项的差都是3。

因此,可以得出数表的通项公式为:a(n) = a(n-1) + 3其中,a(n)表示数表的第n项。

根据通项公式,可以得到数表的第20项为:a(20) = a(19) + 3= a(18) + 3 + 3= a(17) + 3 + 3 + 3= ...= a(1) + 3 + 3 + ... + 3 (共19个3)= 1 + 3 * 19= 1 + 57= 58因此,数表的第20项为58。

专项练习题:1:某数表如下所示:2, 5, 8, 11, ...若数表继续按照规律进行下去,请写出数表的第15项是多少。

2:某数表如下所示:10, 13, 16, 19, ...若数表继续按照规律进行下去,请写出数表的第12项是多少。

-1, 4, 9, 14, ...若数表继续按照规律进行下去,请写出数表的第25项是多少。

4:某数表如下所示:3, 8, 13, 18, ...若数表继续按照规律进行下去,请写出数表的第10项是多少。

5:某数表如下所示:-2, 1, 4, 7, ...若数表继续按照规律进行下去,请写出数表的第30项是多少。

6:某数表如下所示:0, 4, 8, 12, ...若数表继续按照规律进行下去,请写出数表的第18项是多少。

7:某数表如下所示:20, 17, 14, 11, ...若数表继续按照规律进行下去,请写出数表的第22项是多少。

8:某数表如下所示:-5, -1, 3, 7, ...若数表继续按照规律进行下去,请写出数表的第16项是多少。

9:某数表如下所示:100, 96, 92, 88, ...若数表继续按照规律进行下去,请写出数表的第24项是多少。

10:某数表如下所示:-12, -8, -4, 0, ...若数表继续按照规律进行下去,请写出数表的第28项是多少。

小学奥数所有知识点大汇总(最全)

1.和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数小学奥数很简单,就这30个知识点和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

小学数学奥数知识点总结

目录一、和差倍问题 (2)二、年龄问题的三个基本特征: (2)三、归一问题的基本特点: (2)四、植树问题 (2)五、鸡兔同笼问题 (2)六、盈亏问题 (3)七、牛吃草问题 (3)八、周期循环与数表规律 (3)九、平均数 (4)十、抽屉原理 (4)十一、定义新运算 (4)十二、数列求和 (4)十三、二进制及其应用 (5)十四、加法乘法原理和几何计数 (5)十五、质数与合数 (6)十六、约数与倍数 (6)十七、数的整除 (7)十八、余数及其应用 (8)十九、余数、同余与周期 (8)二十、分数与百分数的应用 (9)二十一、分数大小的比较 (9)二十二、分数拆分 (10)二十三、完全平方数 (10)二十四、比和比例 (10)二十五、综合行程 (10)二十六、工程问题 (11)二十七、逻辑推理 (11)二十八、几何面积 (12)二十九、立体图形 (12)三十、时钟问题—快慢表问题 (13)三十一、时钟问题—钟面追及 (13)三十二、浓度与配比 (13)三十三、经济问题 (14)三十四、简单方程 (14)三十五、不定方程 (14)三十六、循环小数 (15)一、和差倍问题二、年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;三、归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;四、植树问题五、鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

人教新课标六年级上册数学小学奥数知识点及公式总汇(必背)

小学奥数知识点及公式总汇(必背)1.和差倍问题 22.年龄问题的三个基本特征:3.归一问题的基本特点:4.植树问题5.鸡兔同笼问题6.盈亏问题 37.牛吃草问题8.周期循环与数表规律9.平均数10.抽屉原理 411.定义新运算12.数列求和13.二进制及其应用 514.加法乘法原理和几何计数15.质数与合数 616.约数与倍数17.数的整除718.余数及其应用19.余数、同余与周期20.分数与百分数的应用821.分数大小的比较922.分数拆分23.完全平方数24.比和比例1025.综合行程26.工程问题27.逻辑推理1128.几何面积29.立体图形30.时钟问题—快慢表问题1231.时钟问题—钟面追及32.浓度与配比33.经济问题1333.经济问题34.简单方程35.不定方程36.循环小数141.和差倍问题2①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

6.盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

周期循环与数表规律周期现象:事物在运动变化的过程中,某些特征有规律循环出现。

周期:我们把连续两次出现所经过的时间叫周期。

关键问题:确定循环周期。

闰年:一年有366 天;①年份能被4整除; ②如果年份能被100整除,则年份必须能被400整除;平年:一年有365 天。

①年份不能被4整除; ②如果年份能被100整除,但不能被400整除;基本公式:①平均数= 总数量÷总份数总数量=平均数×总份数总份数=总数量÷平均数②平均数=基准数+每一个数与基准数差的和÷总份数基本算法:①求出总数量以及总份数,利用基本公式①进行计算。

②基准数法:根据给出的数之间的关系,确定一个基准数;一般选与所有数比较接近的数或者中间数为基准数;以基准数为标准,求所有给出数与基准数的差再求出所有差的和;再求出这些差的平均数;最后求这个差的平均数和基准数的和,就是所求的平均数,具体关系见基本公式②。

例题精讲:1. 某年的二月份有五个星期日,这年六月一日是星期_____2. 按下面摆法摆80 个三角形,有 __ 个白色的.3.节日的校园内挂起了一盏盏小电灯,小明看出每两个白灯之间有红、黄、绿各一盏彩灯.也就是说,从第一盏白灯起,每一盏白灯后面都紧接着有 3 盏彩灯,小明想第73 盏灯是 ___ 灯.4. 时针现在表示的时间是14 时正,那么分针旋转1991 周后,时针表示的时间是___ .5. 把自然数1,2,3,4,5 ⋯⋯如表依次排列成 5 列,那么数“1992 ”在___列.6. 把分数4化成小数后,小数点第110 位上的数字是____ .77. 循环小数0.1992517 与0.34567.这两个循环小数在小数点后第____ 位,首次同时出现在该位中的数字都是7.8. 一串数: 1,9,9,1,4,1, 4,1,9,9,1,4,1,4,1,9,9,1,4, ⋯⋯共有1991 个数.(1)其中共有____ 个1, ____ 个9 __ 个4;(2)这些数字的总和是 ____ .9. 7 7 7 ⋯⋯7 所得积末位数是_________ .50 个10. 紧接着1989 后面一串数字,写下的每个数字都是它前面两个数字的乘积的个位数.例如8 9=72,在9后面写2,9 2=18,在2后面写8,⋯⋯得到一串数字:1 9 8 9 2 8 6 ⋯⋯这串数字从 1 开始往右数,第1989 个数字是什么?11. 1991 个1990 相乘所得的积与1990 个1991 相乘所得的积,再相加的和末两位数是多少?12. 设n=2 2 2 ⋯⋯2,那么n 的末两位数字是多少?1991 个13 .在一根长100 厘米的木棍上,自左至右每隔 6 厘米染一个红点,同时自右至左每隔 5 厘米也染一个红点,然后沿红点处将木棍逐段锯开,那么长度是 1 厘米的短木棍有多少根?答案1.因为7 4=28 ,由某年二月份有五个星期日,所以这年二月份应是29 天,且 2 月 1 日与 2 月29 日均为星期日, 3 月 1 日是星期一,所以从这年 3 月 1 日起到这年 6 月 1 日共经过了31+30+31+1=93(天).因为93 7=13⋯2,所以这年6月 1 日是星期二.2.日依题意知,这十年中1992 年、1996 年都是闰年,因此,这十年之中共有365 10+2=3652 (天)因为(3652+1 )7=521⋯6,所以再过十年的12月5日是星期日.[ 注]上述两题(题1—题2)都是推断若干天、若干月或若干年后某一天为星期几,解答这类问题主要依据每周为七天循环的规律,运用周期性解答.在计算天数时, 要根据“四年一闰,整百不闰,四百年才又一闰”的规定,即公历年份不是整百数时,只要是 4 的倍数就是闰年,公历年数为整百数时,必须是400 的倍数才是闰年.3. 39从图中可以看出,三角形按“二黑二白一黑一白”的规律重复排列,也就是这一排列的周期为6,并且每一周期有3个白色三角形.因为80 6=13 ⋯2,而第十四期中前两个三角形都是黑色的,所以共有白色三角形13 3=39(个).4. 白依题意知,电灯的安装排列如下白,红,黄,绿,白,红,黄,绿,白,⋯⋯这一排列是按“白,红,黄,绿”交替循环出现的,也就是这一排列的周期为 4.由73 4=18 ⋯1, 可知第73 盏灯是白灯.5. 13 时.分针旋转一周为 1 小时,旋转1991 周为1991 小时.一天24 小时,1991 24=82⋯23,1991 小时共82 天又23 小时.现在是14 时正,经过82 天仍然是14 时正,再过23 小时,正好是13 时.[注]在圆面上,沿着圆周把1到12 的整数等距排成一个圈,再加上一根长针和一根短针, 就组成了我们天天见到的钟面.钟面虽然是那么的简单平常,但在钟面上却包含着十分有趣的数学问题,周期现象就是其中的一个重要方面.6. 3仔细观察题中数表45(奇数排)1 2 3第一组9876(偶数排)1011121314 (奇数排)第二组18171615 (偶数排)1920212223 (奇数排)第三组27262524 (偶数排)可发现规律如下:(1)连续自然数按每组9 个数,且奇数排自左往右五个数,偶数排自右往左四个数的规律循环排列;(2)观察第二组,第三组,发现奇数排的数如果用9除有如下规律:第1列用9 除余数为1,第2列用9除余数为2,⋯,第5列用9除余数为5.(3)10 9=1⋯1,10在1+1组,第1列19 9=2⋯1,19在2+1组,第1列因为1992 9=221 ⋯3,所以1992 应排列在( 221+1 )=222 组中奇数排第3 列数的位置上.7. 74 =0.57142857 ⋯⋯7它的循环周期是6,具体地六个数依次是5,7,1,4,2,8110 6=18 ⋯2因为余2,第110 个数字是上面列出的六个数中的第 2 个,就是7.. . . .8. 35因为0.1992517 的循环周期是7,0.34567 的循环周期为5,又 5 和7 的最小公倍数是35, 所以两个循环小数在小数点后第35 位,首次同时出现在该位上的数字都是7.9. 853,570,568,8255. 不难看出,这串数每7个数即1,9,9,1,4,1,4 为一个循环,即周期为7,且每个周期中有3 个1,2 个9,2 个4.因为1991 7=284 ⋯3,所以这串数中有284 个周期,加上第285 个周期中的前三个数1,9,9.其中 1 的个数是:3 284+1=853(个),9 的个数是 2 284+2=570(个),4 的个数是 2 284=568(个).这些数字的总和为1 853+9 570+4 568=8255.10. 9先找出积的末位数的变化规律:71末位数为7,7 2末位数为9,73末位数为3, 74末位数1;75=74+1末位数为7,76=74+2末位数为9,77=74+3末位数为3,78=742末位数为1⋯⋯由此可见,积的末位依次为7,9 ,3,1,7,9,3,1⋯⋯,以 4 为周期循环出现.因为50 4=12⋯2,即750= 74 12 2,所以750与72末位数相同,也就是积的末位数是9.11. 依照题述规则多写几个数字:1989286884286884 ⋯⋯可见1989 后面的数总是不断循环重复出现286884 ,每 6 个一组,即循环周期为 6.因为(1989-4) 6=330⋯5,所以所求数字是8.12. 1991 个1990 相乘所得的积末两位是0,我们只需考察1990 个1991 相乘的积末两位数即可.1 个1991 末两位数是91,2 个1991 相乘的积末两位数是81,3 个1991 相乘的积末两位数是71,4 个至10 个1991 相乘的积的末两位数分别是61,51,41,31,21,11,01,11 个1991 相乘积的末两位数字是91 ,⋯⋯,由此可见,每10 个1991 相乘的末两位数字重复出现,即周期为10.因为1990 10=199, 所以1990 个1991 相乘积的末两位数是01, 即所求结果是01.13. n是1991 个2的连乘积,可记为n=21991,首先从2的较低次幂入手寻找规律,列表如下:观察上表,容易发现自22开始每隔20个2的连乘积,末两位数字就重复出现, 周期为20.因为1990 20=99 ⋯10,所以21991与211的末两位数字相同,由上表知211的十位数字是4,个位数字是8.所以,n 的末两位数字是48.14. 因为100 能被 5 整除,所以自右至左染色也就是自左至右染色.于是我们可以看作是从同一端点染色.6与5的最小公倍数是30,即在30 厘米的地方,同时染上红色,这样染色就会出现循环 ,每一周的长度是 30 厘米 ,如下图所示 .6 12 18 24 30 . . .. . 5 10 15 20 25由图示可知长 1 厘米的短木棍 ,每一周期中有两段 ,如第 1 周期中,6-5=1,5 5-6 4=1. 剩余 10 厘米中有一段 .所以锯开后长 1 厘米的短木棍共有7 段 . 综合算式为 :2 [(100-10) 30]+1 =2 3+1 =7(段)[注 ]解决这一问题的关键是根据整除性把自右向左每隔 5 厘米的染色 ,转化为自左向右的染色 ,便于利用最小公倍数发现周期现象 ,化难为易 .961009.0 9.5 100。

相关文档
最新文档