2015-2016学年第二学期高一期中考试数学试题(理科)

合集下载

浙江省宁海中学2015-2016学年高一下学期期中考试数学试卷Word版含答案

浙江省宁海中学2015-2016学年高一下学期期中考试数学试卷Word版含答案

宁海中学 高一期中考试数学试题卷一.选择题(每小题5分,共40分)1.在等差数列{}n a 中,已知120a =,前n 项和为n S 且813S S =,当n S 取得最大时n 的值为( )A .9B .10C .12D .10或112.关于x 的不等式,2|1||2|1x x a a -+-≤++的解集为空集,则a 的取值范围为( )A .(0,1)B .(-1,0)C .(1,2)D .(,1)-∞-3.已知5sin()413x π+=-,则sin 2x 的值等于( )A .120169B .119169C .120169-D .119169-4.在ABC ∆中2cos 22B a c c+=(a 、b 、c 分别为角A 、B 、C 的对边),则ABC ∆的形状为( )A .正三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形 5.在数列{}n a 中,1112,n(1)n n a a a l n+==++,则n a 等于( )A .2n l n +B .2(1)n n l n +-C . 2n nl n +D .1n n l n ++ 6.已知正项等比数列{}n a 满足7652a a a =+,若存在两项,m n a a14a =,则14m n+的最小值为( )A .32 B .53 C .256D .不存在 7.设0,0a b >>,则以下不等式中不恒成立是( )A .|1||5|6x x --+≤B .3322a b ab +≥C .22222a b a b ++≥+ D≥ 8.数列{}n a 的通项公式为2n a kn n =+满足12345a a a a a <<<<,且1n n a a +>对8n ≥恒成立,则实数k 的取值范围是( ) A .11(,)317--B .11(,)917--C .11(,)311--D .11(,)911-- 二.填空题(第9题每空2分,10-12题每空3分,13-15题每空4分,共36分) 9.α为第三象限角,3cos 25α=-,则s i n 2_______α=,tan(2)_________4πα+=,在以sin 2α为首项,tan(2)4πα+为公差的等差数列{}n a 中,其前n 项和达到最大时__________.n =10.设,a b 都是正数,且22260a b a b +--=,则11a b+的最小值为__________,此时ab 值为__________.11.在四边形ABCD 中,已知,AD DC AB BC ⊥⊥,1,2,120AB AD BAD ==∠=︒,则______,_______.BD AC ==二O 一 五学年第 二 学 期12.已知数列{}n a 满足111,31nn n a a a a +==+,则_________n a =,若1n n nb a a +=,则n b 的前n 项和为_____________.13.数列{}n a 的前n 项和为n S 数列{}n a 的各项按如下规则排列11212312,,,,,,,23344455, 341,,,556若存在正整数k ,使110,10k k S S +<≥,则__________.k a =14.已知αβ、均为钝角,sin αβ==,则_________.αβ+= 15.关于x 的不等式229|3|x x x kx ++-≥在[1,5]上恒成立,则实数k 的取值范围为____________. 三.解答题16.已知函数()2cos (sin cos )f x x x x =+. (1)求5()4f π的值; (2)求函数()f x 的最小正周期及单调递增区间.17.已知实数a 满足不等式|2|2a +<,解关于x 的不等式(1)(1)0.ax x +->18.在ABC ∆中,a b c 、、分别为内角A 、B 、C 所对边,且2sin (2)sin a A b c B =+(2)sin c b C ++. (1)求A 的大小;(2)求sin sin B C +的最大值.19.设a R ∈函数2() (||1)f x ax bx a x =+-≤. (1)若|(0)|1f ≤,|(1)|1f ≤求证5|()|4f x ≤; (2)当1b =,若()f x 的最大值为178,求实数a 的值.20.设各项均为正数的数列{}n a 的前n 项和为n S ,已知2132a a a =+数列是公差为1的等差数列,数列{}n b 满足1111,,22n n n b b b n++==,记数列{}n b 的前n 项和为n T . (1)求数列{}n a 、{}n b 的通项公式及前n 项和; (2λ≤恒成立,求实数λ的取值范围.宁海中学 高一期中考试数学答案一.选择题(每题5分,共40分)二.填空题(9、10、11、12每题6分,其余每题4分共36分) 9.45 17- 6 10. 11.12.132n -31n n + 13. 57 14. 74π15. (]10.6-三.解答题:(第16题14分,其余各题均15分,共74分.) 16.解(1)2()2sin cos 2cos 2cos 21f x x x x Sin x x =+=++2)14x =++二O 一 五学年第 一 学 期552()sin()124244f πππ∴=+=+=(2)())4f x x π=+ T π∴=222242k x k πλλππ-≤+≤+K Z ∈388k x k ππππ∴-≤≤+ K Z ∈单调递增区间为3,88k k πλππ⎡⎤-+⎢⎥⎣⎦ K Z ∈ 17.解(2)2a +< 40a ∴-<<(1)(1)0a x x +-= 11x ∴= 21x a=- 1110a a a++=> 1a <-或0a >41a ∴-<<-当的不等式解集为1(,1)a -当10a -<<的不等式解集为1(1,)a-当0a =时 不等式解集为∅ 18.解(1)由条件的222222a b bc c bc =+++ 222a b c bc ∴=++又2222a b c bc =+- c o s A 1c o s2A ∴=- 120A =︒ (2)120A =︒ 60BC ∴+=︒1sin sin sin sin(60)sin sin 2B C B B B B B ∴+=+︒-=-1sin sin(60)2B B B =+=+︒ 060B ︒<<︒ 6060120B ∴︒<+︒<︒ ∴当30B =︒时 sin sin B C +的最大值为1 19.(1)证:(0)1f a =≤ (1)1f b =≤22()(1)1f x a x bx a x b x ∴=-+≤-+ 21x x =-+ 11x -≤≤ 2215()1()24f x x x x ∴=-+=--+5()4f x ∴≤(2)解:1b =当1a ≤时 5()4f x ≤()f x 的最大值为178矛盾 1a ∴> 当1a >时1( 1.0)2a -∈- ()f x ∴在1(1,)2a--是减函数 1(,1)2a -是增函数(1)1f = (1)1f -=- max ()(1)1f x f ∴==不符题意当1a <-时 1(10,1)2a -- ()f x ∴在1(1,)2a--是增函数在1(,1)2a -是减函数 m a x1117()()248f x f a a a ∴=-=--= 28217a a --= 即281720a a ++= 18a ∴=-或2a =-1a <- 2a ∴=-20.解:(1){}nS 是公差为1的等差数列 (1)n +-2132a a a =+ 212333a a a a S ∴=++=2133()S S S ∴-= ))222312⎡⎤∴+-=⎢⎥⎣⎦11)(4)a =+110a ∴-= 11a ∴= n =2n S n = 21n a n =- *n N ∈1112n n b b n n +=+ 112b = 1()2n n b n ∴= 1()2nn b n ∴= 可得222n n n T +∴=-(2)令2()2nn nf n +==222111(1)(1)2(2)(1)(1)()2222n n n n n n n n n n n n f n f n +++++++-++-++-=-==- 3n ∴≥时 (1)()0f n f n +-< 2n <时 (1)()0f n f n +-> (1)(2)(3)(4)(5)f f f f f ∴<=>>>m a x3()(2)(3)2f n f f ∴=== 32λ∴≥。

内蒙古包头市第一中学2015-2016学年高二数学下学期期中试题 理

内蒙古包头市第一中学2015-2016学年高二数学下学期期中试题 理

包头一中2015-2016学年第二学期期中考试试题高二理科数学一. 选择题(每题5分,共60分)1. 已知函数f (x )的导函数()x f '的图像如左图所示,那么函数()x f 的图像最有可能的是( )2.某学校安排甲、乙、丙、丁四位同学参加数学、物理、化学竞赛,要求每位同学仅报一科,每科至少有一位同学参加,且甲、乙不能参加同一学科,则不同的安排方法有( ) A .36种B .30种C .24种D .6种3. 展开式第2项和第8项的二项式系数相等,则其展开式的各项系数和为( ) A. B . C. D.4.以正六面体的顶点为顶点的四面体个数是( ) A. 70 B. 64 C. 62 D. 585. 若函数()ln f x x a x =+不是单调函数,则实数a 的取值范围是( ). A .[)0,+∞ B .(],0-∞ C .(),0-∞ D .()0,+∞6.展开式中,项的系数是( ) A. 28 B. -28 C. 0 D . 847.坐标平面内随意放入一点,当该点落入正方形OABC 内时,恰落入阴影部分的概率是( ) A. B. C. D.8.北方两毗邻城市A,B 在一个供暖季(180天)空气重度污染天数20天,18天.两城市同时污染的天数15天.则某天A 市空气重度污染时,B 市空气也重度污染的概率是( ) A. B. C. D.9.设()f x 、()g x 分别是定义在R 上的奇函数和偶函数,当0x <时,''()()()()0f x g x f x g x +>且(3)0g =,则不等式()()0f x g x <的解集是( ) A .(3,0)(3,)-+∞ B .(3,0)(0,3)- C .(,3)(3,)-∞-+∞ D .(,3)(0,3)-∞-10. 高二1班周一上午排语文,数学,物理,化学,生物5节课.若数学和物理不相邻,生物与化学必须相邻的不同排课方法有( ) 种. A. 12 B. 18 C. 24 D . 4811. 在三次独立重复试验中,事件A 在每次试验中发生的概率相同,若事件A 至少发生一次的概率为6364,则事件A 恰好发生一次的概率为( ) A.14 B.34 C.964 D.2764 12. 下列积分值等于1的是( )A .B .C .D .二. 填空题(每题5分,共20分)13. 设随机变量()~,B n p ξ,若()E =2.4ξ,()D =1.44ξ,则 n=________,p=___________14. 已知),2(3)(2f x x x f '+=则=')1(f .15. 的二项式系数最大值为a , 的二项式系数最大值为b .若17a = 9b .则n=_____________.16. 5名学生随意从四所大学中选择一所参加自主招生考试, 恰有一所大学没有这5名学生选择的概率是______________.(用最简分数表示)三.解答题17.(本题10分) 在x=1处有极值 (1) 求(2) 求单调区间.18.(本题12分)某班有8个学习小组,每组都有3名女生, 2名男生; 每小组都任选3人参加问卷调查.(1) 求第一小组选出的3人中女生人数的分布列并求该小组既有男生又有女生的概率; (2) 求这8个小组不超过2个小组选出的学生全是女生的概率.19.(实验班做,12分) ,(1) 求f(x)的极值; (2) 求的取值范围.19.(12分,平行班做) ,(1)求f(x)的极值; (2)求的取值范围.20.(12分,实验班做)某校举办的数学嘉年华活动中,设计了如下有奖闯关游戏:参赛选手按第一关、第二关、第三关的顺序依次闯关,若闯关成功,分别获得5个学豆、10个学豆、20个学豆的奖励,游戏还规定,当选手闯过一关后,可以选择带走相应的学豆,结束游戏;也可以选择继续闯下一关,若有任何一关没有闯关成功,则全部学豆归零,游戏结束。

江苏省南京市鼓楼区2015-2016学年高一下学期期中考试数学试题 含答案

江苏省南京市鼓楼区2015-2016学年高一下学期期中考试数学试题 含答案

高一(下)期中考试数学试卷注意事项:1.本试卷共4页,包括填空题(第1题~第14题)、解答题(第15题~第20题)两部分.满分为160分,考试时间为120分钟.2.答题前,考生务必将自己的学校、姓名、考试号写在答题卡上.试题的答案写在答题卡的对应区域内.考试结束后,交回答题卡.一、填空题:本大题共14小题,每小题5分,共70分,请把答案填写在答题卡相应位置上.1.cos 75°=.2.sin 14°cos 16°+cos 14°sin 16°=.3.在平面直角坐标系内,若角α的终边经过点P(1,-2),则sin2α=.4.在△ABC中,若AC=错误!,∠A=45°,∠C=75°,则BC=.5.在△ABC中,若sin A︰sin B︰sin C=3︰2︰4,则cos C=.6.设等差数列{a n}的前n项和为S n,若a1=2,S3=12,则a6=.7.若等比数列{a n}满足a1+a3=5,a3+a5=20,则a5+a7=.8.若关于x的不等式ax2+x+b>0的解集是(-1,2),则a+b =.9.若关于x的不等式1+错误!≤0的解集是[-2,1),则k=.10.若数列{a n}满足a11=错误!,错误!-错误!=5(n∈N*),则a1=.11.已知正数a,b满足错误!+错误!=2,则a+b的最小值是.12.下列四个数中,正数的个数是.①错误!-错误!,a>b>0,m>0;②(n+3+错误!)-(错误!+错误!),n∈N*;③2(a2+b2)-(a+b) 2,a,b∈R;④错误!-2,x∈R.13.在斜三角形ABC中,角A,B,C所对的边分别为a,b,c,若错误!+tan Ctan B=1,则错误!=.14.若数列{a n}的前n项和S n=2n,则a1+2 a2+3 a3+…+n a n=.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本题满分14分)设f(x)=x2-(t+1)x+t (t,x∈R).(1)当t=3时,求不等式f(x)>0的解集;(2)已知f(x)≥0对一切实数x成立,求t的值.16.(本题满分14分)设函数f(x)=2cos2 x+2错误!sin x cos x(x∈R).(1)求函数f(x)的最小正周期;(2)在0<x≤错误!的条件下,求f(x)的取值范围.17.(本题满分14分)在△ABC中,a,b,c分别为角A,B,C的对边,且cos(B-C)-2sin B sin C=-错误!。

高一下学期期中数学试卷及答案(共3套)

高一下学期期中数学试卷及答案(共3套)

第二学期期中考试高一年级数学试题卷本试卷共22小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生先检查试卷与答题卷是否整洁无缺损,并用黑色字迹的签字笔在答题卷指定位置填写自己的班级、姓名、学号和座位号。

2.选择题每小题选出答案后,请将答案填写在答题卷上对应的题目序号后,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上。

不按要求填涂的,答案无效。

3.非选择题必须用黑色字迹的签字笔作答,答案必须写在答题卷各题目指定区域内相应位置上,请注意每题答题空间,预先合理安排;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.考生必须保持答题卷的整洁,考试结束后,将答题卷交回。

一、选择题:本大题共12小题,每小题5分,满分60分.1.设(1,2)a =-,(3,4)b =-,(3,2)=c ,则(2)a b c +⋅=(A )(15,12)- (B )0 (C )3- (D )11- 2.已知向量()3,1a =,向量(),3b =-x ,且a b ⊥,则x = (A )-3(B )-1(C )1 (D )33.已知向量a 和b 满足212-=⋅b a ,4=a ,a 和b 的夹角为︒135,则b 为 (A )12 (B )3(C )6(D )334.已知四边形ABCD 的三个顶点(02)A ,,(12)B --,,(31)C ,,且2BC AD =,则顶点D 的坐标为 (A )722⎛⎫ ⎪⎝⎭,(B )122⎛⎫-⎪⎝⎭, (C )(32), (D )(13),5.单位向量a 和b 的夹角为π3,则 ||-a b =(A (B )1 (C (D )26.在直角梯形ABCD 中,已知BC ∥AD ,AB AD ⊥,4AB =,2BC =,4AD =,若P 为CD 的中点,则PA PB ⋅的值为(A )5- (B )4- (C )4 (D )5 7.︒︒+︒︒313sin 253sin 223sin 163sin 等于 (A )21-(B )21 (C )23- (D )238.函数2π2cos 14y x ⎛⎫=-- ⎪⎝⎭是 (A )最小正周期为π的奇函数 (B )最小正周期为π的偶函数 (C )最小正周期为2π的奇函数 (D )最小正周期为2π的偶函数 9.设()πsin 26f x x ⎛⎫=+ ⎪⎝⎭,则()f x 的图象的一条对称轴的方程是(A )π9x =(B )π6x =(C )π3x =(D )π2x =10.把函数()sin y x x R =∈的图象上所有的点向左平移6π个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到的图象所表示的函数为 (A )sin 2,3y x x R π⎛⎫=-∈ ⎪⎝⎭(B )sin 2,3y x x R π⎛⎫=+∈ ⎪⎝⎭(C )1sin ,26y x x R π⎛⎫=+∈⎪⎝⎭(D )1sin ,26y x x R π⎛⎫=-∈⎪⎝⎭11.已知函数()π()sin (0,0,)2f x A x A ωϕωϕ=+>><的部分图象如图所示,则ϕ=(A ) 4π-(B ) 6π(C )3π (D )125π12.如果函数3cos(2)y x ϕ=+的图象关于点4π(,0)3中心对称,那么||ϕ的最小值为 (A )6π (B )4π (C )3π (D) 2π二、填空题:本大题共4小题,每小题5分,满分20分.13.平面向量a 与b 的夹角为60︒,(2,0)=a ,1=b ,则+=a b . 14.已知(cos ,2)x =a ,(2sin ,3)x =b ,a b ∥,则2sin 22cos x x - . 15.已知α为锐角,且3c o s 45απ⎛⎫+= ⎪⎝⎭,则 sin α= . 16.如图,在矩形ABCD 中,AB =2,BC =2,点E 为BC 的中点,点F 在边CD 上,若AB ·AF =2,则AE ·BF 的值是________.三、解答题:本大题共6小题,满分70分.17.(本小题满分10分)已知||1=a ,||=b (Ⅰ)若a b ∥,求⋅a b ;(Ⅱ)若-a b 与a 垂直,求a 与b 的夹角.18. (本小题满分12分)已知a 、b 、c 是同一平面内的三个向量,其中(1,2)=a .(Ⅰ)若||=c a c ∥,求c 的坐标; (Ⅱ)若||=b ,且2+a b 与2-a b 垂直,求a 与b 的夹角θ.(第16题图)设a 与b 是两个不共线的非零向量(R t ∈).(Ⅰ)记OA =a ,OB t =b ,1()3OC =+a b ,那么当实数t 为何值时,A 、B 、C 三点共线?(Ⅱ)若||||1==a b ,且a 与b 的夹角为120︒,那么实数x 为何值时||x -a b 的值最小?20.(本题满分12分)已知函数())22sin cos 0f x x x x ωωωω=->,直线12,x x x x ==是函数()y f x =的图象的任意两条对称轴,且12x x -的最小值为2π. (Ⅰ)求ω的值;(Ⅱ)求函数()f x 的单调增区间; (III )若()23f α=,求5sin 46πα⎛⎫- ⎪⎝⎭的值.已知 错误!未找到引用源。

重庆市第八中学2018年高一数学下册期中检测题

重庆市第八中学2018年高一数学下册期中检测题

重庆八中2015—2016学年度(下)半期考试高一年级数 学 试 题命题:邱长江 陈发帮 审核:李小平 打印:陈发帮 校对:邱长江第I 卷(选择题 共60分)一. 选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项是符合题目要求的. 1.在数列1,1,2,3,5,8,,21,34,55,...x 中,x =( )A.11B.12C.13D.14 2.若等差数列{}n a 中,79416,1a a a +==,则12a的值是( )A.15B.30C.31D.64 3.0000sin130cos10sin 40sin10+=( ) A. C.12- D.12已知2,,,AB BC OA a OB b OC c ====,则下列等式中成立的是(A.31c b a =- B.2c b a =-C.2c a b =-D.3122c a b =-5.若2sin 23α=,则2sin ()4α-=( )A.23 B.12 C.13 D.166.若钝角三角形ABC 的面积为12,且1,AB BC =则AC =( ) 5 C.2 D.17.在四边形ABCD 中,(1,2)AC =,(4,2)BD =-,则该四边形的面积为( ) 8.若等差数列{}n a 的前n 项和2n S n =,则2241n n S a ++的最小值为( )A .题4图9.已知平面向量,a b 满足:||1,||2,a b a b ==与的夹角为3π.若ABC ∆中22,26AB a b AC a b =+=-,D 为边BC 的中点,则||AD =( )A.12B.5D.10.在ABC ∆中,内角,B C 对的边分别为b c ,.若2C B =,则cb的取值范围为( ) A.[2,2]- B.1(,1)2C.(0,2)D.(1,2)11.在ABC ∆中,内角,,A B C 的对边分别为,,a b c .若2220b c bc a ++-=,则0sin(30)=a Cb c--( ) A.12C.12-D.2-12.在ABC ∆中,003AP P B =,0120,2C AC ∠==.且对于边AB 上任意一点P ,当且仅当P 在0P 时,PB PC ⋅取得最小值,则下列结论一定正确的是( ) A.045BAC ∠=B.ABC S ∆=C.AC BC =D.AB =第Ⅱ卷(非选择题 共90分)二.填空题:本大题共4小题,每小题5分,共20分,把答案填写在答题卡相应位置上.13.若数列,1,,7a b 是等差数列,则ba= .14.若平面向量a 与b 满足:||2,||1a b ==,||7a b +=,则a 与b 的夹角为 . 15.若022ππβα-<<<<,1cos()43πα+=,cos()42πβ-=,则cos()2βα+= .16.如图,在ABC ∆中,D 是边BC 上一点,AB =2AD AC =,1cos 3BAD ∠=,则sin C = .AB DC题16图三. 解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分10分.)已知等差数列{}n a 满足:3577,26.{}n a a a a =+=的前n 项和为.n S (Ⅰ)求n a 及n S ; (Ⅱ)令()nn S b n N n+=∈,求证:数列{}n b 为等差数列.18.(本小题满分12分.)已知平面内三个向量:(3,2),(1,2),(4,1).a b c ==-= (Ⅰ)若()//(2)a kc b a +-,求实数k 的值;(Ⅱ)设(,)d x y =,且满足()()a b d c +⊥-,||5d c -=,求d .19.(本小题满分12分.) 已知3110,tan 4tan 3παπαα<<+=-. (Ⅰ)求tan α的值; (Ⅱ)求225sin 8sincos11cos 822222ααααπα++-⎛⎫- ⎪⎝⎭的值.20.(本小题满分12分.)如图,,A B是海面上位于东西方向相距5(3+海里的两个观测点,现位于A 点北偏东045,B 点北偏西060的D 点有一艘轮船发出求救信号,位于B 点南偏西060且与B点相距C 点的救援船立即前往营救,其航行速度为30海里/小时,则该救援船达到D 点需要多长时间?21.(本小题满分12分.)在ABC ∆中,角,,A B C 的对边分别为c b a ,,,且满足2sin()6b C ac π+=+.(Ⅰ)求角B 的大小; (Ⅱ)若点M 为BC 中点,且AM AC =,求sin BAC ∠.题20图22.(本小题满分12分.)已知函数1()sin[()](01)3f x x ωπω=+<<的部分图像如图所示,其中P 为函数图像的最高点,,A B 是函数图像与x 轴的相邻两个交点,且1tan .2APB ∠= (Ⅰ)求函数()f x 的解析式;(Ⅱ)已知角,,αβθ满足:2121()()333f f αβππ-⋅-=,且3,tan 2.4παβθ+== 求sin()sin()cos 2θαθβθ++的值.x重庆八中2015—2016学年度(下)半期考试高一年级数学试题参考答案及评分标准一.选择题13. 2 14. 060三.解答题17.解:(1)由题意有,112721026a d a d +=⎧⎨+=⎩132a d =⎧⇒⎨=⎩21,(2)n n a n S n n ⇒=+=+...................5分 (2)(2)2n n S n n b n n n+===+,又12(1)1(n 2)n n b b n n --=+-+=≥, 所以,数列{}n b 为等差数列. ...................10分18.解:(1)因为(3,2)k(4,1)(34k,2k)a kc +=+=++,2(5,2)b a -=-,又()//(2)a kc b a +-, 所以162(34k)5(2k)0k .13+++=⇒=-. ..................6分 (2)因为(2,4),(4,1)a b d c x y +=-=--,所以222(4)4(1)06202(4)(1)5x y x x y y x y -+-===⎧⎧⎧⇒⎨⎨⎨==-+-=⎩⎩⎩或. ...................11分故(6,0)(2,2).d =或 (12)分19.解:(Ⅰ)由110tan tan 3αα+=-得23tan 10tan 30αα++=, 即tan 3α=-,或1t a n 3α=-, (5)分又34παπ<<,1tan 3α=-. ...................6分(Ⅱ)原式1-cos 1+cos 54sin 118ααα++-分=...................11分=. ...................12分20.解:在ABD ∆中,0006045105ADB ∠=+=, 由正弦定理可得:0sin sin 45AB BDADB =∠,sin 45BDBD =⇒= ...................5分在BCD ∆中,060CBD ∠=,由余弦定理可知:2222cos CD BD CB BD CB CBD =+-⋅⋅⋅∠,即22202cos60900CD =+-⋅=,故30CD =....................10分 所以130CDt ==(小时),救援船到达D 点需要1小时时间. ...........12分21.解答:(Ⅰ)12sin (sin cos )sin sin 2B C C A C ⋅=+...................2分sin sin cos sin sin sin cos cos sin sin B C B C A C B C B C C +=+=++, ..................4分sin cos sin sin B C B C C =+,cos 1B B =+,所以2sin()16B π-=,得3B π=. ………6分(Ⅱ)解法一:取CM 中点D ,连AD ,则AD CM ⊥,则CD x =,则3BD x =, 由(Ⅰ)知3B π=,,AD AC ∴=∴=,. (9)分由正弦定理知,4sin x BAC =∠sin BAC ∠=. ………12分解法二:由(Ⅰ)知3B π=,又M 为BC 中点,2a BM MC ∴==.在ABM ∆和ABC ∆中,由余弦定理分别得:22222()2cos ,2242a a a ac AM c c B c =+-⋅⋅⋅=+- 222222cos ,AC a c ac B a c ac =+-⋅=+-又AM AC =,2242a ac c ∴+-=22,a c ac +-3,2a c b ∴=∴=由正弦定理知:sin a BAC =∠sin BAC ∠=.22.(1)过点P 作PQ x ⊥轴于点Q ,设()f x 的周期为T ,则31tan tan 144tan tan()1tan tan 2144T TQPB QPA APB QPB QPA QPB QPA T T -∠-∠∠=∠-∠===+∠⋅∠+⋅ 解得443T T ==或,所以13=22ω或(舍),. ..................3分 所以()sin()26f x x ππ=+. ...................4分(2)由2121()()333f f αβππ-⋅-=得, sin sin αβ=又3,4παβ+=...................5分所以cos cos sin sin αβαβ-=cos cos αβ= 22sin()sin()(sin cos cos sin )(sin cos cos sin )cos 2cos sin θαθβθαθαθβθβθθθ++++=-2222sin cos cos sin cos (sin cos cos sin )cos sin cos cos sin θαβθθαβαβθαβθθ+++=-2222cos 623cos sin θθθθθθ++=-22tan 6231tan θθθ+=-. ..................11分9=-...................12分重庆八中2015-2016学年度(下)半期考试高一年级历 史 试 卷一、选择题(本大题共12小题。

高一数学必修三测试题含答案

高一数学必修三测试题含答案

宜阳县艺术学校2015-2016学年第二学期高一月考数学试题一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.算法共有三种逻辑结构,即顺序结构、条件结构和循环结构. 下列说法中,正确的是( )A .一个算法只能含有一种逻辑结果B .一个算法最多可以包含两种逻辑结构C .一个算法必须含有上述三种逻辑结构D .一个算法可以含有上述三种逻辑结构的任意组合 [答案] D2.下列赋值语句错误的是( )A .i =i -1B .m =m 2+1C .k =-1kD .x*y =a[答案] D[解析] 执行i =i -1后,i 的值比原来小1,则A 正确;执行m =m 2+1后,m 的值等于原来m 的平方再加1,则B 正确; 执行k =-1k 后,k 的值是原来的负倒数,则C 正确;赋值号的左边只能是一个变量,则D 错误. 3.计算机执行右边的程序段后,输出的结果是( ) A .1,3 B .4,1 C .4,-2 D .6,0[答案] B[解析] 把1赋给变量a ,把3赋给变量b ,由语句“a =a +b ”得a =4,即把4赋给定量a , 由语句“b =a -b ”得b =1,即把1赋给变量b , 输出a ,b ,即输出4,1.4.执行下图的程序框图,若输入的a ,b ,k 分别为1,2,3,则输出的M =( )学校 班级 姓名 考号************************密**********************封***********************线**********************密************************封**A.203 B .165 C.72 D .158 [答案] D[解析] 输入a =1,b =2,k =3,n =1时, M =1+12=32,a =2,b =32;n =2时;M =2+23=83,a =32,b =83;n =3时;M =32+38=158,a =83,b =158;n =4时;输出M =158,选D.5.(2014全国高考重庆卷)执行如图所示的程序框图,若输出k 的值为6,则判断框内可填入的条件是( )A .21>S B .57>SC .107>SD .54>S[答案] C[解析] ∵10787981091=⨯⨯⨯=S ,∴选C.6.下列各进位制数中,最大的数是( )A .11111(2)B .1221(3)C .312(4)D .56(8)[答案] C[解析] 11111(2)=1×24+1×23+1×22+1×21+1=31, 1221(3)=1×33+2×32+2×3+1=52, 312(4)=3×42+1×4+2=54, 56(8)=5×8+6=46,故选C.7.用秦九韶算法求多项式f (x )=4x 5-x 2+2当x =3时的值时,需要________次乘法运算和________次加法(或减法)运算.( )A .4,2B .5,3C .5,2D .6,2 [答案] C[解析] f (x )=4x 5-x 2+2=(((4x )x )x -1)x )x +2, 所以需要5次乘法程算和2次加法(或减法)运算.8.利用秦九韶算法计算f (x )=x 5+2x 4+3x 3+4x 2+5x +6在x =5时的值为( ) A .4881 B .220 C .975 D .4818 [答案] A[解析] 依据秦九韶算法,把多项式改写为f (x )=((((x +2)x +3)x +4)x +5)x +6. 按照从内到外的顺序,依次计算x =5时的值: v 0=1;v 1=1×5+2=7; v 2=7×5+3=38; v 3=38×5+4=194; v 4=194×5+5=975;v 5=975×5+6=4881. 故f (5)=4881.9.从2007名学生中选取50名参加全国数学联赛,若采用下面的方法选取: 先用简单随机抽样从2007人中剔除7人,剩下的2000人再按系统抽样的 方法抽取,则每人入选的可能性( )A .不全相等B .均不相等C .都相等,且为502007D .都相等,且为140[答案] C10.(2013~2014·山东淄博一模)某程序框图如图所示, 现输入如下四个函数:f (x )=x 2,f (x )=1x ,f (x )=e x ,f (x )=x 3,则可以输出的函数是( ) A .f (x )=x 2B .f (x )=1xC .f (x )=e xD .f (x )=x 3[答案] D[解析] 由程序框图知,输出的函数应该即是奇函数,又存在零点.故选D.11.甲、乙两名运动员在某项测试中的6次成绩的茎叶图如图所示,x 1,x 2分别表示甲、乙两名运动员这项测试成绩的平均数,2221s s 、分别表示甲、乙两名运动员这项测试成绩的方差,则有( )A .222121,s s x x <> 222121,s s x x >= C .222121,s s x x == D .222121,s s x x <=[答案] D[解析] 本题主要考查茎叶图中均值和方差的计算.根据题意,由甲、乙两名运动员在某项测试中的6次成绩的茎叶图,知x 1=9+14+15+15+16+216=15, x 2=8+13+15+15+17+226=15,s 21=16[(-6)2+(-1)2+02+02+12+62]=373, s 22=16[(-7)2+(-2)2+02+02+22+72]=533, 所以s 21<s 22,故选D.12.如图1是某高三学生进入高中-二年来的数学考试成绩茎叶图,第1次到第14次的考试成绩依次记为A 1,A 2,…,A 14.如图2是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图.那么算法流程图输出的结果是( )A .7B .8C .9D .10 [答案] D[解析] 本题考查循环结构以及茎叶图.解决此类问题的关键是弄清算法流程图的含义, 分析程序中各变量、各语句的作用.根据流程图所示的顺序,可知该程序的作用 是累计14次考试成绩超过90分的次数.根据茎叶图可得超过90分的次数为10,二、填空题(本大题共4小题,每小题5分,共20分.)13.217与155的最大公约数是________. [答案] 31[解析]217=155×1+62,155=62×2+31,62=31×2,∴217与155的最大公约数为31. 14.用秦九韶算法计算多项式f(x)=x6-12x5+60x4-160x3+240x2-192x+64当x=2时的值时,v4的值为________.[答案]80[解析]v0=1,v1=v0x+a5=1×2-12=-10,v2=v1x+a4=-10×2+60=40,v3=v2x+a3=40×2-160=-80,v4=v3x+a2=-80×2+240=80.15.某工厂要对某批次产品进行质量抽检,现将从800件产品中抽取60件,在利用随机数表抽取样本时,将800件产品按000,001,…,799进行编号,如果从随机数表第8行第7列的数开始向右读,请你依次写出最先检验的5件产品的编号是________(下面摘取了随机数表的第7行至第9行).84 42 17 53 3157 24 55 06 8877 04 74 47 67217633 50 2583 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 8673 58 0744 39 52 38 7933 2112 34 2978 64 56 07 8252 42 07 44 3815 5100 13 4299 66 02 79 54[答案]785,567,199,507,17516.某企业五月中旬生产A,B,C三种产品共3 000件,根据分层抽样的结果,企业统计员制作了如下的统计表格:产品类别 A B C产品数量(件) 1 300样本容量130容量比C产品的样本容量多10,请你根据以上信息补全表格中的数据:______,______,______,_____.(按左上、右上、左下、右下的顺序依次填入)[答案]9008009080[解析]由产品B的数据可知该分层抽样的抽样比k=1301 300=110,设产品C的样本容量为x,则产品A的样本容量为(x+10),x+10+130+x=3 000×110,解之得x=80,∴产品A的样本容量为90,产品A的数量为90÷110=900,产品C的数量为80÷110=800.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)设计一个算法,求表面积为16π的球的体积(请写出算法步骤)。

高一数学期中试卷带答案

高一数学期中试卷带答案

高一数学期中试卷带答案考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.函数f (x )=x 2+2ax -b 在(-∞,1)上为减函数,则a 的取值范围为( ) A .[-1,+∞) B .(-∞,-1] C .[1,+∞) D .(-∞,1]2. 化简( ) A . B . C .D .3.若圆x +y =4和圆x +y +4x -4y +4=0关于直线l 对称,则l 的方程为( ) A .x +y=0 B .x +y-2=0 C .x-y-2=0 D .x-y+2=04.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为A .B .C .D . 5.(2015•惠州模拟)复数z=的虚部是( )A .B .iC .D .6.在“①高一数学中的难题;②所有的正三角形;③方程x 2-2=0的实数解”中,能够构成集合的是 ( ) A .② B .③ C .②③ D .①②③7.设,则( ▲ )A. B. C. D.8.设∈(0, ),β∈[0, ],那么2-的取值范围是A.(0,) B.(-,) C.(0,π) D.(- ,π)9.在△ABC中,分别为角所对的边,若,,则的值为()A. B. C.1 D.10.函数的值域是,则函数的值域为()A. B. C. D.11.已知( )A. B. C. D.12.函数的零点是A.3B.C.4D.13.一名小学生的年龄和身高(单位:cm)的数据如下:由散点图可知,身高y与年龄x之间的线性回归直线方程为,预测该学生10岁时的身高为()A .154B .153C .152D .15114.已知|a|=,|b|=4,且a 与b 的夹角为,则a·b 的值是A .1B .±1C .2D .±215.已知函数的定义域为,且为偶函数,则实数的值可以是( )A. B. C. D.16.某程序框图如图所示,该程序运行后输出的n值是8,则从集合中所有满足条件的S值为()A.0 B.1 C.3 D.417.(2009•锦州一模)下表是x与y之间的一组数据,则y关于x的线性回归方程x+必过点()x 0123A.(2,2)B.(1.5,2)C.(1,2)D.(1.5,4)18.函数的反函数的图像为()19.下列四式不能化简为的是()A.(+)+B.(+)+(+)C.+D.+20.下列说法中,正确的是()A.向量则向量B.锐角必是第一象限角,第一象限角必是锐角C.余弦函数在第一象限单调递减D.是终边相同的角二、填空题21.(2016年苏州B4)对一批产品的长度(单位:毫米)进行抽样检测,样本容量为400,右图为检测结果的频率分布直方图,根据产品标准,单件产品长度在区间[25,30)的为一等品,在区间[20,25)和[30,35)的为二等品,其余均为三等品,则样本中三等品的件数为_______.22.函数y=的定义域是23.内接于以为圆心,半径为的圆,且,则的边的长度为_________.24.函数的定义域为__________________; 25.定义运算为执行如图所示的程序框图输出的S 值,则的值为 .26.如图,是一个平面图形的水平放置的斜二侧直观图,则这个平面图形的面积等于 .27.平行投影与中心投影之间的区别是_____________;28.已知点,则向量在方向上的投影为_________. 29.若函数的定义域为[-2,2],则函数的定义域为 ______.30.函数的值域___________. 三、解答题31.(8分)已知集合A ={x|3≤x<10},集合B ={x|2x -8≥0}.(1)求A ∪B ; (2)求∁R (A∩B ).32.已知f(x)= (x -1)2+1的定义域与值域均为[1,b],求b 的值.33.(10分)集合A ={x|3≤x<10},集合B ={x|2x -8≥0}. (1)求A ∪B ; (2)求∁R (A∩B ).34.已知函数.(Ⅰ)判断函数的奇偶性,并加以证明;(Ⅱ)用定义证明在上是减函数;(Ⅲ)函数在上是单调增函数还是单调减函数?(直接写出答案,不要求写证明过程)35.(本小题满分13分)已知函数的图象经过点(2,),其中且。

高三数学上学期第二次月考试卷 理(含解析)-人教版高三全册数学试题

高三数学上学期第二次月考试卷 理(含解析)-人教版高三全册数学试题

2015-2016学年某某省马某某市红星中学高三(上)第二次月考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.设全集U是实数集R,M={x|y=ln(x2﹣2x) },N={y|y=},则图中阴影部分表示的集合是( )A.{x|﹣2≤x<2} B.{x|1<x≤2}C.{x|1≤x≤2}D.{x|x<1}2.已知函数f(x)=且f(a)=﹣3,则f(6﹣a)=( ) A.﹣B.﹣C.﹣D.﹣3.给出如下命题,正确的序号是( )A.命题:∀x∈R,x2≠x的否定是:∃x0∈R,使得x02≠xB.命题:若x≥2且y≥3,则x+y≥5的否命题为:若x<2且y<3,则x+y<5C.若ω=1是函数f(x)=cosωx在区间[0,π]上单调递减的充分不必要条件D.命题:∃x0∈R,x02+a<0为假命题,则实数a的取值X围是a>04.已知某几何体的三视图如图所示,其中,正(主)视图,侧(左)视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为( )A.B.C.D.5.设F1、F2为椭圆+y2=1的左、右焦点,过椭圆中心任作一直线与椭圆交于P、Q两点,当四边形PF1QF2面积最大时,•的值等于( )A.0 B.2 C.4 D.﹣26.设a=log37,b=21.1,c=0.83.1,则( )A.b<a<c B.c<a<b C.c<b<a D.a<c<b7.执行如图所示的程序框图,如果输入P=153,Q=63,则输出的P的值是( )A.2 B.3 C.9 D.278.若点(16,tanθ)在函数y=log2x的图象上,则=( ) A.B.C.4 D.49.已知函数f(x)=()x﹣log3x,若实数x0是方程f(x)=0的解,且x0<x1,则f(x1)的值( )A.恒为负B.等于零C.恒为正D.不大于零10.已知数列{a n}的前n项和为S n,过点P(n,S n)和Q(n+1,S n+1)(n∈N*)的直线的斜率为3n﹣2,则a2+a4+a5+a9的值等于( )A.52 B.40 C.26 D.2011.函数y=e|lnx|﹣|x﹣1|的图象大致是( )A.B. C.D.12.已知定义在R上的奇函数f(x),其导函数为f′(x),对任意正实数x满足xf′(x)>2f(﹣x),若g(x)=x2f(x),则不等式g(x)<g(1﹣3x)的解集是( )A.(,+∞)B.(﹣∞,)C.(0,)D.(﹣∞,)∪(,+∞)二、填空题:本大题共4小题,每小题5分.13.计算:()+lg+lg70+=__________.14.设变量x,y满足约束条件,则z=x﹣3y的最小值是__________.15.已知定义在R上的奇函数f(x)满足f(x﹣4)=﹣f(x),且在区间[0,2]上是增函数.若方程f(x)=m(m>0)在区间[﹣8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=__________.16.关于函数f(x)=(x≠0),有下列命题:①f(x)的最小值是lg2;②其图象关于y轴对称;③当x>0时,f(x)是增函数;当x<0时,f(x)是减函数;④f(x)在区间(﹣1,0)和(1,+∞)上是增函数,其中所有正确结论的序号是__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知p:|1﹣|≤2;q:x2﹣2x+1﹣m2≤0(m>0),若¬p是¬q的必要不充分条件,某某数m的取值X围.18.已知函数f(x)=﹣x2+2ex+m﹣1,g(x)=x+(x>0).(1)若y=g(x)﹣m有零点,求m的取值X围;(2)确定m的取值X围,使得g(x)﹣f(x)=0有两个相异实根.19.已知函数f(x)=log a(x+1)(a>1),若函数y=g(x)的图象上任意一点P关于原点的对称点Q的轨迹恰好是函数f(x)的图象.(1)写出函数g(x)的解析式;(2)当x∈[0,1)时,总有f(x)+g(x)≥m成立,求m的取值X围.20.某机床厂今年初用98万元购进一台数控机床,并立即投入使用,计划第一年维修、保养费用12万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利总额y元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该机床开始盈利?(3)使用若干年后,对机床的处理有两种方案:①当年平均盈利额达到最大值时,以30万元价格处理该机床;②当盈利额达到最大值时,以12万元价格处理该机床.问哪种方案处理较为合理?请说明理由.21.已知函数f(x)=+xlnx,g(x)=x3﹣x2﹣3.(1)讨论函数h(x)=的单调性;(2)如果对任意的s,t∈[,2],都有f(s)≥g(t)成立,某某数a的取值X围.四、选做题:请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分.22.已知曲线C1的参数方程是(θ为参数)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=﹣4cosθ.(1)求曲线C1与C2交点的极坐标;(2)A、B两点分别在曲线C1与C2上,当|AB|最大时,求△OAB的面积(O为坐标原点).23.已知不等式|2x+2|﹣|x﹣1|>a.(1)当a=0时,求不等式的解集(2)若不等式在区间[﹣4,2]内无解.某某数a的取值X围.2015-2016学年某某省马某某市红星中学高三(上)第二次月考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.设全集U是实数集R,M={x|y=ln(x2﹣2x) },N={y|y=},则图中阴影部分表示的集合是( )A.{x|﹣2≤x<2} B.{x|1<x≤2}C.{x|1≤x≤2}D.{x|x<1}【考点】Venn图表达集合的关系及运算.【专题】应用题;集合思想;定义法;集合.【分析】由图知,阴影部分表示的集合中的元素是在集合N中的元素但不在集合M中的元素组成的,即N∩C U M.【解答】解:由韦恩图知阴影部分表示的集合为N∩(C U M)M={x|y=ln(x2﹣2x) }∴x2﹣2x>0,解得x<0,或x>2,∴M={x|x<0,或x>2},∴C U M={x|0≤x≤2}=[0,2],N={y|y=}={y|y≥1}=[1,+∞),∴N∩(C U M)=[1,2],故选:C【点评】本小题主要考查Venn图表达集合的关系及运算、二次不等式的解法等基础知识,属于基础题2.已知函数f(x)=且f(a)=﹣3,则f(6﹣a)=( ) A.﹣B.﹣C.﹣D.﹣【考点】分段函数的应用;函数的零点.【专题】函数的性质及应用.【分析】由f(a)=﹣3,结合指数和对数的运算性质,求得a=7,再由分段函数求得f(6﹣a)的值.【解答】解:函数f(x)=且f(a)=﹣3,若a≤1,则2a﹣1﹣2=﹣3,即有2a﹣1=﹣1<0,方程无解;若a>1,则﹣log2(a+1)=﹣3,解得a=7,则f(6﹣a)=f(﹣1)=2﹣1﹣1﹣2=﹣.故选:A.【点评】本题考查分段函数的运用:求函数值,主要考查指数和对数的运算性质,属于中档题.3.给出如下命题,正确的序号是( )A.命题:∀x∈R,x2≠x的否定是:∃x0∈R,使得x02≠xB.命题:若x≥2且y≥3,则x+y≥5的否命题为:若x<2且y<3,则x+y<5C.若ω=1是函数f(x)=cosωx在区间[0,π]上单调递减的充分不必要条件D.命题:∃x0∈R,x02+a<0为假命题,则实数a的取值X围是a>0【考点】命题的真假判断与应用.【专题】计算题;规律型;简易逻辑.【分析】利用命题的否定判断A的正误;四种命题的逆否关系判断B的正误;充要条件判断C 的正误;命题的真假判断D的正误;【解答】解:对于A,命题:∀x∈R,x2≠x的否定是:∃x0∈R,使得x02≠x0,不满足命题的否定形式,所以不正确;对于B,命题:若x≥2且y≥3,则x+y≥5的否命题为:若x<2且y<3,则x+y<5,不满足否命题的形式,所以不正确;对于C,若ω=1是函数f(x)=cosx在区间[0,π]上单调递减的,而函数f(x)=cosωx在区间[0,π]上单调递减的,ω≤1,所以ω=1是函数f(x)=cosωx在区间[0,π]上单调递减的充分不必要条件,正确.对于D,命题:∃x0∈R,x02+a<0为假命题,则命题:a≥0,∀x∈R,x2+a≥0是真命题;所以,命题:∃x0∈R,x02+a<0为假命题,则实数a的取值X围是a>0,不正确;故选:C.【点评】本题考查命题的真假的判断与应用,基本知识的考查.4.已知某几何体的三视图如图所示,其中,正(主)视图,侧(左)视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为( )A.B.C.D.【考点】由三视图求面积、体积.【专题】图表型.【分析】先由三视图还原成原来的几何体,再根据三视图中的长度关系,找到几何体中的长度关系,进而可以求几何体的体积.【解答】解:由三视图可得该几何体的上部分是一个三棱锥,下部分是半球,所以根据三视图中的数据可得:V=××=,故选C.【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是组合体的体积,一般组合体的体积要分部分来求.三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.三视图是高考的新增考点,不时出现在高考试题中,应予以重视.5.设F1、F2为椭圆+y2=1的左、右焦点,过椭圆中心任作一直线与椭圆交于P、Q两点,当四边形PF1QF2面积最大时,•的值等于( )A.0 B.2 C.4 D.﹣2【考点】椭圆的简单性质.【专题】计算题.【分析】通过题意可推断出当P、Q分别在椭圆短轴端点时,四边形PF1QF2面积最大.进而可根据椭圆的方程求得焦点的坐标和P的坐标,进而求得和,则•的值可求得.【解答】解:根据题意可知当P、Q分别在椭圆短轴端点时,四边形PF1QF2面积最大.这时,F1(﹣,0),F2(,0),P(0,1),∴=(﹣,﹣1),=(,﹣1),∴•=﹣2.故选D【点评】本题主要考查了椭圆的简单性质.考查了学生数形结合的思想和分析问题的能力.6.设a=log37,b=21.1,c=0.83.1,则( )A.b<a<c B.c<a<b C.c<b<a D.a<c<b【考点】对数值大小的比较.【专题】函数的性质及应用.【分析】分别讨论a,b,c的取值X围,即可比较大小.【解答】解:1<log37<2,b=21.1>2,c=0.83.1<1,则c<a<b,故选:B.【点评】本题主要考查函数值的大小比较,根据指数和对数的性质即可得到结论.7.执行如图所示的程序框图,如果输入P=153,Q=63,则输出的P的值是( )A.2 B.3 C.9 D.27【考点】程序框图.【专题】图表型;算法和程序框图.【分析】模拟执行程序,依次写出每次循环得到的R,P,Q的值,当Q=0时,满足条件Q=0,退出循环,输出P的值为3.【解答】解:模拟执行程序,可得P=153,Q=63不满足条件Q=0,R=27,P=63,Q=27不满足条件Q=0,R=9,P=27,Q=9不满足条件Q=0,R=0,P=9,Q=0满足条件Q=0,退出循环,输出P的值为9.故选:C.【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的R,P,Q的值是解题的关键,属于基本知识的考查.8.若点(16,tanθ)在函数y=log2x的图象上,则=( ) A.B.C.4 D.4【考点】三角函数的化简求值.【专题】计算题;转化思想;转化法;三角函数的求值.【分析】先根据对数的运算性质求出tanθ,再化简代值计算即可.【解答】解:点(16,tanθ)在函数y=log2x的图象上,∴tanθ=log216=4,∴====,故选:B.【点评】本题考查了二倍角公式,函数值的求法,以及对数的运算性质,属于基础题.9.已知函数f(x)=()x﹣log3x,若实数x0是方程f(x)=0的解,且x0<x1,则f(x1)的值( )A.恒为负B.等于零C.恒为正D.不大于零【考点】函数的零点与方程根的关系.【专题】函数的性质及应用.【分析】由函数的性质可知,f(x)=()x﹣log3x在(0,+∞)上是减函数,且可得f(x0)=0,由0<x0<x1,可得f(x1)<f(x0)=0,即可判断【解答】解:∵实数x0是方程f(x)=0的解,∴f(x0)=0.∵函数y()x,y=log3x在(0,+∞)上分别具有单调递减、单调递增,∴函数f(x)在(0,+∞)上是减函数.又∵0<x0<x1,∴f(x1)<f(x0)=0.∴f(x1)的值恒为负.故选A.【点评】本题主要考查了函数的单调性的简单应用,解题的关键是准确判断函数f(x)的单调性并能灵活应用.10.已知数列{a n}的前n项和为S n,过点P(n,S n)和Q(n+1,S n+1)(n∈N*)的直线的斜率为3n﹣2,则a2+a4+a5+a9的值等于( )A.52 B.40 C.26 D.20【考点】数列的求和.【专题】等差数列与等比数列.【分析】首先根据题中的已知条件已知数列{a n}的前n项和为S n,过点P(n,S n)和Q(n+1,S n+1)(n∈N*)的直线的斜率为3n﹣2,进一步求出数列的通项公式,然后根据通项公式求出各项的值,最后确定结果.【解答】解:已知数列{a n}的前n项和为S n,过点P(n,S n)和Q(n+1,S n+1)(n∈N*)的直线的斜率为3n﹣2则:∴a n=3n﹣5a2+a4+a5+a9=40故选:B【点评】本题考查的知识点:根据点的斜率求出数列的通项公式,由通项公式求数列的项.11.函数y=e|lnx|﹣|x﹣1|的图象大致是( )A.B. C.D.【考点】对数的运算性质;函数的图象与图象变化.【分析】根据函数y=e|lnx|﹣|x﹣1|知必过点(1,1),再对函数进行求导观察其导数的符号进而知原函数的单调性,得到答案.【解答】解:由y=e|lnx|﹣|x﹣1|可知:函数过点(1,1),当0<x<1时,y=e﹣lnx﹣1+x=+x﹣1,y′=﹣+1<0.∴y=e﹣lnx﹣1+x为减函数;若当x>1时,y=e lnx﹣x+1=1,故选D.【点评】本题主要考查函数的求导与函数单调性的关系.12.已知定义在R上的奇函数f(x),其导函数为f′(x),对任意正实数x满足xf′(x)>2f(﹣x),若g(x)=x2f(x),则不等式g(x)<g(1﹣3x)的解集是( )A.(,+∞)B.(﹣∞,)C.(0,)D.(﹣∞,)∪(,+∞)【考点】函数奇偶性的性质.【专题】转化思想;数学模型法;函数的性质及应用;导数的综合应用.【分析】f(x)是定义在R上的奇函数,可得:f(﹣x)=﹣f(x).对任意正实数x满足xf′(x)>2f(﹣x),可得:xf′(x)+2f(x)>0,由g(x)=x2f(x),可得g′(x)>0.可得函数g(x)在(0,+∞)上单调递增.即可得出.【解答】解:∵f(x)是定义在R上的奇函数,∴f(﹣x)=﹣f(x).对任意正实数x满足xf′(x)>2f(﹣x),∴xf′(x)+2f(x)>0,∵g(x)=x2f(x),∴g′(x)=2xf(x)+x2f′(x)>0.∴函数g(x)在(0,+∞)上单调递增.又g(0)=0,g(﹣x)=x2f(﹣x)=﹣g(x),∴函数g(x)是R上的奇函数,∴g(x)是R上的增函数.由不等式g(x)<g(1﹣3x),∴x<1﹣3x,解得.∴不等式g(x)<g(1﹣3x)的解集为:.故选:B.【点评】本题考查了函数的奇偶性与单调性,考查了推理能力与计算能力,属于中档题.二、填空题:本大题共4小题,每小题5分.13.计算:()+lg+lg70+=.【考点】对数的运算性质;有理数指数幂的化简求值.【专题】计算题;函数思想;定义法;函数的性质及应用.【分析】根据对数和幂的运算性质计算即可.【解答】解:()+lg+lg70+=+lg()+1﹣lg3=+lg+1=+1+1=,故答案为:.【点评】本题考查了对数和幂的运算性质,关键是掌握性质,属于基础题.14.设变量x,y满足约束条件,则z=x﹣3y的最小值是﹣8.【考点】简单线性规划.【专题】不等式的解法及应用.【分析】将z=x﹣3y变形为,此式可看作是斜率为,纵截距为的一系列平行直线,当最大时,z最小.作出原不等式组表示的平面区域,让直线向此平面区域平移,可探求纵截距的最大值.【解答】解:由z=x﹣3y,得,此式可看作是斜率为,纵截距为的直线,当最大时,z最小.画出直线y=x,x+2y=2,x=﹣2,从而可标出不等式组表示的平面区域,如右图所示.由图知,当动直线经过点P时,z最小,此时由,得P(﹣2,2),从而z min=﹣2﹣3×2=﹣8,即z=x﹣3y的最小值是﹣8.故答案为:﹣8.【点评】本题考查了线性规划的应用,为高考常考的题型,求解此类问题的一般步骤是:(1)作出已知不等式组表示的平面区域;(2)运用化归思想及数形结合思想,将目标函数的最值问题转化为平面中几何量的最值问题处理.15.已知定义在R上的奇函数f(x)满足f(x﹣4)=﹣f(x),且在区间[0,2]上是增函数.若方程f(x)=m(m>0)在区间[﹣8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=﹣8.【考点】奇偶性与单调性的综合;函数的周期性.【专题】数形结合.【分析】由条件“f(x﹣4)=﹣f(x)”得f(x+8)=f(x),说明此函数是周期函数,又是奇函数,且在[0,2]上为增函数,由这些画出示意图,由图可解决问题.【解答】解:此函数是周期函数,又是奇函数,且在[0,2]上为增函数,综合条件得函数的示意图,由图看出,四个交点中两个交点的横坐标之和为2×(﹣6),另两个交点的横坐标之和为2×2,所以x1+x2+x3+x4=﹣8.故答案为﹣8.【点评】数形结合是数学解题中常用的思想方法,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷.16.关于函数f(x)=(x≠0),有下列命题:①f(x)的最小值是lg2;②其图象关于y轴对称;③当x>0时,f(x)是增函数;当x<0时,f(x)是减函数;④f(x)在区间(﹣1,0)和(1,+∞)上是增函数,其中所有正确结论的序号是①②④.【考点】命题的真假判断与应用;奇偶性与单调性的综合.【专题】函数思想;定义法;函数的性质及应用.【分析】是结合复合函数单调性的关系进行判断.②根据基本由函数奇偶性的定义判断函数为偶函数判断;③利用对勾函数的单调性判断;④由对勾函数的最值及函数奇偶性的性质进行判断即可.【解答】解:①函数f(x)=lg,(x∈R且x≠0).∵=2,∴f(x)=lg≥2,即f(x)的最小值是lg2,故①正确,②∵f(﹣x)==f(x),∴函数f(x)为偶函数,图象关于y轴对称,故②正确;③当x>0时,t(x)=,在(0,1)上单调递减,在(1,+∞)上得到递增,∴f(x)=lg在(0,1)上单调递减,在(1,+∞)上得到递增,故③错误;④∵函数f(x)是偶函数,由③知f(x)在(0,1)上单调递减,在(1,+∞)上得到递增,∴在(﹣1,0)上单调递增,在(﹣∞,﹣1)上得到递减,故④正确,故答案为:①②④【点评】本题考查了命题的真假判断与应用,考查了函数奇偶性的性质,考查了复合函数的单调性,是中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知p:|1﹣|≤2;q:x2﹣2x+1﹣m2≤0(m>0),若¬p是¬q的必要不充分条件,某某数m的取值X围.【考点】必要条件;绝对值不等式的解法.【专题】规律型.【分析】先求出命题p,q的等价条件,利用¬p是¬q的必要不充分条件转化为q是p的必要不充分条件,建立条件关系即可求出m的取值X围.【解答】解:由||=,得|x﹣4|≤6,即﹣6≤x﹣4≤6,∴﹣2≤x≤10,即p:﹣2≤x≤10,由x2+2x+1﹣m2≤0得[x+(1﹣m)][x+(1+m)]≤0,即1﹣m≤x≤1+m,(m>0),∴q:1﹣m≤x≤1+m,(m>0),∵¬p是¬q的必要不充分条件,∴q是p的必要不充分条件.即,且等号不能同时取,∴,解得m≥9.【点评】本题主要考查充分条件和必要条件的应用,将¬p是¬q的必要不充分条件转化为q 是p的必要不充分条件是解决本题的关键.18.已知函数f(x)=﹣x2+2ex+m﹣1,g(x)=x+(x>0).(1)若y=g(x)﹣m有零点,求m的取值X围;(2)确定m的取值X围,使得g(x)﹣f(x)=0有两个相异实根.【考点】函数零点的判定定理;根的存在性及根的个数判断.【专题】计算题;函数的性质及应用;导数的综合应用;不等式的解法及应用.【分析】(1)由基本不等式可得g(x)=x+≥2=2e,从而求m的取值X围;(2)令F(x)=g(x)﹣f(x)=x++x2﹣2ex﹣m+1,求导F′(x)=1﹣+2x﹣2e=(x﹣e)(+2);从而判断函数的单调性及最值,从而确定m的取值X围.【解答】解:(1)∵g(x)=x+≥2=2e;(当且仅当x=,即x=e时,等号成立)∴若使函数y=g(x)﹣m有零点,则m≥2e;故m的取值X围为[2e,+∞);(2)令F(x)=g(x)﹣f(x)=x++x2﹣2ex﹣m+1,F′(x)=1﹣+2x﹣2e=(x﹣e)(+2);故当x∈(0,e)时,F′(x)<0,x∈(e,+∞)时,F′(x)>0;故F(x)在(0,e)上是减函数,在(e,+∞)上是增函数,故只需使F(e)<0,即e+e+e2﹣2e2﹣m+1<0;故m>2e﹣e2+1.【点评】本题考查了基本不等式的应用及导数的综合应用,同时考查了函数零点的判断与应用,属于中档题.19.已知函数f(x)=log a(x+1)(a>1),若函数y=g(x)的图象上任意一点P关于原点的对称点Q的轨迹恰好是函数f(x)的图象.(1)写出函数g(x)的解析式;(2)当x∈[0,1)时,总有f(x)+g(x)≥m成立,求m的取值X围.【考点】求对数函数解析式;函数解析式的求解及常用方法;函数最值的应用.【专题】计算题;转化思想.【分析】(1)由已知条件可知函数g(x)的图象上的任意一点P(x,y)关于原点对称的点Q (﹣x,﹣y)在函数f(x)图象上,把Q(﹣x,﹣y)代入f(x),整理可得g(x)(2)由(1)可令h(x)=f(x)+g(x),先判断函数h(x)在[0,1)的单调性,进而求得函数的最小值h(x)min,使得m≤h(x)min【解答】解:(1)设点P(x,y)是g(x)的图象上的任意一点,则Q(﹣x,﹣y)在函数f (x)的图象上,即﹣y=log a(﹣x+1),则∴(2)f(x)+g(x)≥m 即,也就是在[0,1)上恒成立.设,则由函数的单调性易知,h(x)在[0,1)上递增,若使f(x)+g(x)≥m在[0,1)上恒成立,只需h(x)min≥m在[0,1)上成立,即m≤0.m的取值X围是(﹣∞,0]【点评】本题(1)主要考查了函数的中心对称问题:若函数y=f(x)与y=g(x)关于点M (a,b)对称,则y=f(x)上的任意一点(x,y)关于M(a,b)对称的点(2a﹣x,2b﹣y)在函数y=g(x)的图象上.(2)主要考查了函数的恒成立问题,往往转化为求最值问题:m≥h(x)恒成立,则m≥h(x)m≤h(x)恒成立,max则m≤h(x)min20.某机床厂今年初用98万元购进一台数控机床,并立即投入使用,计划第一年维修、保养费用12万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利总额y元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该机床开始盈利?(3)使用若干年后,对机床的处理有两种方案:①当年平均盈利额达到最大值时,以30万元价格处理该机床;②当盈利额达到最大值时,以12万元价格处理该机床.问哪种方案处理较为合理?请说明理由.【考点】基本不等式在最值问题中的应用.【专题】计算题.【分析】(1)赢利总额y元即x年中的收入50x减去购进机床的成本与这x年中维修、保养的费用,维修、保养的费用历年成等差数增长,,(2)由(1)的结论解出结果进行判断得出何年开始赢利.(3)算出每一种方案的总盈利,比较大小选择方案.【解答】解:(1)y=﹣2x2+40x﹣98,x∈N*.(2)由﹣2x2+40x﹣98>0解得,,且x∈N*,所以x=3,4,,17,故从第三年开始盈利.(3)由,当且仅当x=7时“=”号成立,所以按第一方案处理总利润为﹣2×72+40×7﹣98+30=114(万元).由y=﹣2x2+40x﹣98=﹣2(x﹣10)2+102≤102,所以按第二方案处理总利润为102+12=114(万元).∴由于第一方案使用时间短,则选第一方案较合理.【点评】考查审题及将题中关系转化为数学符号的能力,其中第二问中考查了一元二次不等式的解法,第三问中考查到了基本不等式求最值,本题是一个函数基本不等式相结合的题.属应用题中盈利最大化的问题.21.已知函数f(x)=+xlnx,g(x)=x3﹣x2﹣3.(1)讨论函数h(x)=的单调性;(2)如果对任意的s,t∈[,2],都有f(s)≥g(t)成立,某某数a的取值X围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【专题】综合题;导数的综合应用.【分析】(1)求导数,利用导数的正负,即可讨论函数h(x)=的单调性;(2)求出g(x)max=g(2)=1,当x∈[,2]时,f(x)=+xlnx恒成立,等价于a≥x﹣x2lnx 恒成立,然后利用导数求函数u(x)=x﹣x2lnx在区间[,2]上取得最大值,则实数a的取值X围可求.【解答】解:(1)h(x)==+lnx,h′(x)=,①a≤0,h′(x)≥0,函数h(x)在(0,+∞)上单调递增②a>0时,h'(x)>0,则x∈(,+∞),函数h(x)的单调递增区间为(,+∞),h'(x)<0,则x∈(0,),函数h(x)的单调递减区间为(0,),.(2)g(x)=x3﹣x2﹣3,g′(x)=3x(x﹣),x 2g′(x)0 ﹣0 +g(x)﹣递减极小值递增 13由上表可知,g(x)在x=2处取得最大值,即g(x)max=g(2)=1所以当x∈[,2]时,f(x)=+xlnx≥1恒成立,等价于a≥x﹣x 2lnx恒成立,记u(x)=x﹣x2lnx,所以a≥u(x)max,u′(x)=1﹣x﹣2xlnx,可知u′(1)=0,当x∈(,1)时,1﹣x>0,2xlnx<0,则u′(x)>0,∴u(x)在x∈(,2)上单调递增;当x∈(1,2)时,1﹣x<0,2xlnx>0,则u′(x)<0,∴u(x)在(1,2)上单调递减;故当x=1时,函数u(x)在区间[,2],上取得最大值u(1)=1,所以a≥1,故实数a的取值X围是[1,+∞).【点评】本题考查了利用导数研究函数的单调性,考查了导数在最大值、最小值问题中的应用,考查了数学转化思想方法和函数构造法,训练了利用分离变量法求参数的取值X围,属于中档题.四、选做题:请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分.22.已知曲线C1的参数方程是(θ为参数)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=﹣4cosθ.(1)求曲线C1与C2交点的极坐标;(2)A、B两点分别在曲线C1与C2上,当|AB|最大时,求△OAB的面积(O为坐标原点).【考点】参数的意义;简单曲线的极坐标方程.【专题】选作题;转化思想;综合法;坐标系和参数方程.【分析】(1)把参数方程和极坐标方程化为直角坐标方程,联立方程组求出交点的坐标,再把交点的直角坐标化为极坐标;(2)画出图象,由平面几何知识可知,A,C1,C2,B依次排列且共线时|AB|最大.【解答】解:(1)由(θ为参数),消去参数得:x2+(y﹣2)2=4,即x2+y2﹣4y=0;由ρ=﹣4cosθ,得ρ2=﹣4ρcosθ,即x2+y2=﹣4x.两式作差得:x+y=0,代入C1得交点为(0,0),(﹣2,2).其极坐标为(0,0),(2,);(2)如图,由平面几何知识可知,A,C1,C2,B依次排列且共线时|AB|最大.此时|AB|=2+4,O到AB的距离为.∴△OAB的面积为S=×(2+4)×=2+2.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程,考查了推理能力与计算能力,属于基础题.23.已知不等式|2x+2|﹣|x﹣1|>a.(1)当a=0时,求不等式的解集(2)若不等式在区间[﹣4,2]内无解.某某数a的取值X围.【考点】绝对值不等式的解法.【专题】不等式的解法及应用.【分析】(1)把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.(2)求得f(x)=|2x+2|﹣|x﹣1|=在区间[﹣4,2]内的值域,结合|2x+2|﹣|x﹣1|>a无解,求得a的X围.【解答】解:(1)当a=0时,不等式即|2x+2|﹣|x﹣1|>0,可得①,或②,或③.解①求得 x<﹣3,解②求得﹣<x<1,解③求得x≥1.综上可得,原不等式的解集为{x|x<﹣3,或x>﹣}.(2)当x∈[﹣4,2],f(x)=|2x+2|﹣|x﹣1|=的值域为[﹣2,3],而不等式|2x+2|﹣|x﹣1|>a无解,故有a≤3.【点评】本题主要考查绝对值不等式的解法,体现了转化、分类讨论的数学思想;还考查了分段函数的应用,求函数的值域,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年高一(下)期中考试
数 学 试 题
第I 卷
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共16小题, 每小题5分,共80分)。

1、有一个几何体的三视图如下图所示,这个几何体应是一个( )
A.棱台
B.棱锥
C.棱柱
D.都不对
2、若过)4,(),2(m B m A 和-的直线与斜率为-2的直线平行,则m 的值为( ) A.8- B.0 C.2 D.10
3、一个正方体的顶点都在球面上,它的棱长为2cm ,则球的表面积是( ) A.2
8cm π B.2
12cm π C.2
16cm π D.2
20cm π
4、下列说法不正确的是( )
A .空间中,一组对边平行且相等的四边形是一定是平行四边形;
B .同一平面的两条垂线一定共面;
C .过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内;
D .过一条直线有且只有一个平面与已知平面垂直. 5、半径为R 的半圆卷成一个圆锥,则它的体积为( )
A .338R π
B .3324R π
C .3524R π
D .3
58R π
6、圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台 较小底面的半径为( ) A .3 B.5 C.6 D.7
7、垂直于同一条直线的两条直线一定 ( )
A 、平行
B 、相交
C 、异面
D 、以上都有可能 8、在正方体1111ABCD A BC D -中,下列几种说法正确的是 ( )
A 、
11AC AD ⊥ B 、11DC AB ⊥
C 、
1AC 与DC 成45 角 D 、11AC 与1B
C 成60 角
9、设,m n 是两条不同的直线,γβα,,是三个不同的平面,给出下列四个命题:



,则n m ⊥ ②

,,
,则
③若,,则
④若αγ⊥,βγ⊥,则//αβ
其中正确命题的序号是 ( )
A .①和②
B .②和③
C .③和④
D .①和④
10、已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体 积是( )
A .3
4000cm 3 B .3
8000cm
3
C .2000cm3
D .4000cm3
11、直三棱柱
111ABC A B C -中,若
90BAC ∠=︒,1AB AC AA ==,则异面直线1BA 与1AC
所成的角等于 ( )
A . 30
B . 45
C .60°
D .90°
12、在三棱锥A BCD -中,AC ⊥底面0
,,,,30BCD BD DC BD DC AC a ABC ⊥==∠=, 则点C 到平面ABD 的距离是( )
A .55a
B . 155a
C .35a
D .15
3a
13、二面角l αβ--为60 ,A,B 是棱l 上的两点,AC,BD 分别在半平面,αβ内,
,,AC l BD l ⊥⊥且,2AB AC a BD a ===,则CD 的长为( )
A .2a
B .
5a C .a D .3a
14、把正方形ABCD 沿对角线AC 折起,当以,,,A B C D 四点为顶点的三棱锥体积最大时,直 线BD 和平面ABC 所成的角的大小为( ) A .
90 B .
60 C .
45 D .
30
15、在四面体ABCD 中,已知棱AC 的长为2,其余各棱长都为1,则二面角
A C D
B --的余弦值为( )
A .12
B .13
C .33
D .2
3
16、如图,正方体
1111ABCD A BC D -的边长为1,线段11B D 上有两个动点E ,F ,且
2
2EF =

则下列结论中错误的是 ( ) (A )AC BE ⊥ (B )//EF ABCD 平面
(C )三棱锥A BEF -的体积为定值 (D )异面直线,AE BF 所成的角为定值
第Ⅱ卷
二、填空题(共5小题,每小题5分,共25分)
17、已知直线1l 经过点)4,3(),1,(-B m A ,2l 经过点)1,1(),,1(+-m D m C ,若21l l ⊥,则m 的值为__________ 18、已知平面γβα////,两条直线,l m 分别与平面,,αβγ相交于点,,A B C 和,,D E F ,已知
6AB =,2
5DE DF =
,则AC =
19、已知菱形ABCD 中,2,120AB A =∠=
,沿对角线BD 将ABC ∆折起使二面角A BD C -- 为120
,则点A 到BCD ∆所在平面的距离为
20、四面体S ABC -中,各个侧面都是边长为a 的正三角形,,E F 分别是SC 和AB 的中点,则异面直线EF 与
SA 所成的角等于_____________21世纪教育网版权所有
21、二面角l αβ--的大小是60 ,线段,,AB B l AB α⊂∈与l 所成的角为30
,则AB 与平面β
所成的角的正
弦值是 21教育网
三、解答题(本大题共3小题,共45分)
22、(10分)如图,已知直四棱柱1111D C B A ABCD -中,21=AA
,底面ABCD 是直角梯形, A 是直角,AB//CD ,AB=4,AD=2,DC=1,求异面直线1BC 与DC 所成角的余弦值。

23、(15分)如图,在三棱锥S —ABC 中,侧面SAB 与侧面SAC 均为等边三角形,90BAC ∠=°, O 为BC 中点。

(Ⅰ)证明:SO ⊥平面ABC ; (Ⅱ)求二面角A —SC —B 的余弦值。

24、(20分)在直三棱柱ABC —A1B1C1中,∠BAC=90°,AB=BB1,直线B1C 与平面ABC 成30°角. (I )求证:平面B1AC ⊥平面ABB1A1;
(II )求直线A1C 与平面B1AC 所成角的正弦值; (III )求二面角B —B1C —A 的大小.
A
B
C
D
D 1
C 1
B 1
A 1。

相关文档
最新文档