概率习题(截至第9周)
初三概率的习题及答案

初三概率的习题及答案初三概率的习题及答案概率是数学中的一个重要概念,也是我们日常生活中经常会遇到的问题。
在初中数学中,概率作为一个重要的章节,需要我们掌握一定的理论知识和解题技巧。
本文将从不同角度出发,给出一些初三概率的习题及答案,帮助同学们更好地理解和应用概率知识。
一、基础概念题1. 小明有一组数字卡片,其中有4张红色卡片和6张蓝色卡片。
小明从中随机抽取一张卡片,请问他抽到红色卡片的概率是多少?答案:红色卡片的数量为4张,总卡片数为10张,所以小明抽到红色卡片的概率为4/10,即2/5。
2. 甲、乙、丙三个人分别从一组数字卡片中抽取一张,卡片上的数字分别是1、2、3、4、5。
请问他们抽到的数字相加为偶数的概率是多少?答案:一共有5张卡片,其中有3张偶数卡片(2、4)、2张奇数卡片(1、3、5)。
根据排列组合的知识,甲、乙、丙三个人抽到的数字相加为偶数的情况有两种:奇奇奇和偶偶偶。
所以概率为2/5。
二、条件概率题1. 甲、乙、丙三个人分别从一组数字卡片中抽取一张,卡片上的数字分别是1、2、3、4、5。
已知甲抽到的数字是偶数,乙抽到的数字是奇数,那么丙抽到的数字为奇数的概率是多少?答案:已知甲抽到的数字是偶数,那么甲抽到的数字为2或4。
已知乙抽到的数字是奇数,那么乙抽到的数字为1、3或5。
所以丙抽到的数字为奇数的情况有两种:甲抽到2、乙抽到1或3,或者甲抽到4、乙抽到1或3。
共有4种情况。
而总共有5张卡片,所以丙抽到的数字为奇数的概率为4/5。
三、独立事件题1. 小明有一组数字卡片,其中有2张红色卡片和3张蓝色卡片。
小明从中随机抽取一张卡片,记下颜色后放回,再抽取一张卡片。
请问他两次抽到的卡片颜色都是红色的概率是多少?答案:第一次抽到红色卡片的概率为2/5,第二次抽到红色卡片的概率也为2/5。
由于两次抽取是相互独立的事件,所以两次抽到的卡片颜色都是红色的概率为(2/5)*(2/5)=4/25。
2. 甲、乙、丙三个人分别从一组数字卡片中抽取一张,卡片上的数字分别是1、2、3、4、5。
概率统计习题带答案

概率论与数理统计习题及题解沈志军 盛子宁第一章 概率论的基本概念1.设事件B A ,及B A 的概率分别为q p ,及r ,试求)(),(),(B A P B A P AB P 及)(AB P2.若C B A ,,相互独立,试证明:C B A ,,亦必相互独立。
3.试验E 为掷2颗骰子观察出现的点数。
每种结果以),(21x x 记之,其中21,x x 分别表示第一颗、第二颗骰子的点数。
设事件}10|),{(2121=+=x x x x A , 事件}|),{(2121x x x x B >=。
试求)|(A B P 和)|(B A P4.某人有5把钥匙,但忘了开房门的是哪一把,只得逐把试开。
问:(1)恰好第三次打开房门锁的概率?(2)三次内打开的概率?(3)如果5把里有2把房门钥匙,则在三次内打开的概率又是多少?5.设有甲、乙两袋,甲袋中装有n 个白球、m 个红球,乙袋中装有N 个白球、M 个红球。
今从甲袋中任意取一个放入乙袋中,再从乙袋中任意取一个,问取到白球的概率是多少?6.在时间间隔5分钟内的任何时刻,两信号等可能地进入同一收音机,如果两信号进入收音机的间隔小于30秒,则收音机受到干扰。
试求收音机不受干扰的概率?7.甲、乙两船欲停靠同一码头,它们在一昼夜内独立地到达码头的时间是等可能的,各自在码头上停留的时间依次是1小时和2小时。
试求一船要等待空出码头的概率?8.某仓库同时装有甲、乙两种警报系统,每个系统单独使用的有效率分别为0.92,0.93,在甲系统失灵的条件下乙系统也失灵的概率为0.15。
试求下列事件的概率:(1)仓库发生意外时能及时发出警报;(2)乙系统失灵的条件下甲系统亦失灵?9.设B A ,为两随机变量,试求解下列问题:(1) 已知6/1)|(,3/1)()(===B A P B P A P 。
求:)|(B A P ; (2) 已知2/1)|(,3/1)|(,4/1)(===B A P A B P A P 。
人教版数学九年级上册第二十五章概率初步概率同步练习题含答案

人教版数学九年级上册第二十五章概率初步概率同步练习题含答案1. 某种彩票中奖的概率是1%,以下说法正确的选项是( )A .买1张这种彩票一定不会中奖B .买1张这种彩票一定会中奖C .买100张这种彩票一定会中奖D .买这种彩票中奖的能够性很小2. 〝兰州市明天降水概率是30%〞,对此音讯以下说法中正确的选项是( )A .兰州市明天将有30%的地域降水B .兰州市明天将有30%的时间降水C .兰州市明天降水的能够性较小D .兰州市明天一定不降水3.以下说法错误的选项是( )A .肯定发作的事情发作的概率为1B .不能够发作的事情发作的概率为0C .随机事情发作的概率大于0且小于1D .不确定事情发作的概率为04. 掷一枚质地平均的硬币10次,以下说法正确的选项是( )A .每两次必有1次正面向上B .能够有5次正面向上C .必有5次正面向上D .不能够有10次正面向上5. 九(1)班在参与学校4×100m 接力赛时,布置了甲、乙、丙、丁四位选手,他们的顺序由抽签随机决议,那么甲跑第一棒的概率为( )A .1 B.12 C.13 D.146. 从以下四张卡片中任取一张,卡片上的图形是中心对称图形的概率是( )A .0 B.34 C.12 D.147. 某学校在停止防溺水平安教育活动中,将以下几种在游泳时的本卷须知写在纸条上并折好,内容区分是:①相互关心;②相互提示;③不要相互嬉水;④相互比潜水深度;⑤选择水流湍急的水域;⑥选择有人看护的游泳池.小颖从这6张纸条中随机抽出一张,抽到内容描画正确的纸条的概率是( ) A.12 B.13 C.23 D.168. 在一个箱子里放有1个白球和2个红球,它们除颜色外其他都相反,从箱子里摸出1个球,那么摸到红球的概率是 .9. 从标有1到9序号的9张卡片中恣意抽取一张,抽到序号是3的倍数的概率是 .10. 某校先生会倡议双休日到养老院参与效劳活动,初次活动需求7位同窗参与,现有包括小杰在内的50位同窗报名,因此先生会将从这50位同窗中随机抽取7位,小杰被抽到参与初次活动的概率是 .11. 如图,在〝3×3”网格中,有3个涂成黑色的小方格.假定再从余下的6个小方格中随机选取1个涂成黑色,那么完成的图案为轴对称图案的概率是 .12. 从区分标有数-3,-2,-1,0,1,2,3的七张卡片中,随机抽取一张,所抽卡片上数的相对值小于2的概率是 .13. 一个箱子装有除颜色外都相反的2个白球,2个黄球,1个红球.现添加同种型号的1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是13,那么添加的球是 . 14. 如图是一个转盘,转盘分红8个相反的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘前任其自在中止,其中的某个扇形恰恰停在指针所指的位置(指针指向两个扇形的交线时,重新转动).求以下事情的概率:(1)指针指向白色;(2)指针指向黄色或绿色.15. 掷一个骰子,观察向上一面的点数,求以下事情的概率:(1)点数为偶数;(2)点数大于2且小于5.参考答案;1---7 DCDBD DC8. 239. 1310. 75011. 1312. 3713. 红球14. 解:(1)14(2)38. 15. 解:(1)掷一个骰子,向上一面的点数能够为1、2、3、4、5、6,共6种,这些点数出现的能够性相等,点数为偶数的有3种能够,即点数为2、4、6,∴P(点数为偶数)=36=12; (2)点数大于2且小于5有2种能够,即点数为3、4,∴P (点数大于2且小于5) =26=13.。
概率论习题全部

概率论习题全部概率论习题全部1习题⼀习题⼀1. ⽤集合的形式写出下列随机试验的样本空间与随机事件A:(1)掷两枚均匀骰⼦,观察朝上⾯的点数,事件A表⽰“点数之和为7”;(2)记录某电话总机⼀分钟内接到的呼唤次数,事件A表⽰“⼀分钟内呼唤次数不超过3次”;(3)从⼀批灯泡中随机抽取⼀只,测试它的寿命,事件A表⽰“寿命在2 000到2 500⼩时之间”.2. 投掷三枚⼤⼩相同的均匀硬币,观察它们出现的⾯.(1)试写出该试验的样本空间;(2)试写出下列事件所包含的样本点:A={⾄少出现⼀个正⾯},B={出现⼀正、⼆反},C={出现不多于⼀个正⾯};(3)如记A={第i枚硬币出现正⾯}(i=1,2,i3),试⽤123A A A表⽰事件A,B,C.,,3. 袋中有10个球,分别编有号码1~10,从中任取1球,设A={取得球的号码是偶数},B={取得球的号码是奇数},C={取得球的号码⼩习题⼀ 2 于5},问下列运算表⽰什么事件:(1)A B ;(2)AB ;(3)AC ;(4)AC ;(5)C A ;(6)B C ;(7)A C -. 4. 在区间上任取⼀数,记112A x x ??=<≤,1342B x x ??=≤≤,求下列事件的表达式:(1)A B ;(2)AB ;(3)AB ,(4)A B .5. ⽤事件A ,B ,C 的运算关系式表⽰下列事件:(1)A 出现,B ,C 都不出现;(2)A ,B 都出现,C 不出现;(3)所有三个事件都出现;(4)三个事件中⾄少有⼀个出现;(5)三个事件都不出现;(6)不多于⼀个事件出现;(7)不多于⼆个事件出现;(8)三个事件中⾄少有⼆个出现.6. ⼀批产品中有合格品和废品,从中有放回地抽取三个产品,设表⽰事件“第次抽到废品”,试⽤的运算表⽰下列各个事件:(1)第⼀次、第⼆次中⾄少有⼀次抽到废品;(2)只有第⼀次抽到废品;(3)三次都抽到废品;]2,0[i A i iA习题⼀3 (4)⾄少有⼀次抽到合格品;(5)只有两次抽到废品.7. 接连进⾏三次射击,设={第i 次射击命中}(i =1,2,3),试⽤表⽰下述事件:(1)A ={前两次⾄少有⼀次击中⽬标};(2)B ={三次射击恰好命中两次};(3)C ={三次射击⾄少命中两次};(4)D ={三次射击都未命中}.8. 盒中放有a 个⽩球b 个⿊球,从中有放回地抽取r 次(每次抽⼀个,记录其颜⾊,然后放回盒中,再进⾏下⼀次抽取).记={第i 次抽到⽩球}(i =1,2,…,r ),试⽤{}表⽰下述事件:(1)A ={⾸个⽩球出现在第k 次};(2)B ={抽到的r 个球同⾊},其中1k r ≤≤.*9. 试说明什么情况下,下列事件的关系式成⽴:(1)ABC =A ;(2)A B C A =.iA 321,,A A A iA iA习题⼆ 3习题⼆1. 从⼀批由45件正品、5件次品组成的产品中任取3件产品,求其中恰有1件次品的概率.2. ⼀⼝袋中有5个红球及2个⽩球.从这袋中任取⼀球,看过它的颜⾊后放回袋中,然后,再从这袋中任取⼀球.设每次取球时⼝袋中各个球被取到的可能性相同.求:(1)第⼀次、第⼆次都取到红球的概率;(2)第⼀次取到红球、第⼆次取到⽩球的概率;(3)两次取得的球为红、⽩各⼀的概率;(4)第⼆次取到红球的概率.3. ⼀个⼝袋中装有6只球,分别编上号码1~6,随机地从这个⼝袋中取2只球,试求:(1)最⼩号码是3的概率;(2)最⼤号码是3的概率.4. ⼀个盒⼦中装有6只晶体管,其中有2只是不合格品,现在作不放回抽样.接连取2次,每次随机地取1只,试求下列事件的概率:(1)2只都是合格品;(2)1只是合格品,⼀只是不合格品;(3)⾄少有1只是合格品.4习题⼆5. 从某⼀装配线上⽣产的产品中选择10件产品来检查.假定选到有缺陷的和⽆缺陷的产品是等可能发⽣的,求⾄少观测到⼀件有缺陷的产品的概率,结合“实际推断原理”解释得到的上述概率结果.6. 某⼈去银⾏取钱,可是他忘记密码的最后⼀位是哪个数字,他尝试从0~9这10个数字中随机地选⼀个,求他能在3次尝试之中解开密码的概率.7. 掷两颗骰⼦,求下列事件的概率:(1)点数之和为7;(2)点数之和不超过5;(3)点数之和为偶数.8. 把甲、⼄、丙三名学⽣随机地分配到5间空置的宿舍中去,假设每间宿舍最多可住8⼈,试求这三名学⽣住在不同宿舍的概率.9. 总经理的五位秘书中有两位精通英语,今偶遇其中的三位秘书,求下列事件的概率:(1)事件A={其中恰有⼀位精通英语};(2)事件B={其中恰有两位精通英语};(3)事件C={其中有⼈精通英语}.10. 甲袋中有3只⽩球,7只红球,15只⿊球,⼄袋中有10只⽩球,6只红球,9只⿊球,习题⼆ 5 现从两个袋中各取⼀球,求两球颜⾊相同的概率.11. 有⼀轮盘游戏,是在⼀个划分为10等份弧长的圆轮上旋转⼀个球,这些弧上依次标着0~9⼗个数字.球停⽌在那段弧对应的数字就是⼀轮游戏的结果.数字按下⾯的⽅式涂⾊:0看作⾮奇⾮偶涂为绿⾊,奇数涂为红⾊,偶数涂为⿊⾊.事件A ={结果为奇数},事件B ={结果为涂⿊⾊的数}.求以下事件的概率:(1))(A P ;(2))(B P ;(3)()P A B ;(4))(AB P .12. 设⼀质点⼀定落在xOy 平⾯内由x 轴,y 轴及直线x +y =1所围成的三⾓形内,⽽落在这三⾓形内各点处的可能性相等,即落在这三⾓形内任何区域上的可能性与这区域的⾯积成正⽐,计算这质点落在直线x =的左边的概率. 13. 甲、⼄两艘轮船都要在某个泊位停靠6h ,假定它们在⼀昼夜的时间段中随机地到达,试求这两艘船中⾄少有⼀艘在停靠泊位时必须等待的概率.14. 已知B A ?,4.0)(=A P ,6.0)(=B P ,求:(1))(),(B P A P ;(2)()P A B ;(3))(AB P ;(4))(),(B A P A B P ;(5))(B A P .316习题⼆15. 设A,B是两个事件,已知P(A)=0.5,P(B)=0.7,()P A B=0.8,试求:P(A-B)与P (B-A).*16. 盒中装有标号为1~r的r个球,今随机地抽取n个,记录其标号后放回盒中;然后再进⾏第⼆次抽取,但此时抽取m个,同样记录其标号,这样得到球的标号记录的两个样本,求这两个样本中恰有k个标号相同的概率.习题三 5习题三1. 已知随机事件A 的概率5.0)(=A P ,随机事件B 的概率6.0)(=B P 及条件概率8.0)(=A B P ,试求)(AB P 及)(B A P .2. ⼀批零件共100个,次品率为10%,每次从中任取⼀个零件,取出的零件不再放回去,求第三次才取得正品的概率.3. 某⼈有⼀笔资⾦,他投⼊基⾦的概率为0.58,购买股票的概率为0.28,两项投资都做的概率为0.19.(1)已知他已投⼊基⾦,再购买股票的概率是多少?(2)已知他已购买股票,再投⼊基⾦的概率是多少?4. 罐中有m 个⽩球,n 个⿊球,从中随机抽取⼀个,若不是⽩球则放回盒中,再随机抽取下⼀个;若是⽩球,则不放回,直接进⾏第⼆次抽取,求第⼆次取得⿊球的概率.5. ⼀个⾷品处理机制造商分析了很多消费者的投诉,发现他们属于以下列出的6种类型:习题三6如果收到⼀个消费者的投诉,已知投诉发⽣在保质期内,求投诉的原因是产品外观的概率.6. 给定5.0)(=A P ,3.0)(=B P ,15.0)(=AB P ,验证下⾯四个等式:)()(A P B A P =;)()(A P B A P =;)()(B P A B P =;)()(B P A B P =.7. 已知甲袋中装有6只红球,4只⽩球,⼄袋中装有8只红球,6只⽩球.求下列事件的概率:(1)随机地取⼀只袋,再从该袋中随机地取⼀只球,该球是红球;(2)合并两只⼝袋,从中随机地取1只球,该球是红球.8. 设某⼀⼯⼚有A ,B ,C 三间车间,它们⽣产同⼀种螺钉,每个车间的产量,分别占该⼚⽣产螺钉总产量的25%、35%、40%,每个车间成品中次货的螺钉占该车间出产量的百分⽐分别为5%、4%、2%.如果从全⼚总产品中抽取⼀件产品,(1)求抽取的产品是次品的概率;(2)已知得到的是次品,求它依次是车间A ,B ,C ⽣产的概率.9. 某次⼤型体育运动会有1 000名运动员参加,其中有100⼈服⽤了违禁药品.在使⽤者中,假定有90⼈的药物检查呈阳性,⽽在未使⽤者中也有5⼈检验结果显⽰阳性.如果⼀个运习题三 7 动员的药物检查结果是阳性,求这名运动员确实使⽤违禁药品的概率.10. 发报台分别以概率0.6和0.4发出信号“*”和“—”.由于通信系统受到⼲扰,当发出信号“*”时,收报台未必收到信号“*”,⽽是分别以概率0.8和0.2收到信号“*”和“—”.同样,当发出信号“—”时,收报台分别以概率0.9和0.1收到信号“—”和“*”.求:(1)收报台收到信号“*”的概率;(2)当收报台收到信号“*”时,发报台确是发出信号“*”的概率.*11. 甲袋中有4个⽩球6个⿊球,⼄袋中有4个⽩球2个⿊球.先从甲袋中任取2球投⼊⼄袋,然后再从⼄袋中任取2球,求从⼄袋中取到的2个都是⿊球的概率.12. 设事件B A ,相互独⽴.证明:B A ,相互独⽴,B A ,相互独⽴. 13. 设事件A 与B 相互独⽴,且p A P =)(,q B P =)(.求下列事件的概率:(),(),().P A B P A B P A B14. 已知事件A 与B 相互独⽴,且91)(=B A P ,)()(B A P B A P =.求:)(),(B P A P .15. 三个⼈独⽴破译⼀密码,他们能独⽴译出的概率分别为0.25,0.35,0.4,求此密码被译习题三8 出的概率.16. 设六个相同的元件,如下图所⽰那样安置在线路中.设每个元件不通达的概率为p ,求这个装置通达的概率.假定各个元件通达、不通达是相互独⽴的.*17. (配对问题)房间中有n 个编号为1~n的座位.今有n 个⼈(每⼈持有编号为1~n 的票)随机⼊座,求⾄少有⼀⼈持有的票的编号与座位号⼀致的概率.(提⽰:使⽤概率的性质5的推⼴,即对任意n 个事件12,,,n A A A ,有1121111111()()(1)()(1)().)k k n n k k i j k i j n k k n i i n i i i n P A P A P A A P A A P A A =≤<≤=--≤<<<≤??=-+ +-++-∑∑∑ *18. (波利亚(Pólya )罐⼦模型)罐中有a 个⽩球,b 个⿊球,每次从罐中随机抽取⼀球,观察其颜⾊后,连同附加的c 个同⾊球⼀起放回罐中,再进⾏下⼀次抽取.试⽤数学归纳法证明:第k 次取得⽩球的概率为a a b+(1k ≥为整数).(提习题三 9 ⽰:记{}k A k 第次取得⽩球,使⽤全概率公式1111()=()()+()()k k k P A P A P A A P A P A A 及归纳假设.)19. 甲⼄两⼈各⾃独⽴地投掷⼀枚均匀硬币n 次,试求:两⼈掷出的正⾯次数相等的概率.20. 假设⼀部机器在⼀天内发⽣故障的概率为0.2,机器发⽣故障时全天停⽌⼯作.若⼀周五个⼯作⽇⾥每天是否发⽣故障相互独⽴,试求⼀周五个⼯作⽇⾥发⽣3次故障的概率.21. 灯泡耐⽤时间在1 000 h 以上的概率为0.2,求:三个灯泡在使⽤1 000 h 以后最多只有⼀个坏了的概率.22. 某宾馆⼤楼有4部电梯,通过调查,知道在某时刻T ,各电梯正在运⾏的概率均为0.75,求:(1)在此时刻所有电梯都在运⾏的概率;(2)在此时刻恰好有⼀半电梯在运⾏的概率;(3)在此时刻⾄少有1台电梯在运⾏的概率.23. 设在三次独⽴试验中,事件A 在每次试验中出现的概率相同.若已知A ⾄少出现⼀次的概率等于2719,求事件A 在每次试验中出现的概率)(A P .10习题三*24. 设双胞胎中为两个男孩或两个⼥孩的概率分别为a及b.今已知双胞胎中⼀个是男孩,求另⼀个也是男孩的概率.25. 两射⼿轮流打靶,谁先进⾏第⼀次射击是等可能的.假设他们第⼀次的命中率分别为0.4及0.5,⽽以后每次射击的命中率相应递增0.05,如在第3次射击⾸次中靶,求是第⼀名射⼿⾸先进⾏第⼀次射击的概率.26. 袋中有2n-1个⽩球和2n个⿊球,今随机(不放回)抽取n个,发现它们是同⾊的,求同为⿊⾊的概率.*27. 3个外形相同但可辨别的球随机落⼊编号1~4的四个盒⼦,(1)求恰有两空盒的概率;(2)已知恰有两空盒,求有球的盒⼦的最⼩编号为2的概率.习题四 8习题四1. 下列给出的数列,哪些可作为随机变量的分布律,并说明理由.(1)15ii p =(0,1,2,3,4,5)i =;(2)6)5(2i p i -=(0,1,2,3)i =;(3)251+=i p i (1,2,3,4,5)i =.2. 试确定常数C ,使i C i X P 2)(== (0,1,2,3,4)i =成为某个随机变量X 的分布律,并求:(1)(2)P X >;(2)1522P X ??<<;(3)(3)F (其中F (·)为X 的分布函数).3. ⼀⼝袋中有6个球,在这6个球上分别标有-3,-3,1,1,1,2这样的数字.从这⼝袋中任取⼀球,设各个球被取到的可能性相同,求取得的球上标明的数字X 的分布律与分布函数.4. ⼀袋中有5个乒乓球,编号分别为1,2,3,4,5.从中随机地取3个,以X 表⽰取出的3个球中最⼤号码,写出X 的分布律和分布函数.5. 在相同条件下独⽴地进⾏5次射击,每次射击时击中⽬标的概率为0.6,求击中⽬标的9习题四次数X的分布律.6. 从⼀批含有10件正品及3件次品的产品中⼀件⼀件地抽取产品.设每次抽取时,所⾯对的各件产品被抽到的可能性相等.在下列三种情形下,分别求出直到取得正品为⽌所需次数X的分布律:(1)每次取出的产品⽴即放回这批产品中再取下⼀件产品;(2)每次取出的产品都不放回这批产品中;(3)每次取出⼀件产品后总以⼀件正品放回这批产品中.7. 设随机变量X),6(==XP,XP(=)1B,已知)5~p(求p与)2P的值.(=X8. ⼀张试卷印有⼗道题⽬,每个题⽬都为四个选项的选择题,四个选项中只有⼀项是正确的.假设某位学⽣在做每道题时都是随机地选择,求该位学⽣未能答对⼀道题的概率以及答对9道以上(包括9道)题的概率.9.市120接听中⼼在长度为t的时间间隔内收到的紧急呼救的次数X服从参数为0.5t的泊松分布,⽽与时间间隔的起点⽆关(时间以⼩时计算):习题四10 求:(1)某天中午12点⾄下午3点没有收到紧急呼救的概率;(2)某天中午12点⾄下午5点⾄少收到1次紧急呼救的概率.10.某商店出售某种物品,根据以往的经验,每⽉销售量X服从参数4=λ的泊松分布.问在⽉初进货时,要进多少才能以99%的概率充分满⾜顾客的需要?11. 有⼀汽车站有⼤量汽车通过,每辆汽车在⼀天某段时间出事故的概率为0.000 1.在某天该段时间内有1 000辆汽车通过,求事故次数不少于2的概率.12. 设鸡下蛋数X服从参数为λ的泊松分布,但由于鸡舍是封闭的,我们只能观察到从鸡舍输出的鸡蛋.记Y为观察到的鸡蛋数,即Y的分布与给定>0X的条件下X的分布相同,今求Y 的分布律.(提⽰:()(0),1,2,.对于)P Y k P X k X k===>=13. 袋中有n把钥匙,其中只有⼀把能把门打开,每次抽取⼀把钥匙去试着开门.试在:(1)有放回抽取;(2)不放回抽取两种情况下,求⾸次打开门时试⽤钥匙次数的分布律.习题四11 14. 袋中有a 个⽩球、b 个⿊球,有放回地随机抽取,每次取1个,直到取到⽩球停⽌抽取,X 为抽取次数,求()P X n ≥.15. 据统计,某⾼校在2010年上海世博会上的学⽣志愿者有6 000名,其中⼥⽣3 500名.现从中随机抽取100名学⽣前往各世博地铁站作引导员,求这些学⽣中⼥⽣数X 的分布律.16. 设随机变量X 的密度函数为2,()0,x f x ?=??0,x A <<其他,试求:(1)常数A ;(2))5.00(<17.设随机变量X 的密度函数为()e x f x A -=()x -∞<<+∞,求:(1)系数A ;(2))10(<(3)X 的分布函数. 18.证明:函数22e ,0,()0,0,xc x x f x c x -??≥=??可作为⼀个密度函数.19. 经常往来于某两地的⽕车晚点的时间X(单位:min )是⼀个连续型随机变量,其密度函数为23(25),55,()5000,x x f x ?--<X 为负值表⽰⽕车早到了.求⽕车⾄少晚点2min 的概率.习题四 1220. 设随机变量X 的分布函数为0()1(1)e x F x x -?=?-+?,0,,0,x x ≤>求X 的密度函数,并计算)1(≤X P 和)2(>X P .21. 设随机变量X 在(1,6)上服从均匀分布,求⽅程012=++Xt t 有实根的概率.22. 设随机变量X 在)1,0(上服从均匀分布,证明:对于0,0,1a b a b ≥≥+≤,()P a X b b a ≤≤=-,并解释这个结果.23. 设顾客在某银⾏的窗⼝等待服务的时间X (单位:min )是⼀随机变量,它服从51=λ的指数分布,其密度函数为51e ()50x f x -??=,0,,x >其它.某顾客在窗⼝等待服务,若超过10 min ,他就离开.(1)设某顾客某天去银⾏,求他未等到服务就离开的概率;(2)设某顾客⼀个⽉要去银⾏五次,求他五次中⾄多有⼀次未等到服务⽽离开的概率.24. 以X 表⽰某商店从早晨开始营业起直到第⼀个顾客到达的等待时间(单位:min ),X 的分布函数是0.21e ,0,()0,x x F x -?->=??其他.求:(1)X 的密度函数;(2)P (⾄多等待。
概率统计习题带答案

概率论与数理统计习题及题解沈志军 盛子宁第一章 概率论的基本概念1.设事件B A ,及B A 的概率分别为q p ,及r ,试求)(),(),(B A P B A P AB P 及)(AB P2.若C B A ,,相互独立,试证明:C B A ,,亦必相互独立。
3.试验E 为掷2颗骰子观察出现的点数。
每种结果以),(21x x 记之,其中21,x x 分别表示第一颗、第二颗骰子的点数。
设事件}10|),{(2121=+=x x x x A , 事件}|),{(2121x x x x B >=。
试求)|(A B P 和)|(B A P4.某人有5把钥匙,但忘了开房门的是哪一把,只得逐把试开。
问:(1)恰好第三次打开房门锁的概率?(2)三次内打开的概率?(3)如果5把里有2把房门钥匙,则在三次内打开的概率又是多少?5.设有甲、乙两袋,甲袋中装有n 个白球、m 个红球,乙袋中装有N 个白球、M 个红球。
今从甲袋中任意取一个放入乙袋中,再从乙袋中任意取一个,问取到白球的概率是多少?6.在时间间隔5分钟内的任何时刻,两信号等可能地进入同一收音机,如果两信号进入收音机的间隔小于30秒,则收音机受到干扰。
试求收音机不受干扰的概率?7.甲、乙两船欲停靠同一码头,它们在一昼夜内独立地到达码头的时间是等可能的,各自在码头上停留的时间依次是1小时和2小时。
试求一船要等待空出码头的概率?8.某仓库同时装有甲、乙两种警报系统,每个系统单独使用的有效率分别为0.92,0.93,在甲系统失灵的条件下乙系统也失灵的概率为0.15。
试求下列事件的概率:(1)仓库发生意外时能及时发出警报;(2)乙系统失灵的条件下甲系统亦失灵?9.设B A ,为两随机变量,试求解下列问题:(1) 已知6/1)|(,3/1)()(===B A P B P A P 。
求:)|(B A P ; (2) 已知2/1)|(,3/1)|(,4/1)(===B A P A B P A P 。
2024年数学九年级上册概率统计基础练习题(含答案)

2024年数学九年级上册概率统计基础练习题(含答案)试题部分一、选择题:1. 下列事件中,哪一个属于随机事件?A. 太阳从西边升起B. 掷一枚硬币,正面朝上C. 1+1=2D. 今天的天气是晴天2. 下列数据中,哪一个不是频数?A. 某班有50名学生,其中30名学生喜欢打篮球B. 某班有50名学生,其中男生25名C. 某班有50名学生,考试及格的有40名D. 某班有50名学生,平均身高160cm3. 抛掷两个骰子,下列哪个事件的概率为1/6?A. 两个骰子的点数和为7B. 两个骰子的点数和为12C. 两个骰子的点数相同D. 两个骰子的点数之和小于64. 下列哪个图形的面积可以用概率公式计算?A. 正方形B. 长方形C. 圆形D. 三角形5. 一个袋子里有5个红球,3个蓝球,2个绿球,从中随机抽取一个球,下列哪个事件的概率最大?A. 抽到红球B. 抽到蓝球C. 抽到绿球D. 抽到红球或蓝球6. 下列哪个统计量不受极端值影响?A. 平均数B. 中位数C. 众数D. 方差A. 70分B. 75分C. 80分D. 85分8. 下列哪个图形的面积不能表示概率?A. 长方形B. 正方形C. 圆形D. 梯形9. 一个班级有40名学生,其中有30名学生参加了数学竞赛,20名学生参加了英语竞赛。
如果每名学生最多参加一个竞赛,那么至少有多少名学生没有参加任何竞赛?A. 0B. 10C. 15D. 2010. 下列哪个事件的概率为0?A. 抛掷一枚硬币,正面朝上B. 抛掷一枚硬币,反面朝上C. 抛掷一枚硬币,正面和反面同时朝上D. 抛掷一枚硬币,正面和反面同时朝下二、判断题:1. 概率值越大,事件发生的可能性越大。
()2. 概率值越小,事件发生的可能性越小。
()3. 抛掷一枚硬币,正面朝上的概率是1/2。
()4. 在一组数据中,众数只有一个。
()5. 平均数、中位数和众数都是描述数据集中趋势的统计量。
()6. 方差越小,数据的波动越小。
概率论教程部分答案(钟开莱)

bn
2. 取f (x) = [x] 但
∞ n=1
δn (x) ≥ 0, ∀x ∈ R,显然f 在x < 0处不满足。
∞ n=1
作如下修改:f (x) = 3. 否则可取n >
δn (x) −
∞ n=1
δn (−x) − δ0 (−x)
B −A n ε 个跳跃点{aj }j =1 跳跃都大于ε。
不妨设a1 < · · · < an 。则∀x > an , y < a1 , f (x) − f (y )
1
F = Fac
x
⇔ F (x) =
−∞
F (t)dt, ∀x ∈ R
x
⇔ F (x ) − F (x) =
x
F (t)dt, ∀x < x ∈ R
⇔ F absolutely continuous 2. 由定理1.2.3,分布函数F 可写为离散分布F1 与连续分布F2 的凸 组合,且分解唯一。再将F2 作定理1.3.1c中的分解F2 = Fac + Fs ,并记β = Fac (∞),则类似可得到Fc 的凸组合表示βF3 + (1 − β )F4 ,其中F3 =
1 β Fac , F4
=
1 1−β Fs 。即最终有F
= αF1 + (1 −
α)βF3 + (1 − α)(1 − β )F4 。注意连续函数F2 的分解也是唯一的, 故最终的分解唯一。 6. 设离散分布函数F (x) = 需证F = 0, a.e.。 ∀x ∈ / { an } ∞ n=1 ,显然δaj (x) = 0, ∀j 。又F 一致收敛,故可导,且F (x) =
ε↓0
且上式显然表示x处的跳跃。 2. 由于分布函数递增,故∀ε > 0, 0≤
(完整版)北师大版九年级数学上册第三章《概率》专题练习(含答案)

北师大版九年级数学上册第三章《概率》专题练习一.知识梳理(一)事件的分类:1. 频率二频数/总数,频率随着试验的不同而不同,它是一个不确定数。
2. 事件发生的——大小叫做概率。
事件的概率是一个确定的常数。
3. 事件的分类:确定事件和随机事件。
确定事件包括必然事件和不可能事件4. 必然事件的概率为1;不可能事件的概率为0;随机事件的概率位于0--1之间。
(二)概率的计算:当事件发生的结果具有有限性和等可能性时:(1) 一步试验或几何图形,利用概率的定义直接计算(2) 两步试验,且结果较少,用树状图和列表格求概率都可以;(3) 两步试验,但每步结果较多,适合用列表法求概率;(4) 三步或三步以上,适合用画树状图求概率。
(5) 用画树状图或列表法求概率时应注意:要清楚所以结果有哪些?要清楚我们关注的是哪些结果?(三)用频率估计概率概率和频率的关系:通过试验获得事件发生的频率,而大量重复试验时的频率会稳定在概率的附近,所以可以用大量试验的频率估计概率;同时也可以利用概率预测事件发生的频率。
二.简单概率计算一步试验:1. 十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,亮绿灯的概率是________________2. 一个不透明的袋子中放入除颜色外均相同的2个白球和6个红球,从中任意抽取一个球,抽到红球的概率是________________ 3. 在一只不透明的口袋中放入红球6个,黑球2个,黄球n个,这些球除颜色不同外,其他无任何差别,搅匀后随机从中摸出一个求恰好是黄球的概率是】,则放入口袋中的黄球总数是n= _____________________3两步试验:仔细区分:(1)放回;(2)不放回4. 在一个不透明的袋子中,有2个白球和2个红球,它们只有颜色不同,从袋子中随机摸出一个球记下颜色后放回,再随机摸出一个球,则两次都摸到白球的概率为_________5. 某校安排了3辆车,组织九年级学生团员去敬老院参加学雷锋活动,其中小王和小菲都可以从这三辆车中任意选取1辆搭乘,则小王和小菲同车的概率是_______6. 某校决定从2名男生和3名女生中选出2名同学作为兰州国际马拉松赛的志愿者,则选出1男1女的概率是 ___________7. 袋子中放着型号,大小完全相同的红,白,黑三种颜色的衣服,红色2件,黑色1件,白色1件,小明随意从袋中取出2件衣服,则取出的是1红1白的概率是 ________三步试验:8. 随机安排甲乙丙3人在3天节日中值班,每人值班一天,则按“乙,甲,丙”的先后顺序值班的概率是____________三:概率与其他知识的综合9. 在x2口2xy 口y2的“口”中分别填上“ +”或“-”,在所得的代数式中,能构成完全平方式的概率是__________A.1B. 3C.丄D.丄4 2 410. 已知a,b可以取-2 , -1,1,2中的任意一个值(a z b),则直线y=ax+b的图像不经过第四象限的概率是____________11. 一个盒子里有完全相同的三个小球,球上分别标有数字-2,1,4,随机摸出一个小球(不放回),其数字记为p,再随机摸出另一个小球其数字记为q,则满足关于X的方程x2px q 0有实数根的概率是 _ _12. 如图,一个质地均匀的正四面体的四个面上依次标有数字-2,0 ,1,2,连续抛掷两次,朝下一面的数字分别为a,b,将其作为M点横,纵坐标,则点M(a,b)落在以A (-2,0 ) , B (2,0 ) , C (0,2 )为顶点的三角形内(包括边界)的概率是_______________________________________ 标的数字不同外其他都相同,若从袋子中随机摸出两个球,则这两个球上的数字之和为负数的概率是 _____________________ 14.在盒子里放有3张分别写有整式a+1,a+2,2的卡片,从中随机抽出2张卡片,把2张卡片上的整式分别作为分子和分母,贝惟组成分式的概率是—15. 有四根木棒,长度分别为2,3,4,5,从中任选3根,恰好能搭成一个三角形的概率是——16. 小明和小亮用如图所示的两个转盘做“配紫色”游戏,游戏规则是:分别转动两个转盘,若其中一个转盘转出红色,另一个转盘转出蓝色,则可以配成紫色,此时小明的1分,否则小亮的1分.用树状图或列表求出小明获胜的概率;(2)这游戏对双方公平吗?请说明理由.若不公平,如何修改规则才能使游戏对双方公平?17. 端午节前,小明爸爸去超市购买了大小,形状,重量等相同的火腿粽子和豆沙粽子若干,放入不透明的盒子中,此时从盒中随机取出火腿13. 一个不透明的袋子中有3个分别标有3,1 , -2的球,这些球除了所粽子的概率为1;妈妈从盒中取出火腿粽子3只、豆沙粽子7只送给爷3爷和奶奶后,这时随机取出火腿粽子的概率为2 .(1)请你用所学知5识计算:爸爸买的火腿粽子和豆沙粽子各有多少只?(2)若小明一次从盒内剩余粽子中任取2只,问恰有火腿粽子、豆沙粽子各1只的概率是多少?(用列表法或树状图计算)四.样本估计总体18. 一个口袋中有红球24个和绿球若干个,从口袋中随机摸出一个球记下其颜色,再把它放回口袋中摇匀,重复上述过程,实验200次,其中有125次摸到绿球,由此估计口袋中共有球 __________ 个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学年 教师姓名 学号 201030550026 201130580138 201269991461 201269991485 201330550023 201330550054 201330550078 201330550108 201330550115 201330550139 201330550177 201330550184 201330550221 201330550238 201330550269 201330550276 201330550290 201330550313 201330550351 201330550368 201330550382 201330550412 201330550436 201330550481 201330550498 201330550504 201330551037 201330551051 201330551082 201330551105 201330551129 201330551198 201330551204 201330551228 201330551235 201330551259 201330551266 201330551280 201330551327 201330551334 2013-2014 学期 刘勇平 教师单位 姓名 陈瑞璋 丁林盛 2 选课课号 理学院 专业 计算机科学与技术 计算机科学与技术 (2013-2014-2)-140019-B13045-1 平时1 平时2 平时3 课程名称 平时4 概率论与数理统计 A1301;A1301 平时6 平时5 周四第1,2节{第1-14周};周五第3,4节{第1-14周} 上课时间 上课地点
第 1 页,共 8 页
教学班点名册
学年 教师姓名 学号 201330551358 201330551372 201330551402 201330551426 201330551440 201330551457 201330551495 201330552034 201330552041 201330552058 201330552065 201330552072 201330552089 201330552102 201330552126 201330552133 201330552164 201330552218 201330552256 201330552263 201330552287 201330552300 201330552317 201330552324 201330552348 201330552362 201330552409 201330630244 201336551246 201336551482 201336552205 201369990241 201369990265 201369990272 201330550016 201330550030 201330550061 201330550085 201330550092 201330550122 2013-2014 学期 刘勇平 教师单位 姓名 骆明楠 潘思羽 邵亨康 盛国威 石毓文 史锦涛 田育鸣 王栗 王沁源 韦家铎 文芷茜 吴鸿飞 吴锐正 吴镇升 吴梓明 肖钦哲 谢镇峰 杨肇星 章航 张塽旖 张煌彬 张俊杰 张泞华 张伟恒 张永辉 张雯 庾龙鑫 何旋 刘宇阳 陶涛 杨凯捷 2 选课课号 理学院 专业 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 10 10 10 8 10 10 9 10 9 10 10 10 10 9 10 10 10 10 10 10 9 10 10 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 9 10 10 10 10 8 10 10 10 10 10 10 10 10 9 9 9 9 10 9 10 10 10 9 10 9 10 10 10 (2013-2014-2)-140019-B13045-1 平时1 10 10 10 10 10 9 10 10 10 8 10 平时2 10 10 10 10 10 10 10 10 10 10 10 平时3 10 10 10 10 10 10 10 9 8 9 10 8 10 10 10 10 10 10 10 10 10 10 9 10 10 10 10 10 10 10 10 10 课程名称 平时4 10 10 10 10 10 10 10 10 10 10 10 10 10 概率论与数理统计 A1301;A1301 平时6 10 9 9 10 10 8 9 9 9 10 10 7 10 10 9 10 10 9 10 10 7 9 10 10 7 10 9 10 10 10 10 10 10 10 10 平时5 周四第1,2节{第1-14周};周五第3,4节{第1-14周} 上课时间 上课地点
TIENTCHEU TOUKO 计算机科学与技术 LANDRY DEJOLI AMON ADEN SAUL 计算机科学与技术
MBAKOU DEMBA 计算机科学与技术 LOUNGUILA JOSEL-MARES YVIE 10 蔡木庆 蔡振坤 陈碧玉 陈丹丹 陈广辉 陈明宇 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 10 10 10 10 10 10 9 10 10 10 10 10 10 9 10 10 10 10 9 10 10 10 10 10 10 10 10 10 10 10 10 9 10 10 10 10
Байду номын сангаас
JAMIYANBAATAR 国际经济与贸易. MUNKHSHUR ERDENESAIKHAN 国际经济与贸易. ANISAA 蔡斯伟 曹丽洁 陈渤 陈家俊 陈江源 陈霜 陈资强 陈麒昌 邓毓峰 丁运昌 杜金波 段竣耀 何旭 洪佳财 黄超 黄弘烨 黄凯鹏 黄永辉 黄皓 李浩源 李红 李康晓 李圳 李婷婷 梁敏聪 林佳钦 林瑞玉 刘景恒 刘俊毅 刘蔚旻 刘雪华 刘煜文 卢思维 陆攀 罗升宏 罗盛杰 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 9 10 9 10 10 9 10 10 10 10 10 10 10 10 9 10 10 10 8 9 9 10 10 10 10 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 7 10 10 10 10 10 10 10 10 10 10 10 9 10 10 10 10 10 10 9 10 10 10 10 10 10 10 10 10 10 10 7 10 10 10 10 10 10 10 9 10 10 10 8 10 10 10 10 10 10 10 10 10 9 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 9 10 10 10 10 10 10 10 10 9 10 10 10 10 9 9 9 10 10 8 10 10 10 10 9 10 10 10 10 9 10 10 10 9 9 9 10 9 9 9 9 10 8 10 10 10 10 10 9 10 10 10 10 10 9 8 10 9 10 9 8 10 10 9 10 9 10 8 9 10 9 9 8 10 8 10 10 10 10 10 10 10 10 10 10 9 10 9 9 10
第 2 页,共 8 页
教学班点名册
学年 教师姓名 学号 201330550146 201330550153 201330550160 201330550191 201330550214 201330550245 201330550252 201330550283 201330550306 201330550320 201330550337 201330550344 201330550399 201330550405 201330550429 201330550450 201330550467 201330550474 201330551013 201330551068 201330551075 201330551099 201330551112 201330551136 201330551143 201330551150 201330551167 201330551174 201330551181 201330551211 201330551273 201330551297 201330551303 201330551310 201330551341 201330551365 201330551389 201330551396 201330551419 201330551433 2013-2014 学期 刘勇平 教师单位 姓名 陈小萍 陈耀沛 陈源 代涵宣 邓宇 董朋林 杜剑豪 高昊烨 何紫萍 洪家润 黄宝聪 黄炳麟 黄培根 黄彦龙 黄泽宇 李垚圣 李潮流 李涵 李铭斌 梁澳昭 梁宏学 林超 林俊杰 林思宏 林小榆 林应海 林宇炀 林卓斐 刘佳栋 刘盛豪 卢铮宇 吕文剑 罗邦柳 罗凌杰 骆俊邦 马志珍 彭高丰 彭焕贵 沈子东 石嘉琪 2 选课课号 理学院 专业 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 计算机科学与技术 9 10 10 10 10 10 9 10 9 9 10 9 10 9 10 9 9 10 10 9 10 10 10 9 10 10 9 (2013-2014-2)-140019-B13045-1 平时1 10 10 10 8 10 10 10 10 10 9 10 9 平时2 10 10 10 8 10 10 10 10 10 10 10 10 10 10 10 10 10 10 9 10 10 10 10 10 10 10 9 10 10 10 10 10 10 10 10 10 10 10 10 7 10 10 10 9 10 10 9 9 10 10 10 10 10 10 10 8 10 10 10 10 10 10 10 8 10 10 10 10 平时3 10 10 10 9 10 10 10 10 10 10 10 8 课程名称 平时4 10 9 10 8 9 10 9 10 8 10 10 10 10 10 10 10 9 10 10 10 10 10 10 10 10 10 10 10 10 10 9 10 10 10 10 10 9 10 10 9 10 10 10 10 10 10 10 10 10 10 10 10 9 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 9 9 8 10 9 9 9 9 7 8 10 10 10 10 9 9 9 9 9 概率论与数理统计 A1301;A1301 平时6 9 10 10 9 9 10 8 8 9 9 9 9 10 10 9 10 9 8 9 8 10 平时5 周四第1,2节{第1-14周};周五第3,4节{第1-14周} 上课时间 上课地点