数学分析公式

合集下载

数学分析知识要点整理

数学分析知识要点整理

数学分析知识要点整理数学分析是数学专业的重要基础课程,它为后续的许多课程提供了必备的知识和方法。

以下是对数学分析中的一些关键知识要点的整理。

一、函数函数是数学分析的核心概念之一。

1、函数的定义设 X 和 Y 是两个非空数集,如果对于 X 中的每个元素 x,按照某种确定的对应关系 f,在 Y 中都有唯一确定的元素 y 与之对应,那么就称 f 是定义在 X 上的函数,记作 y = f(x),x ∈ X。

2、函数的性质(1)单调性:若对于定义域内的任意两个自变量 x1 和 x2,当 x1< x2 时,都有 f(x1) < f(x2)(或 f(x1) > f(x2)),则称函数 f(x)在其定义域上单调递增(或单调递减)。

(2)奇偶性:若对于定义域内的任意 x,都有 f(x) = f(x),则称函数 f(x)为奇函数;若 f(x) = f(x),则称函数 f(x)为偶函数。

(3)周期性:若存在非零常数 T,使得对于定义域内的任意 x,都有 f(x + T) = f(x),则称函数 f(x)为周期函数,T 为函数的周期。

3、反函数设函数 y = f(x),其定义域为 D,值域为 R。

如果对于 R 中的每一个 y,在 D 中都有唯一确定的 x 与之对应,使得 y = f(x),则这样得到的 x 关于 y 的函数称为 y = f(x)的反函数,记作 x = f⁻¹(y)。

二、极限极限是数学分析中的重要概念,用于描述变量在一定变化过程中的趋势。

1、数列的极限对于数列{an},若存在常数 A,对于任意给定的正数ε(不论它多么小),总存在正整数 N,使得当 n > N 时,不等式|an A| <ε 恒成立,则称常数 A 是数列{an} 的极限,记作lim(n→∞) an = A。

2、函数的极限(1)当x → x0 时函数的极限:设函数 f(x)在点 x0 的某个去心邻域内有定义,如果存在常数 A,对于任意给定的正数ε,总存在正数δ,使得当 0 <|x x0| <δ 时,不等式|f(x) A| <ε 恒成立,则称常数A 是函数 f(x)当x → x0 时的极限,记作lim(x→x0) f(x) = A。

数学分析6-3 泰勒公式

数学分析6-3 泰勒公式


f
( n)
(t ) ( x t )n ] ; n!
不妨设 x x0 , F (t ), G(t ) 在 [ x0 , x] 上连续, 在 则
( x0 , x )上可导, 且
G( t ) ( n 1)( x t )n 0 , t [ x0 , x ).
由柯西中值定理, 得 F ( t ) F ( t ) F ( x0 ) F ( ) . G ( t ) G ( t ) G ( x0 ) G ( ) 因为 ( n1) f (t ) F ( t ) ( x t )n , n! 所以 ( n1 ) F (t ) f ( ) , [t0, x0 ) (a , b), G ( t ) ( n 1)!
( n)

f ( x ) Pn ( x ) o(( x x0 ) ),
n
f ( x ) Pn ( x ) lim 0, n x x0 ( x x0 )
则不难得到:
f
(k )
( x0 ) Pn ( x0 ), k 0, 1, 2, , n,
(k )
(1)
其中 k 0 表示不求导. 这时称 f ( x0 ) Tn ( x ) f ( x0 ) ( x x0 ) 1! f ( n ) ( x0 ) ( x x0 )n . n!
此式称为(带有佩亚诺型余项)的麦克劳林公式.
例1 验证下列公式
x x2 xn 1. e x 1 o( x n ); 1! 2! n!
x3 x 2 m 1 2. sin x x ( 1)m 1 o( x 2 m ); 3! (2m 1)! x2 x 2m 3. cos x 1 ( 1)m o( x 2 m 1 ); 2! (2m )!

数学分析公式定理1-11章

数学分析公式定理1-11章

第一章 变量与函数 §1 函数的概念一 变量 变量、常量、实数性质、区间表示二 函数 1.定义1 设,X Y R ⊂,如果存在对应法则f ,使对x X ∀∈,存在唯一的一个数y Y ∈与之对应,则称f 是定义在数集X 上的函数,记作:f X Y →(|x y →).也记作|()x f x →。

习惯上称x 自变量,y 为因变量。

函数f 在点x 的函数值,记为()f x ,全体函数值的集合称为函数f 的值域,记作()f X .{}()|(),f X y y f x x X ==∈。

2.注 (1) 函数有三个要素,即定义域、对应法则和值域。

例:1)()1,,f x x R =∈ {}()1,\0.g x x R =∈(不相同,对应法则相同,定义域不同)2)()||,,x x x R ϕ=∈().x x R ψ=∈(相同,对应法则的表达形式不同)。

(2)函数的记号中的定义域D可省略不写,而只用对应法则f 来表示一个函数。

即“函数()y f x =”或“函数f ”。

(3)“映射”的观点来看,函数f 本质上是映射,对于a D ∈,()f a 称为映射f 下a 的象。

a 称为()f a 的原象。

3. 函数的表示方法 1 主要方法:解析法(分式法)、列表法和图象法。

2 可用“特殊方法”来表示的函数。

分段函数:在定义域的不同部分用不同的公式来表示。

例: 1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩,(符号函数)用语言叙述的函数。

例:1)[]y x =(x 的最大整数部分)2)1,()0,x D x x ⎧=⎨⎩当为有理数,当为无理数,(Dirichlet )三 函数的一些几何特性 1、单调函数 定义 2 设f 为定义在X 上的函数,1212,,,x x X x x ∀∈< (1)若12()()f x f x ≤,则称f 为X 上的增函数;若12()()f x f x <,则称f 为X 上的严格增函数。

数学分析-Taylor公式与科学计算PPT课件

数学分析-Taylor公式与科学计算PPT课件

03 Taylor公式在科学计算中 的应用
多项式逼近
多项式逼近
利用Taylor公式,可以将复杂的函数展开 为多项式形式,从而实现对复杂函数的 近似计算。这种多项式逼近方法在数值 分析和科学计算中具有广泛的应用。
VS
逼近精度
通过选择合适的阶数和节点,可以控制多 项式逼近的精度。高阶多项式逼近能够更 好地逼近函数,但同时也需要更多的计算 资源和时间。
总结词
通过Taylor展开,可以将微分方程转化为差分方程,从 而简化求解过程。
详细描述
在求解微分方程时,有时可以利用Taylor展开将微分方 程转化为差分方程,从而简化求解过程。这种方法在数 值分析中有着广泛的应用,尤其在处理偏微分方程时非 常有效。
05 结论
Taylor公式的意义与价值
1 2
精确近似
数学分析-Taylor公式与科学计算 PPT课件
目录
• 引言 • Taylor公式简介 • Taylor公式在科学计算中的应用 • 实例演示 • 结论
01 引言
主题简介
数学分析
数学分析是研究函数的极限、连 续性、可微性、可积性和实数完 备性的学科,是数学专业的重要
基础课程之一。
Taylor公式
算过程。
求解微分方程
要点一
初值问题
在求解微分方程时,可以利用Taylor公式对微分方程进行 离散化,从而转化为数值求解问题。通过选择合适的步长 和阶数,可以控制数值解的精度和稳定性。
要点二
边值问题
对于微分方程的边值问题,可以利用Taylor公式将问题转 化为有限元方法或边界元方法等数值方法进行求解。这种 方法在科学计算和工程领域中具有广泛的应用。
02 Taylor公式简介

数学分析 不定积分概念与基本积分公式

数学分析       不定积分概念与基本积分公式
1

xdx x1 C . 1
( 1)
启示 能否根据求导公式得出积分公式?
结论 既然积分运算和微分运算是互逆的, 因此可以根据求导公式得出积分公式.
基 (1) kdx kx C (k是常数);


(2)
xdx x1 C ( 1); 1
分 表
(3)

dx x

说明:
ln x x 0,
C;

dx x

ln
x

C
,
x 0, [ln( x)] 1 ( x) 1 ,
x
x


dx x

ln(

x
)

C
,


dx x

ln
|
x
|
C
,
简写为

dx x

ln
x

C.
(4)

1
1 x
2
dx

arctan
x

C;
(11) csc x cot xdx csc x C;
(12) e xdx e x C;
(13)

a
xdx

ax ln a

C;
(14) sinh xdx cosh x C;
(15) cosh xdx sinh x C;
例 求积分 x2 xdx.
(5)

1 dx arcsin x C; 1 x2
(6) cos xdx sin x C;
(7) sin xdx cos x C;

数学分析公式定理111章

数学分析公式定理111章

第一章 变量与函数 §1 函数的概念一 变量 变量、常量、实数性质、区间表示二 函数 1.定义1 设,X Y R ⊂,如果存在对应法则f ,使对x X ∀∈,存在唯一的一个数y Y ∈与之对应,则称f 是定义在数集X 上的函数,记作:f X Y →(|x y →).也记作|()x f x →。

习惯上称x 自变量,y 为因变量。

函数f 在点x 的函数值,记为()f x ,全体函数值的集合称为函数f 的值域,记作()f X .{}()|(),f X y y f x x X ==∈。

2.注 (1) 函数有三个要素,即定义域、对应法则和值域。

例:1)()1,,f x x R =∈ {}()1,\0.g x x R =∈(不相同,对应法则相同,定义域不同)2)()||,,x x x R ϕ=∈().x x R ψ=∈(相同,对应法则的表达形式不同)。

(2)函数的记号中的定义域D可省略不写,而只用对应法则f 来表示一个函数。

即“函数()y f x =”或“函数f ”。

(3)“映射”的观点来看,函数f 本质上是映射,对于a D ∈,()f a 称为映射f 下a 的象。

a 称为()f a 的原象。

3. 函数的表示方法 1 主要方法:解析法(分式法)、列表法和图象法。

2 可用“特殊方法”来表示的函数。

分段函数:在定义域的不同部分用不同的公式来表示。

例: 1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩,(符号函数)用语言叙述的函数。

例:1)[]y x =(x 的最大整数部分)2)1,()0,x D x x ⎧=⎨⎩当为有理数,当为无理数,(Dirichlet )三 函数的一些几何特性 1、单调函数 定义2 设f 为定义在X 上的函数,1212,,,x x X x x ∀∈< (1)若12()()f x f x ≤,则称f 为X 上的增函数;若12()()f x f x <,则称f 为X 上的严格增函数。

数学分析公式总结

数学分析公式总结

数学分析公式总结数学分析是数学中的一门重要课程,它主要研究函数的性质和运算法则,以及极限、导数和积分等概念及其应用。

在学习数学分析时,我们经常会遇到各种各样的公式。

下面是对其中一些重要的数学分析公式进行总结。

一、极限公式1.常值函数的极限公式:\(\lim_{x\to a} c = c\)2.幂函数的极限公式:\(\lim_{x\to a} x^{m} = a^{m}\) (其中m为整数)3.正弦函数和余弦函数的极限公式:\(\lim_{x\to 0} \dfrac{\sin x}{x} = 1\)\(\lim_{x\to 0} \dfrac{1-\cos x}{x} = 0\)4.自然对数函数的极限公式:\(\lim_{x\to 0} \dfrac{e^{x}-1}{x} = 1\)5.无穷小替换公式:当\(x\to a\)时,若\(\lim_{x\to a} f(x) = 0\),\(\lim_{x\to a} g(x) = 0\),且\(\lim_{x\to a} \dfrac{f(x)}{g(x)}\)存在,则:\(\lim_{x\to a} \dfrac{f(x)}{g(x)} = \lim_{x\to a}\dfrac{f'(x)}{g'(x)}\)二、导数公式1.基本导数公式:\((c)'=0\)(其中c为常数)\((x^{n})' = nx^{n-1}\) (其中n为整数)\((\sin x)' = \cos x\)\((\cos x)' = -\sin x\)\((e^{x})'=e^{x}\)2.乘积法则:\((f(x)g(x))'=f'(x)g(x)+f(x)g'(x)\)3.商法则:\((\dfrac{f(x)}{g(x)})' = \dfrac{f'(x)g(x) -f(x)g'(x)}{(g(x))^2}\)4.链式法则:若y=f(u)和u=g(x)都可导,则\(y'(x)=f'(u)g'(x)\)三、积分公式1.基本积分公式:\(\int cdx = cx + C\) (其中c为常数,C为常数)\(\int x^{n}dx = \dfrac{x^{n+1}}{n+1} + C\) (其中n不等于-1)\(\int \sin xdx = -\cos x + C\)\(\int \cos xdx = \sin x + C\)\(\int e^{x}dx = e^{x} + C\)2.基本换元公式:\(\int f(g(x))g'(x)dx = \int f(u)du\) (其中u = g(x))四、泰勒展开公式泰勒展开公式是一种将一个函数在其中一点附近用多项式逼近的方法。

数学分析不定积分概念与基本积分公式

数学分析不定积分概念与基本积分公式

(1) kdx kx C (k是常数);
(2) xdx x1 C ( 1); dx 1
(3) x ln x C;
(4)
1
1 x
2 dx
arctan
x
C;
(5)
1 dx arcsin x C; 1 x2
(6) cos xdx sin x C;
(7) sin xdx cos x C; 第13页/共25页
tan
x
C
.
例9 求积分
tan2 xdx
解 tan2 xdx (sec2 x 1)dx tan x x C
被积函数进行恒等变形,再使用基本积分公式.
第18页/共25页
小结
原函数与不定积分的概念 基本积分公式 不定积分的性质 求微分与求积分的互逆关系
F( x) f ( x)
f ( x)dx F ( x) C
若函数f ( x)在区间I上连续,
则在I上存在原函数,即存在可导函数F ( x),使
F ( x) f ( x),x I .
注 (i) 连续函数一定有原函数;
(ii) 任一函数的原函数(若存在)有无穷多;
cR
(F( x) C) f ( x).
(iii)函数的两个原函数间相差一个常数;
若F ( x) f ( x), ( x) f ( x),则 [F( x) ( x)] f ( x) f ( x) 0 F( x) ( x) C.
称F为f 在区间I上的一个原函数.
第2页/共25页
例如
因tan x sec2 x, tan x 是 sec2 x 的一个原函数.

1 x
1 x2
,
1 x

1 x2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

时,柯西中值定理就是当柯西中值定理:拉格朗日中值定理:x x F f a F b F a f b f a b f a f b f =''=---'=-)(F )()()()()()())(()()(ξξξ曲率:.1;0.)1(lim M s M M :.,13202aK a K y y ds d s K M M sK tg y dx y ds s =='+''==∆∆='∆'∆∆∆==''+=→∆的圆:半径为直线:点的曲率:弧长。

:化量;点,切线斜率的倾角变点到从平均曲率:其中弧微分公式:ααααααααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==定积分的近似计算:⎰⎰⎰----+++++++++-≈++++-≈+++-≈ban n n ban n ba n y y y y y y y y nab x f y y y y n a b x f y y y nab x f )](4)(2)[(3)(])(21[)()()(1312420110110 抛物线法:梯形法:矩形法:定积分应用相关公式:⎰⎰--==⋅=⋅=bab a dt t f a b dx x f a b y k rmm k F Ap F sF W )(1)(1,2221均方根:函数的平均值:为引力系数引力:水压力:功:空间解析几何和向量代数:。

代表平行六面体的体积为锐角时,向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。

是向量在轴上的投影:点的距离:空间ααθθθϕϕ,cos )(][..sin ,cos ,,cos Pr Pr )(Pr ,cos Pr )()()(2222222212121*********c b a c c c b b b a a a c b a c b a r w v b a c b b b a a a kj ib ac b b b a a a b a b a b a b a b a b a b a b a a j a j a a j u j z z y y x x M Md zyx z y xzy xzyxz y xzy x z y x zz y y x x z z y y x x u u⋅⨯==⋅⨯=⨯=⋅==⨯=++⋅++++=++=⋅=⋅+=+=-+-+-==(马鞍面)双叶双曲面:单叶双曲面:、双曲面:同号)(、抛物面:、椭球面:二次曲面:参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程:113,,22211};,,{,1302),,(},,,{0)()()(1222222222222222222220000002220000000000=+-=-+=+=++⎪⎩⎪⎨⎧+=+=+===-=-=-+++++==++=+++==-+-+-cz b y a x c z b y a x q p z q y p x c z b y a x ptz z nty y mtx x p n m s t p z z n y y m x x C B A DCz By Ax d czb y a x D Cz By Ax z y x M C B A n z z C y y B x x A多元函数微分法及应用zy z x y x y x y x y x F F y zF F x z z y x F dx dy F F y F F x dx y d F F dx dy y x F dy y v dx x v dv dy y u dx x u du y x v v y x u u xvv z x u u z x z y x v y x u f z tvv z t u u z dt dz t v t u f z y y x f x y x f dz z dz zu dy y u dx x u du dy y z dx x z dz -=∂∂-=∂∂=⋅-∂∂-∂∂=-==∂∂+∂∂=∂∂+∂∂===∂∂⋅∂∂+∂∂⋅∂∂=∂∂=∂∂⋅∂∂+∂∂⋅∂∂==∆+∆=≈∆∂∂+∂∂+∂∂=∂∂+∂∂=, , 隐函数+, , 隐函数隐函数的求导公式: 时,,当 :多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22),(),(1),(),(1),(),(1),(),(1),(),(0),,,(0),,,(y u G F J y v v y G F J y u x u G F J x v v x G F J x u G G F F vG uG v FuFv u G F J v u y x G v u y x F vu v u ∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂=∂∂∂∂∂∂∂∂=∂∂=⎩⎨⎧== 隐函数方程组:微分法在几何上的应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x yx y x x z x z z y z y -=-=-=-+-+-==⎪⎩⎪⎨⎧====-'+-'+-''-='-='-⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ωψϕωψϕωψϕ方向导数与梯度:上的投影。

相关文档
最新文档