给水温度低的原因

合集下载

我厂4台机组给水温度低的原因和解决办法

我厂4台机组给水温度低的原因和解决办法

我厂4台机组给水温度低的原因和解决办法贵州黔西中水发电有限公司:万强现代大容量火力发电厂都采用具有蒸汽中间再热的给水回热加热循环,用以提高经济性。

因为采用汽轮机的抽汽来加热凝结水和给水,这部分抽汽不再排入凝汽器中,因而可减少在凝汽器中的冷源损失。

同时给水回热加热提高了热力循环吸热过程的平均温度,使换热温差减少,单位蒸汽在锅炉中的吸热量降低了。

所以可有效提高机组的经济性。

给水温度,给水最终加热温度的高低对机组的经济性有直接的影响。

针对给水温度低的查找方法如下①高加本体的分析,②高加系统的分析一、给水温度低的原因查找:我厂加热器是卧式的表面式的加热器。

在高压加热器筒体内部加热蒸汽和被加热的给水是通过加热器内的金属表面来实现热量传递1.1.高加水室隔板密封性,高压加热器的水室靠焊接的水室隔板将水室分成进水室和出水室。

如果水室隔板焊接质量不过关,势必导致部份高压给水“短走旁路”,而不流经加热钢管。

这样这部份给水未与蒸汽进行热交换,造成给水温度编低。

1.2.过热度和疏水的过冷却。

高压加热器的受热面分为过热蒸汽冷却段、凝结段和疏水冷却段三部份。

如果高加受热面的箱体密封性不好,导致部份蒸汽短路现象,致使给水与蒸汽的热交换效率下降,影响给水1.3.高压加热器的受热面是由多根钢管组成的U形管束,整个管束安臵在加热器的圆筒形外壳内,整个管束是制成的一个整体。

通常称为高加芯子。

这样便于安装或检修时吊装和拆出。

如果高加芯子安装质量差,导致扇形板与高加外壳内壁设计间隙发生变化,出现一侧大而另侧小,降低高加受热面的热交换效果。

1.42.高加系300MW机组的回热加热系统中的高加系统采用三台高压加热器疏水逐级自流至除氧器方式。

高压加热器的水侧有进口三通阀和出水阀,并且高加组水侧设有一套进口三通阀和出水阀组成的水侧2.1高压加热器的加热蒸汽取自汽轮机的抽汽,为保护汽轮机避免高加汽侧满水倒灌汽缸引发水冲击,高压加热器汽侧设有一套由抽汽电动门和气控逆止门组成的汽侧自动保护装臵。

锅炉主蒸汽温度低原因及处理

锅炉主蒸汽温度低原因及处理

我厂三期机组主蒸汽温度低原因及处理近期,我厂#6、7机组机组负荷在50%及以上时经常出现主蒸汽温度低现象,现总结其原因及其处理方向。

一、主蒸汽温度过低的危害当主蒸汽压力和凝结真空不变,主蒸汽温度降低时,主蒸汽在汽轮机内的总焓降减少,若要维持额定负荷,必须开大调速汽阀的开度,增加主蒸汽的进汽量。

一般机组主蒸汽温度每降低10℃,汽耗量要增加1.3%~1.5%。

主蒸汽温度降低时,不但影响机组的经济性,也威胁着机组的运行安全。

其主要危害是:(1)末级叶片可能过负荷。

因为主蒸汽温度降低后,为维持额定负荷不变,则主蒸汽流量要增加,末级焓降增大,末级叶片可能过负荷状态。

(2)末几级叶片的蒸汽湿度增大。

主蒸汽压力不变,温度降低时,末几级叶片的蒸汽湿度将要增加,这样除了会增大末几级动叶的湿汽损失外,同时还将加剧开几级动叶的水滴冲蚀,缩短叶片的使用寿命。

(3)各级反动度增加。

由于主蒸汽温度降低,则各级反动度增加,转子的轴向推力明显增大,推力瓦块温度升高,机组运行的安全可靠性降低。

(4)高温部件将产生很大的热应力和热变形。

若主蒸汽温度快速下降较多时,自动主汽阀外壳、调节级、汽缸等高温部件的内壁温度会急剧下降而产生很大的热应力和热变形,严重时可能使金属部件产生裂纹或使汽轮机内动、静部分造成磨损事故;当主蒸汽温度降至极限值时,应打闸停机。

(5)有水击的可能。

当主蒸汽温度急剧下降50℃以上时,往往是发生水冲击事故的先兆,汽轮机值班员必须密切注意,当主蒸汽温度还继续下降时,为确保机组安全,应立即打闸停机。

二、引起主蒸汽温度低的因素:1)水煤比。

在直流锅炉动态分析中,汽轮机调节汽阀的扰动,对直流锅炉是一种典型的负荷扰动。

当调节汽阀阶跃开大时,蒸汽流量D和机组输出功率N E立即增加,随即逐渐减少,并恢复初始值,汽轮机阀前压力P T一开始立即下降,然后逐渐下降至新的平衡压力。

由于直流锅炉的蓄热系数比汽包锅炉小,所以直流锅炉的汽压变化比汽包锅炉大得多。

高压加热器出口给水温度低原因分析及处理

高压加热器出口给水温度低原因分析及处理

高压加热器出口给水温度低原因分析及处理刘亮亮【摘要】针对某电厂1号机组1号、2号高压加热器出口给水温度低的问题,通过检查分析,确定原因是高压加热器水室隔板处有螺栓、螺帽脱落,大部分隔板的密封垫缺失,从而造成高压加热器水室短路,出口给水温度降低.在取消高压加热器隔板垫片、更换螺栓后,出口给水温度升高6.38℃,从而使机组发电煤耗约降低0.72g/kWh,节能效果明显.【期刊名称】《内蒙古电力技术》【年(卷),期】2018(036)003【总页数】3页(P50-52)【关键词】高压加热器;给水温度;端差;隔板【作者】刘亮亮【作者单位】神华神东热电有限责任公司,陕西神木 719300【正文语种】中文【中图分类】TK264.91 设备概况某电厂1号汽轮机为东方汽轮机有限公司生产的CZK150/145-13.2/0.294/535/535型超高压、一次中间再热、单轴、冲动式、双缸双排汽、直接空冷抽汽凝汽式汽轮机。

抽汽级数为6级,配2台立式U形管式高压加热器,其中1号高压加热器没有疏水冷却段,2号高压加热器设有疏水冷却段。

2 存在的问题2014年初,在纯凝工况下,负荷低于70 MW时,1号机组给水温度与热力计算值吻合;但在机组负荷大于112 MW时给水温度达不到设计值。

2017年4月机组大修前,纯凝工况下,机组负荷113 MW时,给水温度219.99℃,低于热力设计值4.79℃;对高压加热器端差进行计算,发现端差异常,如表1所示。

表1 负荷113 MW时高压加热器端差及温升与设计值的比较℃参数上端差下端差温升1号高压加热器实际值7.68 26.71 21.55设计值0.70 20.20 21.10偏差6.98 6.51 0.45 2号高压加热器实际值15.93 6.68 41.39设计值4.40 8.00 51.10偏差11.53-1.32-9.71由表1可以看出,在纯凝工况下,机组负荷113 MW时,1号、2号高压加热器的上端差均大于设计值;1号高压加热器下端差及温升大于设计值;2号高压加热器的下端差低于设计值,温升低于设计值9.71℃。

高低压加热器REV1

高低压加热器REV1

51
㈢传热管泄漏
确定部位的方法一般采用反泵的方法,也就是壳侧加压, 从管侧看泄漏的位置。
52
㈢传热管泄漏
图5-4 泄漏探测装置
钻孔直径为能穿过牵引线
高加运行说明书 中有详细说明,
19
其方法和原理都
比较简单(图示
说明)
原始孔径减去0.25-0.38
确定泄漏深度在
4.5x3
金属线弯头后,银钎焊接或铜焊焊接
管束由管板,传热管,导流板,支撑板,
过热段包壳,等组成。
19
管束
管束由管板、传热管、导流板、支撑板、过热段包壳、 疏冷段包壳等组成
20
管子管板的联接方式
1,管板上堆焊一层软(提高焊接性能) 2,采用先焊后胀(液压胀管)工艺,防止振动和消除热胀差和间隙腐蚀
21
管子管板的联接质量保证
先进的三轴深孔钻床,保证孔径、光洁度、孔距,从而保证焊接和胀管质量。
建议采用电工金属线或管子拉牵金属线
53
㈢传热管泄漏
以上二项对确定泄漏原因至关重要,如果没有位置和深 度将无法判断泄漏原因。 ⑴低水位运行,引起疏水冷却段传热管泄漏。 ⑵高加超负荷运行引起高加过热段传热管泄漏。 ⑶不凝结气体和有害气体的积聚引起加热器传热管大面
积减薄。
54
㈣ 疏水不畅和水位不稳
疏水不畅可能是阀门口径偏小和管道布置不合理
7
8
高压加热器典型结构
1)卧式U形管式高压加热器 2)倒立式U形管式高压加热器 3)正立式U形管式高压加热器
9
加热器的典型型式
高加为卧式U形管,半球形水室具有椭圆形自密封人孔, 高加的 传热区段有过热段、凝结段和疏水冷却段(外置疏冷器)三个传

河源电厂2号机组给水温度低原因分析

河源电厂2号机组给水温度低原因分析

河源电厂2号机组给水温度低原因分析摘要:给水温度是火力发电厂的一个重要经济指标,本文主要从高压加热器本体,高压加热器系统,高压加热器运行维护三个方面分析影响给水温度降低的因素,提高高压加热器运行管理水平。

关键词:给水温度;加热器;运维水平;指标1 设备及系统简介河源电厂三台高压加热器均是由哈尔滨锅炉(集团)股份有限公司生产的表面式给水加热器,是利用汽轮机抽汽来加热锅炉给水的装置,从而提高电厂热效率,节省燃料,并且有利于机组安全运行。

三台全容量、卧式高压加热器按单列、卧式、U型管、双流程设计,三台高加采用电动关断大旁路系统。

2号机组汽轮机采用八段非调整抽汽(包括高压缸排汽),一、二、三段抽汽分别供给3台高压加热器,四段抽汽供汽至除氧器、锅炉给水泵汽轮机和辅助蒸汽系统等,五、六、七、八段抽汽分别供给四台低压加热器。

从高压缸抽出的1抽供给1号高压加热器,从高压缸排汽抽出的2抽供给2号高压加热器,从中压缸抽出的3抽供给3号高压加热器。

2 问题提出及对比与分析通过很长一段时间观察发现该厂两台机组高加给水温度,#1机组高加给水温度高于#2机组高加给水温度5度左右,见下表不同负荷下两台机组给水温度比较,见表一:根据不同负荷下两台机高加温升情况可以看出,二号机一号高加与三号高加运行比一号机差,分析原因如下该厂机组回热加热器系统中高压加热器均是表面式加热器,加热蒸汽和被加热给水均是通过加热器内金属表面来实现热量传递的。

2.1 高压加热器水室隔板密封性高压加热器的水室靠焊接的隔板将水室分成进水室和出水室,如果水室隔板焊接质量不过关或存在泄露势必存在部分高压给水“短走旁路”,而不流经加热器钢管。

这样,这部分给水未与蒸汽进行热交换而造成给水温度偏低。

另外,进入高压加热器与蒸汽换热的给水量少,高加内饱和温度升高,对应压力亦升高,导致抽汽量相应减少而造成给水温度偏低。

从表一中数据二号机一号高加疏水调节门开度明显小于一号机一号高加疏水调门开度,相同进水温度下二号机一号高加温升比一号机小3-4℃。

脱盐水题库

脱盐水题库

第一节题库一、填空1 、脱盐水岗位的主要任务是利用、、把一次水中的、离子除去,满足后工段用水需要。

(预处理设备、阴阳离子交换器、反渗透设备、杂质、阴阳)2、反渗透设备可以去除水中的盐份。

(98%)3 、混合床出水水质工艺指标:、、。

(电导≤1us/cm、氯离子≤5mg/L 、SiO2 ≤20ug/L)4、反渗透进水 SDI (污染指数)的指标为,送锅炉脱盐水的 PH 值指标为。

(≤4 、8.8-9.3)5、离子交换树脂主要是由、、组成。

(单体、交联剂、交换基因)7 、1#尿素外供泵的扬程是,流量是,配用电机功率是。

(60m、20m3/h 、11KW)8、锅炉外供泵的扬程是,流量是,配用电机功率是。

(45m、200m3/h、37KW)9 、2#尿素外供泵的扬程是,流量是,配用电机功率是。

(60m、150m3/h 、37KW)10、组成反渗透膜组件的单个单元件成为反渗透的。

( 膜元件 )11、1#反渗透膜型号是、产水能力是,脱盐率是。

(BW30-400、50m3/h、98%)12 、3#反渗透排列方式是,膜组件数量是,膜元件数量是,膜材质是,膜构型是。

(6-3 、9 、54、复合膜、螺旋卷式)13、反渗透的淡水又称、,是 RO 系统的。

(渗透水、产品水、净化水)14、脱盐水岗位高效过滤器的型号为,产水能力为。

(ZXG 300-210 、210 m3/h、)15、弱酸床的再生操作分为、、、、五步骤。

(反洗、沉降、放水、再生、正洗)16、水中氯化物的测定原理是在 PH 值为溶液中,氯化物与反应生产沉淀,过量的与铬酸钾生成沉淀,使溶液呈,为滴定终点。

(7 左右、硝酸银、氯化银、硝酸银、铬酸银、砖红色)17、水的碱度是指。

例如:、、。

(水中含有能接受氢离子的物质的量、氢氧根、碳酸盐、碳酸氢盐)18、送尿素脱盐水的 PH 值指标为,外送软水的 PH 值指标为。

(7.5-8.5 、7.0-8.0)21、脱盐水岗位一次水反渗透目前总能力为。

集中供暖水温低的原因

集中供暖水温低的原因

城市集中供热系统大体上就是三个部分,分别是热源,热网,热用户。

造成供热系统能源利用率低的原因总结: 1、热源方面 (1)锅炉效率低。

第一,目前使用的工业锅炉的效率一般在65%~75%;第二,设备组合不匹配;第三,排烟温度过高;第四,燃料未充分燃烧;第五,管道保温差。

这些因素都会造成能源的损耗。

(2)耗电量高。

在用电设备设计时,考虑到热源设备、热网和热用户的阻力,将阻力放大了,而加大燃气锅炉、鼓引风机、水泵的配置,一层又一层,也有的水泵放得过多,而且国内绝大多数水泵等供暖设备缺乏气象变化调节的能力,不能根据供热期各阶段及每天1、3不能根据气象变化进行灵活调节,大大增加了用电消耗。

(3)不能根据气象变化灵活调节。

目前的供暖设备缺乏气象变化调节的能力,不能适时根据不同阶段以及每天24小时的不同气象调节参数,致使增加了热能的耗费。

2、热网方面 (1)输送效率低。

第一,网管保温差,目前使用的网管保温系数一般为80%~95%; 第二,补水量大,补水率一般为0.01%~0.5%; 第三,输送管道的管径设计过大,水流量就加大,散热量也加大,补水量和水泵流量跟着加大。

以上因素都会造成输送效率低。

(2)水力失衡,能耗增加。

由于水力失衡,而“近热远冷”,为解决输送的末端不热,满足末端用户需求,必须加大水泵总流量,致使水泵能耗增加。

3、热用户方面 (1)建筑结构与供热系统设施方面。

第一,供热系统的围护结构的保温性不良; 第二,在供热系统设计环节或多或少存在缺陷,这些缺陷在实际供热的时候中会带来水力垂直失调和水平失调,从而增加了热耗; 第三,供热系统的散热器的管径和片数设计不当,如存在着散热器的管径设计过大或过小,散热器的片数过多或过少的情况,这都会影响供热节能的效果。

(2)人为因素。

第一,照常给长期空置的住宅供热而造成供热浪费; 第二,少部分用户私自改接供热管和设备,私自改装散热器和阀门,影响供热系统原来较为合理的设置,从而增加了热耗;第三,有的用户贪小便宜,表现在:接用供热系统的热水,造成热能消耗加大。

350MW机组给水温度降低的原因分析及治理

350MW机组给水温度降低的原因分析及治理

350MW机组给水温度降低的原因分析及治理摘要:350MW机组是发电厂非常重要的设备机器,而给水温度是发电厂重要的经济指标,如果350MW机组的给水温度达不到标准值,那么将会严重影响机组的煤耗,为机组带来很多问题,降低了机组整体的经济性。

因此本文通过阐述350MW机组给水原理,分析影响水温的因素,找出水温降低的原因,并且有针对性地提出了相关的治理策略,从规范运行操作方式、设备维护及管控以及相关技术人员培训等方面提出了有效建议,从而实现提高水温的目的。

关键词:350MW;给水泵;给水温度低;高压加热器引言:在350MW机组中,通常采用从汽轮机中提取的蒸汽用来加热凝结水和给水,加热给水可以提高热循环中吸热过程的平均温度,从而降低传热温差,减少锅炉中每单位蒸汽的吸热量,这是提高机组经济性的一个有效途径。

给水的最终加热温度对机组经济性有直接影响,因此必须要保证给水温度达到设计标准,所以当350MW机组给水温度降低的时候,必须要分析给水温度低的原因,积极采取有效措施。

1350MW机组给水原理350MW超临界机组的给水控制与筛分炉在低负荷时的给水控制类似,即在直流锅炉运行过程中调节蒸汽分离器中的水位和调节水煤比。

在超临界直流机组中,给水调节是在预热段、蒸发段和过热段同时连续进行的,而超临界机组的过热蒸汽温度不能像亚临界钢包炉那样通过喷水降温来保持稳定,喷水降温实质上起到调节过热器和水冷壁之间的工作流分布比例的作用,但不影响最终平衡蒸汽温度参数[1]。

给水在加热段被加热,然后温度升高进入蒸发段,蒸发段的蒸汽和水产生一定的混合物,然后混合物进入过热段,被进一步加热,直到成为过热蒸汽。

在直流锅炉中,水在临界条件下被瞬间加热成蒸汽,蒸汽-水分界线随着运行条件的变化而不断变化。

如果燃料量增加,水提前到达蒸发段,那么相应的过热段就会扩大,为给水段带来压力,容易造成过热;但是如果水量增加,蒸发点后移,那么将会造成蒸汽过热度不足,从而影响工作质量,对电厂运行非常不利,所以控制蒸发端的位置非常重要,必须要保持一定的碳水比,这是直流锅炉的一项重要控制任务。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

给水温度低的原因1 概述现代大容量火力发电厂都采用具有蒸汽中间再热的给水回热加热循环,用以提高经济性。

因为采用汽轮机的抽汽来加热凝结水和给水,这部分抽汽不再排入凝汽器中,因而可减少在凝汽器中的冷源损失。

同时给水回热加热提高了热力循环吸热过程的平均温度,使换热温差减少,单位蒸汽在锅炉中的吸热量降低了。

所以可有效提高机组的经济性。

给水温度,给水最终加热温度的高低对机组的经济性有直接的影响。

造成给水温度低的原因分为急剧和缓慢下降两种情况,引起急剧下降的原因较单一且现象直观明显,并不难查寻原因。

再者,发生高加给水温度急剧下降的情况概率极少。

而影响给水温度缓慢下降才是带有普遍性的问题且原因较复杂。

因此以国产200MW机组为例,阐述如何查找影响高加给水温度低的方法。

为便于查找方法的系统性和全在性,将查找影响高加给水温度低的方法分成①高加本体的剖析,②高加系统的剖析,③运行维护的剖析。

三个方面进行查找原因。

2高加本体的剖析200MW机组回热加热器系统中的高压加热器均为立式表面式的加热器,加热蒸汽和被加热的给水是通过加热器内的金属表面来实现热量传递的。

针对高加本体影响给水温度的因素加以剖析并提出解决办法。

2.1高加水室隔板密封性高压加热器的水室靠焊接的水室隔板将水室分成进水室和出水室。

如果水室隔板焊接质量不过关,势必导致部份高压给水“短走旁路”,而不流经加热钢管。

这样这部份给水未与蒸汽进行热交换,造成给水温度编低。

解决办法是厂家提高制造质量,焊接工艺采用亚焊。

加热器出厂必须做水压试验,合格方能出厂。

2.2高加箱体密封性为了有效利用抽汽的高过热度和疏水的过冷却。

高压加热器的受热面分为过热蒸汽冷却段、凝结段和疏水冷却段三部份。

如果高加受热面的箱体密封性不好,导致部份蒸汽短路现象,致使给水与蒸汽的热交换效率下降,影响给水温度。

解决办法是厂家提高制造质量。

2.3高加芯子的安装质量高压加热器的受热面是由多根钢管组成的U形管束,整个管束安置在加热器的圆筒形外壳内,整个管束是制成的一个整体。

通常称为高加芯子。

这样便于安装或检修时吊装和析出。

如果高加芯子安装质量差,导致扇形板与高加外壳内壁设计间隙发生变化,出现一侧大而另侧小,降低高加受热面的热交换效果。

解决办法是厂家和检修单位严格高加芯子的吊装程序,提高安装水平。

3 高加系统的剖析200MW机组的回热加热系统中的高加系统采用三台高压加热器加一台外置式蒸汽冷却器和一台疏水冷却器的连接方式。

高压加热器的水侧有进、出水阀和旁路阀,并且高加组水侧设有一套由自动进水阀和联成阀、逆止阀组成的水侧自动保护装置。

针对高加系统影响给水温度的因素加以剖析并提出解决办法。

3.1抽汽阀门的开度高压加热器的加热蒸汽取自汽轮机的抽汽,为保护汽轮机避免高加汽侧满水倒灌汽缸引发水冲击,高压加热器汽侧设有一套由抽汽电动门和水控逆止门组成的汽侧自动保护装置。

高加组投运时要求抽汽电动门和水控逆止门应全开。

如果因阀门机构卡涩或电动门行程调整不当等诸多原因导致阀门未全开,这样蒸汽节流会使蒸汽作功能力损失,影响给水温度。

解决办法是定期分析监视段压力值和对应高压加热器蒸汽压力值的数据,从而判断抽汽管道上阀门是否全开。

水控逆止门尚可通过其开度标尺进行检查。

确证后视具体原因加以处理。

3.2汽侧安全门可靠性高压加热器汽侧设置有汽侧安全门,保护高压加热器内的蒸汽压力不超压,避免缩短加热器寿命和应力破坏。

汽侧安全门一般为弹簧式安全门。

如果汽侧安全门的弹簧失效或阀门严密性差,导致部份蒸汽泄漏排大气,不但损失热量而且浪费高品质的工质。

解决办法坚持定期试验与检查,及时进行检修消缺。

3.3水侧联成阀可靠性高加水侧的自动保护装置的作用是当运行中任一台高压加热器水侧钢管断裂等现象出现时,能迅速可靠地切断高加水侧,并且保证向锅炉不间断供水。

如果高加水侧自动保护装置的部件可靠性差,出现联成阀传动机构卡涩或阀门严密性差等现象。

导致部份给水短走给水小旁路,影响给水温度。

解决方法是加强对水侧自动保护装置的维护和检查,同时要求厂家提高产品质量。

3.4管道保温材料对于200 MW机组而言,高加出水温度一般设计值在240 ℃左右,高加出水至锅炉省煤器有相当长距离的管道。

生产现场室温一般在40~50℃以下,这样给水管道与室温存在温差,就存在放热现象。

如果给水管道的保温材料选型不当或质量差等原因存在,导致给水管道的热损失增大,影响给水温度。

解决办法是选用保温性能好的材料和提高保温材料的铺设水平。

3.5大旁路电动门严密性作为高加系统中的大旁路电动门是在高加水侧未投运前,为保证向锅炉供水的需要,让给水流经大旁路电动门而不通过高加水侧。

如果高加大旁路电动门下限行程未调式好或阀门严密性差,导致部份给水短走大旁路,影响给水温度。

解决办法是选购严密性好的阀门,大修机组时检查该阀门的严密性,并且热工配合调试好该电动门。

4运行维护剖析高加组投入运行后,运行人员管理调控的好坏是影响给水温度的一个方面。

针对运行维护的因素加以剖析并提出解决办法。

4.1疏水调控高压加热器内汽轮机的抽汽与钢管中的给水进行交换后冷凝为疏水。

为回收具有一定热量的高品质工质,高加组疏水经综合评估采用逐级自流方式回收。

如果运行人员在运行调控过程中,调控失当就会出现“干水”现象。

这样上一级加热器内的蒸汽在压力差作用下,经疏水管道进入下一级加热器内,导致出现蒸汽排挤现象,降低了回热加热的效率,影响给水温度。

解决办法是运行人员加强监视,保持各加热器疏水水位保持在正常值范围内。

如疏水调节阀出现故障,应迅速消除缺陷。

4.2 汽侧空气门开度高压加热器汽侧设置有空气门,其作用是将高压加热器汽侧内积聚的空气抽至凝汽器后,最后由射水抽气器抽出。

避免加热器内积聚的空气影响传热效果。

因为空气的传热系数远小于钢材,空气会在钢管周围形成空气膜,阻碍传热。

然而空气门系人工操作,其开度的大小影响给水温度。

解决办法是运行人员通过分析各个高压加热器的端差,以此为依据调控好空气门的开度。

4.3 高加的放水阀门为了停机后高加组的保养和高加组检修需要等,高加组设有放水阀门。

主要有各个高加的危急疏水门,疏水排地沟门。

如果放水阀门密封性差或运行人员误操作开启放水阀站,导致大量高品质的疏水流失或蒸汽漏失,这样将损失大量的热量,不利于提高机组热经济性。

解决办法是选用密封性好,质量可靠的阀门配套,运行人员加强巡查工作。

5结束语针对给水温度低的影响因素,从高压加热器本体,高压加热器系统和运行维护三个方面剖析原因并提出对策,提高高压加热器的管理水平。

除氧器在运行中,不同工况下它的出水量(负荷)、给水含氧量、迸水量、迸水温度、排汽量、给水泵可靠的运行和具有较高的回热经济性等,都与除氧器热力系统的设计拟定和正确的运行方式有关。

一)除氧器热力系统拟宝和运行中主要注意的问题1.低负荷汽源切换及备用汽源的设置除氧器在低负荷运行时本级抽汽压力降低,定压运行除氧器为维持恒定压力应切换到一级抽汽;滑压运行除氧器为保证自动向大气排气,也需改变运行方式及切换汽源。

一般在上一级较高抽汽管至本级抽汽管上装设自动切换阀,当除氧器工作压力降至某一最低值,本级抽汽满足不了除氧器压力,自动切换至上一级抽汽而停止本级抽汽。

在锅炉开始启动而汽轮机未投运前,或锅炉需要清洗、点火上水时,其用水都必须经过除氧,为此应该设置备用汽源以代替汽轮机抽汽向除氧器供汽。

对母管制电厂可以利用母管上运行的其他机组抽汽作为备用汽源。

而单元制机组,一般设置辅助蒸汽联箱(称厂用蒸汽联箱),用辅助蒸汽联箱的蒸汽作备用汽源。

向辅助蒸汽联箱供汽的汽源,运行机组一一般取自高压缸排汽(即冷再热蒸汽),新建电厂来自启动锅炉,扩建的老厂可用老机组抽汽。

2.除氧器的冷态启动除氧器冷态启动时应注意壳体预热,避免除氧器和给水箱左右及上下壁之间因温差过大产生较大的热应力,该热应力可引起除氧器振动。

现代大型电厂除氧器体积很大,如600MW机组2400t小除氧器及给水箱,除氧器卧式壳体长15m,直径2. 5m,壁厚25mrn,给水箱长26. 04m,直径3. 8m,壁厚32m m,水箱重125.45t。

冷态启动宜采用先送汽后上水的方法,用辅助蒸汽预热壳体20min,使除氧器压力达到0. 1196~0. 149MPa,然后将除盐后的水送人除氧器,逐渐开大迸汽阀,并保持以上压力,使水温达到104~110℃进行大气式除氧。

随机组负荷上升,供除氧器运行的机组抽汽压力超过0.149MPa后,停止辅助蒸汽切换到相应抽汽管上,随机组滑参数启动的要求升压至额定工作压力。

3.除氧器的压力调节和保护除氧器必须加热给水至除氧器压力下的饱和温度,才能达到稳定的除氧效果。

定压运行除氧器运行中必须保持压力稳定,它是通过加热蒸汽压力调节阀实现自动调节。

滑压运行除氧器的工作压力随负荷的增加而升高,负荷达至额定值时其工作压力也达到最大值。

为吸取我国曾发生多次200MW机组670t/h除氧器过压爆炸事故的教训,必须加强对除氧器的保护,符合现行的《电站压力式除氧器安全技术规定》,并设置高。

低压力警报信号。

当除氧器工作压力降至不能维持除氧器额定工作压力时,应自动开启高一级抽汽电动隔离阀;当除氧器压力升高至额定工作压力的1.2倍时,应自动关闭加热蒸汽压力调节阀前的电动隔离阀;当压力升高至额定工作压力的1.25~1。

3倍时,安全阀应动作;当除氧器工作压力升高至额定工作压力的1.5惜时(此时一般是切换到高一级抽汽运行),应自动关闭高一级抽汽切换蒸汽电动隔离阀。

4.除氧器的水位调节和保护运行中给水箱的水位应维持规定的正常水位,它标志水箱有足够的有效储水量,水位稳定,保证给水泵不汽蚀。

如果水位过低会使给水泵人口富裕静压头减少,影响给水泵安全工作;如果水位过高会使给水经汽轮机抽汽管倒流至汽轮机引起水击事故或给水箱满水、除氧器振动。

排气带水等。

故维持水箱的正常水位是极为重要的。

为此应设有水箱水位自动调节器和水箱高。

低水位报警装置及保护。

给水箱高水位保护分为三档(见图个N水位指示):(1)高水位(高于正常水位200mm):报警;(2)高高水位(由顶部往下15%的给水箱内径):自动联锁关闭除氧器补水阀,关团加热段抽汽逆止阀和高压加热器疏水阀;(3) 最高水位(由顶部往下5%的给水箱内径):自动联锁关闭除氧器主凝结水阀和加热抽汽电动隔离阀低水位保护分为两档:(1)低水位(低于正常水位200mm):报警;(2)危险水位(由底部向上30%的给水箱内径):停给水泵或投入给水泵与除氧水箱间的给水再循环管。

5.排汽的调整和利用除氧器顶部均设有排汽孔,利用除氧器部分蒸汽的动力,及时将给水中离析出的气体排出壳体,以此来保证稳定的除氧效果,但将带来一定的工质和热损失。

相关文档
最新文档