钣金抽牙孔径计算

合集下载

钣金展开计算方法精编

钣金展开计算方法精编
∴?AB={H*EF+(π/4-1)*EF2}/T
∴预冲孔孔径=D–2AB
T≧时,取EF=60%T.
在料厚T<时,EF的取值请示上级.
9?方形抽孔
方形抽孔,当抽孔高度较高时(H>Hmax),直边部展开与弯曲一致,
圆角处展开按保留抽高为H=Hmax的大小套弯曲公式展开,连接处用45度线及圆角均匀过渡,
钣金展开计算方法精编
钣金展开计算方法
计算方法
展开的基本公式:
展开长度=料内+料内+补偿量
1 R=0,折弯角θ=90°(T<,不含
L=(A-T)+(B-T)+K
=A+B-2T+
上式中取:λ=T/4
K=λ*π/2
=T/4*π/2
=
2 R=0,θ=90° (T≧,含
L=(A-T)+(B-T)+K
=A+B-2T+
图(d):侧冲压平后的产品形状
14?综合计算如图:
L=料内+料内+补偿量
=A+B+C+D
+中性层弧长(AA+BB+CC)
(中性层弧长均按“中性层到板料内侧距离λ=T/3”来计算)
备注:
a标注公差的尺寸设计值:取上下极限尺寸的中间值作为设计标准值.
b孔径设计值:一般圆孔直径小数点取一位(以配合冲头加工方便性),例:取.有特殊公差时除外,例:Φ+取Φ.
板材↓/板厚→
冷板
铝板

注意:折弯系数不是绝对的,各加工工厂的钣金工艺工程师会根据所用GB材料以及加工机器而略有微弱变化。
在R≠0, θ=90°时;的折弯系数列表:(单位:mm)

钣金件的展开计算---准确计算

钣金件的展开计算---准确计算

钣金中的展开计算一、钣金的计算方法概论钣金零件的工程师和钣金材料的销售商为保证最终折弯成型后零件所期望的尺寸,会利用各种不同的算法来计算展开状态下备料的实际长度。

其中最常用的方法就是简单的“掐指规则”,即基于各自经验的算法。

通常这些规则要考虑到材料的类型与厚度,折弯的半径和角度,机床的类型和步进速度等等。

总结起来,如今被广泛采纳的较为流行的钣金折弯算法主要有两种,一种是基于折弯补偿的算法,另一种是基于折弯扣除的算法。

为了更好地理解在钣金设计的计算过程中的一些基本概念,先了解以下几点:1、折弯补偿和折弯扣除两种算法的定义,它们各自与实际钣金几何体的对应关系2、折弯扣除如何与折弯补偿相对应,采用折弯扣除算法的用户如何方便地将其数据转换到折弯补偿算法3、K因子的定义,实际中如何利用K因子,包括用于不同材料类型时K因子值的适用范围二、折弯补偿法为更好地理解折弯补偿,请参照图1中表示的是在一个钣金零件中的单一折弯。

图2是该零件的展开状态。

折弯补偿算法将零件的展开长度(LT)描述为零件展平后每段长度的和再加上展平的折弯区域的长度。

展平的折弯区域的长度则被表示为“折弯补偿”值(BA)。

因此整个零件的长度就表示为方程(1):LT = D1 + D2 + BA (1)折弯区域(图中表示为淡***的区域)就是理论上在折弯过程中发生变形的区域。

简而言之,为确定展开零件的几何尺寸,让我们按以下步骤思考:1、将折弯区域从折弯零件上切割出来2、将剩余两段平坦部分平铺到一个桌子上3、计算出折弯区域在其展平后的长度4、将展平后的弯曲区域粘接到两段平坦部分之间,结果就是我们需要的展开后的零件图15. K-因子法K-因子是描述钣金折弯在广泛的几何形状参数情形下如何弯曲/展开的一个独立值。

也是一个用于计算在各种材料厚度、折弯半径/折弯角度等广泛情形下的弯曲补偿(BA)的一个独立值。

图4和图5将用于帮助我们了解K-因子的详细定义。

我们可以肯定在钣金零件的材料厚度中存在着一个中性层或轴,钣金件位于弯曲区域中的中性层中的钣金材料既不伸展也不压缩,也就是在折弯区域中唯一不变形的地方。

钣金展开计算方法

钣金展开计算方法
c产品图中未作特别标注的圆角;一般按R=0展开.
附件一:常见抽牙孔孔径一览表
料厚
类型
0.6
0.8
1.0
1.2
M3
3.5
3.7
4.0
4.2
M3.5
3.9
4.2
4ቤተ መጻሕፍቲ ባይዱ4
4.7
M4
4.4
4.6
4.9
5.1
6-32
3.8
4.1
4.3
4.6
附件二:常见预冲孔孔径一览表
料厚
类型
0.6
0.8
1.0
1.2
M3
1.2
1.5
计算方法请示上级;以下几点原则仅供参考:
1当C≧5时;一般分两次成型;按两个90°折弯计算.要考虑到折弯冲子的强度
L=A-T+C+B+2K
2当3T<c<5时:</c<5时
L=A-T+C+B+K
3当C≦3T时<一次成型>:
L=A-T+C+B+K/2
7Z折2.
C≦3T时<一次成型>:
L=A-T+C+B+D+K
8抽芽
抽芽孔尺寸计算原理为体积不变原理;即抽孔前后材料体积不变;ABCD四边形面积=GFEA所围成的面积.
一般抽孔高度不深取H=3PP为螺纹距离;R=EF见图
∵TAB=H -EFEF+πEF2/4
∴AB={HEF+π/4-1EF2}/T
∴预冲孔孔径=D–2AB
T≧0.8时;取EF=60%T.
在料厚T<0.8时;EF的取值请示上级.

钣金件的展开计算---准确计算

钣金件的展开计算---准确计算

钣金中的展开计算一、钣金的计算方法概论钣金零件的工程师和钣金材料的销售商为保证最终折弯成型后零件所期望的尺寸,会利用各种不同的算法来计算展开状态下备料的实际长度。

其中最常用的方法就是简单的―掐指规则‖,即基于各自经验的算法。

通常这些规则要考虑到材料的类型与厚度,折弯的半径和角度,机床的类型和步进速度等等。

总结起来,如今被广泛采纳的较为流行的钣金折弯算法主要有两种,一种是基于折弯补偿的算法,另一种是基于折弯扣除的算法。

为了更好地理解在钣金设计的计算过程中的一些基本概念,先了解以下几点:1、折弯补偿和折弯扣除两种算法的定义,它们各自与实际钣金几何体的对应关系2、折弯扣除如何与折弯补偿相对应,采用折弯扣除算法的用户如何方便地将其数据转换到折弯补偿算法3、K因子的定义,实际中如何利用K因子,包括用于不同材料类型时K因子值的适用范围二、折弯补偿法为更好地理解折弯补偿,请参照图1中表示的是在一个钣金零件中的单一折弯。

图2是该零件的展开状态。

折弯补偿算法将零件的展开长度(LT)描述为零件展平后每段长度的和再加上展平的折弯区域的长度。

展平的折弯区域的长度则被表示为―折弯补偿‖值(BA)。

因此整个零件的长度就表示为方程(1):LT = D1 + D2 + BA (1)折弯区域(图中表示为淡***的区域)就是理论上在折弯过程中发生变形的区域。

简而言之,为确定展开零件的几何尺寸,让我们按以下步骤思考:1、将折弯区域从折弯零件上切割出来2、将剩余两段平坦部分平铺到一个桌子上3、计算出折弯区域在其展平后的长度4、将展平后的弯曲区域粘接到两段平坦部分之间,结果就是我们需要的展开后的零件图15. K-因子法K-因子是描述钣金折弯在广泛的几何形状参数情形下如何弯曲/展开的一个独立值。

也是一个用于计算在各种材料厚度、折弯半径/折弯角度等广泛情形下的弯曲补偿(BA)的一个独立值。

图4和图5将用于帮助我们了解K-因子的详细定义。

我们可以肯定在钣金零件的材料厚度中存在着一个中性层或轴,钣金件位于弯曲区域中的中性层中的钣金材料既不伸展也不压缩,也就是在折弯区域中唯一不变形的地方。

钣金件的展开计算准确计算

钣金件的展开计算准确计算

钣金件的展开计算准确计算The document was prepared on January 2, 2021钣金中的展开计算一、钣金的计算方法概论钣金零件的工程师和钣金材料的销售商为保证最终折弯成型后零件所期望的尺寸,会利用各种不同的算法来计算展开状态下备料的实际长度.其中最常用的方法就是简单的“掐指规则”,即基于各自经验的算法.通常这些规则要考虑到材料的类型与厚度,折弯的半径和角度,机床的类型和步进速度等等.总结起来,如今被广泛采纳的较为流行的钣金折弯算法主要有两种,一种是基于折弯补偿的算法,另一种是基于折弯扣除的算法.为了更好地理解在钣金设计的计算过程中的一些基本概念,先了解以下几点:1、折弯补偿和折弯扣除两种算法的定义,它们各自与实际钣金几何体的对应关系2、折弯扣除如何与折弯补偿相对应,采用折弯扣除算法的用户如何方便地将其数据转换到折弯补偿算法3、K因子的定义,实际中如何利用K因子,包括用于不同材料类型时K因子值的适用范围二、折弯补偿法为更好地理解折弯补偿,请参照图1中表示的是在一个钣金零件中的单一折弯.图2是该零件的展开状态.折弯补偿算法将零件的展开长度LT描述为零件展平后每段长度的和再加上展平的折弯区域的长度.展平的折弯区域的长度则被表示为“折弯补偿”值BA.因此整个零件的长度就表示为方程1:LT = D1 + D2 + BA 1折弯区域图中表示为淡的区域就是理论上在折弯过程中发生变形的区域.简而言之,为确定展开零件的几何尺寸,让我们按以下步骤思考:1、将折弯区域从折弯零件上切割出来2、将剩余两段平坦部分平铺到一个桌子上3、计算出折弯区域在其展平后的长度4、将展平后的弯曲区域粘接到两段平坦部分之间,结果就是我们需要的展开后的零件图15. K-因子法K-因子是描述钣金折弯在广泛的几何形状参数情形下如何弯曲/展开的一个独立值.也是一个用于计算在各种材料厚度、折弯半径/折弯角度等广泛情形下的弯曲补偿BA的一个独立值.图4和图5将用于帮助我们了解K-因子的详细定义.我们可以肯定在钣金零件的材料厚度中存在着一个中性层或轴,钣金件位于弯曲区域中的中性层中的钣金材料既不伸展也不压缩,也就是在折弯区域中唯一不变形的地方.在图4和图5中表示为粉红区域和蓝色区域的交界部分.在折弯过程中,粉红区域会被压缩,而蓝色区域则会延伸.如果中性钣金层不变形,那么处于折弯区域的中性层圆弧的长度在其弯曲和展平状态下都是相同的.所以,BA折弯补偿就应该等于钣金件的弯曲区域中中性层的圆弧的长度.该圆弧在图4中表示为绿色.钣金中性层的位置取决于特定材料的属性如延展性等.假设中性钣金层离表面的距离为“t”,即从钣金零件表面往厚度方向进入钣金材料的深度为t.因此,中性钣金层圆弧的半径可以表示为R+t.利用这个表达式和折弯角度,中性层圆弧的长度BA就可以表示为:BA = PiR+TA/180为简化表示钣金中性层的定义,同时考虑适用于所有材料厚度,引入k-因子的概念.具体定义是:K-因子就是钣金的中性层位置厚度与钣金零件材料整体厚度的比值,即:K = t/T因此,K的值总是会在0和1之间.一个k-因子如果为的话就意味着中性层位于零件钣金材料厚度的25%处,同样如果是,则意味着中性层即位于整个厚度50%的地方,以此类推.综合以上两个方程,我们可以得到以下的方程8:BA = PiR+KTA/180 8其中几个值如A、R和T都是由实际的几何形状确定的.所以回到原来的问题,K-因子到底从何而来同样,回答还是那几个老的来源,即钣金材料供应商、试验数据、经验、手册等.但是,在有些情况下,给定的值可能不是明显的K,也可能不完全表达为方程8的形式,但无论如何,即使表达形式不完全一样,我们也总是能据此找到它们之间的联系.例如,如果在某些手册或文献中描述中性轴层为“定位在离钣料表面材料厚度”的地方,显然这就可以理解为K因子为,即K=.这样如果将K 的值代入方程8后则可以得到以下算式:BA = A +如果用另一种方法改造一下方程8,把其中的常量计算出结果,同时保留住所有的变量,则可得到:BA = A R + KT比较一下以上的两个方程,我们很容易得到:=,实际上也很容易计算出K=.仔细地研究后得知,在SolidWorks系统中还提供了以下几类特定材料在折弯角为90度时的折弯补偿算法,具体计算公式如下:软黄铜或软铜材料:BA = T + R半硬铜或黄铜、软钢和铝等材料:BA = T + R青铜、硬铜、冷轧钢和弹簧钢等材料:BA = T + R实际上如果我们简化一下方程7,将折弯角设为90度,常量计算出来,那么方程就可变换为:BA = K T + R所以,对软黄铜或软铜材料,对比上面的计算公式即可得到 = ,K==.同样的方法很容易计算出书中列举的几类材料的k-因子值:软黄铜或软铜材料:K =半硬铜或黄铜、软钢和铝等材料:K =青铜、硬铜、冷轧钢和弹簧钢等材料:K =前面已经讨论过,有多种获取K-因子的来源如钣金材料供应商,试验数据,经验和手册等.如果我们要用K-因子的方法建立我们的钣金模型,我们就必须找到满足工程需求的K-因子值的正确来源,从而得到完全满足所期望精度的物理零件结果.在一些情况下,因为要适应可能很广泛的折弯情形,仅靠输入单一的数字即使用单一的K-因子方法可能无法得到足够准确的结果.这种情况下,为了获得更为准确的结果,应该对整个零件的单个折弯直接使用BA 值,或者使用折弯表描述整个范围内不同的A、R、T的所对应的不同BA、BD或K-因子值等.在R≠0, θ=90°时;的折弯系数列表:单位:mm注意:折弯系数不是绝对的,各加工工厂的钣金工艺工程师会根据所用GB材料以及加工机器而略有微弱变化.三.展开计算方法其它参考:一.冷轧钢板SPCC电镀锌板SECC二.压铆螺件底孔尺寸表1.压铆螺母柱注:SO SOS 为通孔不通牙,SOO SOOS 为通孔通牙,加B为不通孔,加S为不锈钢材料,H为螺母柱的高度.2.压铆螺母注:CLS为不锈钢材料,S为普通A3钢,A为螺母适用板厚材代号.3.镶入螺母注:加S为不锈钢材料,A为螺母适用板厚代号.4.涨铆螺母注:加S为不锈钢材料,、、为常用适用板厚.5.压铆螺钉注:加S为不锈钢材料,FH为圆头,NFH为六角头,L为螺钉总长度.。

(完整版)钣金展开计算方法

(完整版)钣金展开计算方法
以下Hmax取值原则供参考.
当R≧4MM时:
材料厚度T=1.2~1.4取Hmax =4T
材料厚度T=0.8~1.0取Hmax =5T
材料厚度T=0.7~0.8取Hmax =6T
材料厚度T≦0.6取Hmax =8T
当R<4MM时,请示上级.
10压缩抽形1 (Rd≦1.5T)
原则:直边部分按弯曲展开,圆角部分按拉伸展开,然后用三点切圆(PA-P-PB)的方式作一段与两直边和直径为D的圆相切的圆弧.
0 < R <t λ=t 4<="" p=""></t λ=t>
6 Z折1.
计算方法请示上级,以下几点原则仅供参考:
(1)当C≧5时,一般分两次成型,按两个90°折弯计算.(要考虑到折弯冲子的强度)
L=A-T+C+B+2K
(2)当3T<c<5时:</c<5时
L=A-T+C+B+K
(3)当C≦3T时<一次成型>:
1.8
#6-32
1.2
1.5
1.5(1.8)
1.8
说明:
1以上攻牙形式均为无屑式.
2抽牙高度:一般均取H=3P,P为螺纹距离(牙距).
3.内径:M3 Φ2.75 M3.50 Φ3.20 M 4 Φ3.65 # 6-32 Φ3.10
在R≠0, θ=90°时;的折弯系数列表:(单位:mm)
板材↓/板厚→
D/2={(r+T/3)2
+2(r+T/3)*(h+T/3)
-0.86*(Rd-2T/3)*[(r+T/3)

钣金常用五金件开孔查询

钣金常用五金件开孔查询

型号 M2×0.4 M2.5×0.45 M3×0.5 M4×0.7 M5×0.8 M6×1.0
代号
F(S)-M2-A F(S)-M2.5-A F(S)-M3-A F(S)-M4-A F(S)-M5-A F(S)-M6-A
注:加 S 为不锈钢材料,A 为螺母适用板厚代号。 4.涨铆螺母
底孔尺寸(mm)
二.压铆螺件底孔尺寸表 1.压铆螺母柱
型号 M3×0.5 M3×0.5 M4×0.7 M4×0.7 M5×0.8 M6×1.0
代号
(B)SO(O)(S)-M3-H (B)SO(O)(S)-3.5M3-H (B)SO(O)(S)-M4-H (B)SO(O)(S)-3.5M4-H (B)SO(O)(S)-M5-H (B)SO(O)(S)-M6-H
审核:李建
4.10 压缩抽形 1 (Rd≦1.5T) 原则:直边部分按弯曲展开,圆角部分按拉伸 展开,然后用三点切圆(PA-P-PB)的方式作一 段与两直边和直径为 D 的圆相切的圆弧. 当 Rd≦1.5T 时,求 D 值计算公式如下: D/2=[(r+T/3)2+2(r+T/3)*(h +T/3)]1/2
编制
4.1 R=0,折弯角 θ=90°(T<1.2,不含 1.2mm) L=(A-T)+(B-T)+K =A+B-2T+0.4T 上式中取:λ=T/4 K=λ*/2 =T/4*π/2 =0.4T
4.2 R=0, θ=90° L=(A-T)+(B-T)+K =A+B-2T+0.5T 上式中取:λ=T/3 K=λ*π/2 =T/3*π/2 =0.5T
底孔尺寸(mm)
5.0 6.0 8.0 9.0 11.0

工程展开计算方法及抽牙预冲孔

工程展开计算方法及抽牙预冲孔
(2) 当θ>70°时, 按Z折1 (直边段差) 的方式展开.
2. 当H?2T时, 按两段折弯展开 (R=0,θ≠90°).
Z折4 (过渡段为两圆弧相切):
1. H≦2T段差过渡处为非直线段两圆弧相切展开时, 取基体外侧两圆弧相切点处作垂线, 向内侧偏移一个料厚按图示处理, 然后按Z折1 (直边段差) 方式展开.
一般折弯2 (R≠0, θ=90°):
L=A+B+K (K值取中性层弧长)
1. 当T<时, λ=
2. 当T≧时, λ=
注: 当用折刀加工时:
1. 当R≦时, 按R=0处理.
2. 当<R<时, 按R=处理.
3. 当R≧时, 按原值处理.
一般折弯 3 (R=0, θ≠90°):
L=A+B+K’
1. 当T?时, K’=0
(3)T≧时取S=65%T
注: 一般常见抽牙预冲孔按附件一取值.
2. 抽孔展开处理:
抽孔与沙拉孔铆合时, 抽孔外径=沙拉孔底孔孔径, 壁厚= (通常情况下)
若客户图纸上抽孔没标抽孔孔径尺寸, 展开时以下列情形处理:
(1) 当T'≧时, 取T'=, 并保证抽孔内径.
(2) 当<T'<时, 按原图抽孔内﹑外径取值.
备注:
1. 标注公差的尺寸设计值:取上下极限尺寸的中间值作设计标准值.
2. 对於方形抽孔和外部包角的展开,其角部的处理方法参照《产品展开工艺处理标准》,其直壁部分按90°折弯展开.
附件一:常见展开标准数据
1. 直边段差展开系数一览表
2. N折展开系数一览表
3.攻牙时不同材料厚度的预冲孔径和前加工上、下模尺寸关系:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

鈑金件的抽牙加工,包括沖孔,翻孔,攻牙的過程,在孔徑計算時,先確定翻孔內徑d 1,然后依材料的圓孔翻邊系數k t ,求得沖孔直徑d 0,螺紋加工分為有屑加工及無屑加工. 有屑加工是以切削的方式,將材料去除,形成螺紋.因要去除材料,故坯料要保留較多,底徑d 取較小值.
無屑加工是以擠壓的方式,使材料塑性變形,形成螺紋.因無需去除材料,坯孔內的材料只作塑性流動,故坯料保留較少,底徑d 取較大.
鈑金件的螺紋加工大多采用無屑加工,底徑計算以無屑加工方式確定.
依設計所要求加工的螺紋型號,查表1,2,3,4,得該螺紋的標稱直徑D.螺距P .則翻孔內徑d 1=D-P /2 (1)
表1,2,3,4分列了10mm 以下公制粗牙,細牙及UNC UNF 螺紋的規格尺寸.若為有屑加工,則d 1=D-P (2)
d 2=d-0.649519 p
d 1=d-1.082532 p
D 1=d 1 D 1=d 1
表2公制細牙螺紋之基本尺寸
d1=d-1.082532 p
D1=d1
d=(d)*25.4
1
d=(d)*25.4
D=d D2=d2 D1=d1
d1=(d-1.082532/n)*25.4
確定d1,若螺紋規格小于M5.則簡便計算如下:
d0=0.45d1 d0=翻孔前毛坯孔
t1=0.65t t1=翻孔后豎邊壁厚
h=2~2.5t
或查表以確定翻孔系數k
k=d0/D m
式中d0---毛坯上圓孔的初始直徑
D m---翻邊后豎邊的中徑
圓孔翻邊的成形極限根據豎邊邊緣是否發生破裂來確定.如下圖所示,翻邊系數k與豎邊邊緣厚度減薄量的關系如下.
圖五:
T/t0=4√【(d02/(D m2-t02)】=4√【(d0/D m)2/【1-(t0/D m)2】】=4√【K2/【1-(d0/D m)2】】(3)
若相對厚度d0/D m較小,則t≒t0√K (4) 由式(3),(4)可知,K越小,豎邊孔緣厚度減薄愈大,容易發生破裂,故圓孔翻邊成形限受K 值限制.表五是保証低碳鋼翻邊不發生破裂時允許的極限翻邊系K l,通常可用它們反映圓孔翻邊成形極限,K l越小,成形極限愈大.
表五:低碳鋼極限圓孔翻邊系數K l
影響圓孔翻邊成形極限的因素如下:
(1)材料延伸率和應變硬化指數n大,K l小,成形極限大.
(2)孔緣無毛刺和硬化時, K l較小,成形極限較大,為了改善孔緣情況,可采用鑽孔方法或在
沖孔后行整修,有時還可在沖孔后退火,以消除孔緣表面的硬化.為了避免毛刺降低成
形極限,翻邊進需預制孔有毛刺的一側朝向凸模放置.
(3)用球形,錐形和拋物形凸模翻邊時,孔緣會被圓滑地脹開,變形條件比平底凸模優越,故
K l越小,成形限越大.
(4)板料相對厚度越大, K l越小,成形極限愈大.
3.圓孔翻邊的毛坯計算主要是利用板料中性層長度不變的原則,用翻邊高度計算翻邊圓孔的初始直徑d0和翻邊系數計算可以達到的翻邊高度.
(1)一次翻邊成形
翻邊高度不大時,可將平板毛坯一次翻邊成形.按圖五所示,一次翻邊成形時,翻邊圓孔的初始d0 ,翻邊高度h和翻邊系數K l之間的關系如下:
h=1/2*(D m-d0)+0.43r+0.72t0
=D m/2*(1-k)+0.43r+0.72t0(5)
需要指出,按式(3)計算翻邊高度時,必須滿足k≧K l,否則不能一次翻邊成形.。

相关文档
最新文档