新北师大版八年级下册数学-《图形的平移(3)》教案

合集下载

北师大版八年级数学下册3.1.3图形的平移优秀教学案例

北师大版八年级数学下册3.1.3图形的平移优秀教学案例
北师大版八年级数学下册3.1.3图形的平移优秀教学案例
一、案例背景
北师大版八年级数学下册3.1.3“图形的平移”一节,是在学生已经掌握了图形的性质和平移的定义基础上进行讲解的。本节课主要让学生了解平移的性质,学会用平移的方法解决实际问题。在教学过程中,我以提高学生的数学素养和实际应用能力为目标,结合生活实例,设计了丰富的教学活动,旨在激发学生的学习兴趣,提升他们的自主学习能力。
1.理解平移的定义和性质,掌握平移的基本方法。
2.能够运用平移解决实际问题,提高学生的数学应用能力。
3.了解平移在生活中的应用,培养学生的数学素养。
(二)过程与方法
1.通过观察、实践、讨论等环节,让学生在活动中探究平移的性质。
2.培养学生自主学习、合作学习的能力,提升他们的数学思维。
3.引导学生运用数形结合的思想,将平移知识与实际问题相结合。
(三)小组合作
1.学生在小组内进行讨论、交流,分享自己的观点和体会。
2.小组合作完成实践操作,如制作平移卡片、设计平移游戏等。
3.小组成员共同探讨平移在思与评价
1.教师引导学生对自己的学习过程进行反思,总结自己在解决问题中的优点和不足。
2.学生之间互相评价,给予鼓励和建议,共同提高。
五、教学拓展
1.引导学生关注平移在其他学科领域的应用,如物理、计算机科学等。
2.鼓励学生进行课外探究,如收集平移在生活中的实例,举办数学手抄报等。
3.教师可组织相关的数学竞赛活动,激发学生的学习兴趣和竞争意识。
六、教学总结
在本节课的教学中,通过情景创设、问题导向、小组合作等策略,引导学生主动探索平移的性质和应用。在教学过程中,关注学生的个体差异,培养他们的团队协作能力和创新能力。通过反思与评价,使学生不断提高自己的学习能力和解题技巧。总之,本节课旨在培养学生的数学素养,使他们能够将平移知识运用到实际问题中,提高他们的数学应用能力。

八年级数学下册3.1图形的平移(三)教学案(新版)北师大版

八年级数学下册3.1图形的平移(三)教学案(新版)北师大版

3.1图形的平移
第二环节:例题讲解
活动内容:
3L C (-
1+1).
(-1. 4}.将四边形AHCD先向上平移3个单位氏
再向右平移4个单位氏度*得到四边形A ^CD\
(1 ) E边形彳囚CD与卩U边形曲CD对应点的横坐标有什么关系?纵坐标呢?分別
写出点仁叭C. /的坐标;
(2 )如果将四边形A ^Ciy看成是由凹边形ABCD经过一次平移得到请指出这一平移的
平移方向和平移距离.
第四环节:展示应用评价自我
P73随堂练习
第五环节:链接知识归纳小结活动内容:
横坐标分别增加(减少) a个单位、纵坐标分别增加(减少) b个单位时,图形
是怎样平移的?请你与同学交流,并总结有哪几种平移方式。

组织学生小结这节课所学的内容,并作适当的补充。

如图48,四边形肋CD各顶点的坐标分别为A (-3, 5). B(- 4,
愛*
第六环节:布置作业课本 3. 3习题。

3.1图形的平移-北师大版八年级数学下册教学设计

3.1图形的平移-北师大版八年级数学下册教学设计

教学设计方案一、教学重点1.平移的二要素掌握2.能够进行简单的图形平移作图二、进门测1.轴对称图形的特点2.中心对称图形的额特点三、课堂落实要点一、平移1. 定义:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移.要点诠释:(1)图形的平移的两要素:平移的方向与平移的距离.(2)图形的平移不改变图形的形状与大小,只改变图形的位置.2. 性质:图形的平移实质上是将图形上所有点沿同一方向移动相同的距离,平移不改变线段、角的大小,具体来说:(1)平移后,对应线段平行(或共线)且相等;(2)平移后,对应角相等;(3)平移后,对应点所连线段平行(或共线)且相等;(4)平移后,新图形与原图形的形状与大小不变.要点诠释:(1)“连接各组对应点的线段”的线段的长度实际上就是平移的距离.(2)要注意“连接各组对应点的线段”与“对应线段”的区别,前者是通过连接平移前后的对应点得到的,而后者是原来的图形与平移后的图形上本身存在的.3. 作图:平移作图是平移基本性质的应用,在具体作图时,应抓住作图的“四步曲”——定、找、移、连.(1)定:确定平移的方向和距离;(2)找:找出表示图形的关键点;(3)移:过关键点作平行且相等的线段,得到关键点的对应点;(4)连:按原图形顺次连接对应点.1.如图所示,平移△ABC,使点A移动到点A′,画出平移后的△A′B′C′.【思路点拨】平移一个图形,首先要确定它移动的方向和距离,连接AA′后这个问题便获得解决.根据平移后的图形与原来的图形的对应线段平行(或在一条直线上)且相等,容易画出所求的线段.【答案与解析】解:如图所示,(1)连接AA′,过点B作AA′的平行线,在上截取BB′=AA′,则点B′就是点B的对应点.(2)用同样的方法做出点C的对应点C′,连接A′B′、B′C′、C′A′,就得到平移后的三角形A′B′C′.【总结升华】平移一个图形,首先要确定它移动的方向和距离.连接AA′,这个问题就解决了,然后分别把B、C按AA′的方向平移AA′的长度,便可得到其对应点B′、C′,这就是确定了关键点平移后的位置,依次连接A′B′,B′C′,C′A′便得到平移后的三角形A′B′C′.2.如图,将△ABC平移到△A′B′C′的位置(点B′在AC边上),若∠B=55°,∠C=100°,则∠AB′A′的度数为______.【答案】25°【解析】∵∠B=55°,∠C=100°,∴∠A=180°﹣∠B﹣∠C=180°﹣55°﹣100°=25°,∵△ABC平移得到△A′B′C′,∴AB∥A′B′,∴∠AB′A′=∠A=25°.【总结升华】图形在平移的过程有“一变两不变”、“一变”是位置的变化,“两不变”是形状和大小不变.本例中由△ABC经过平移得到△A′B′C′.则有AB=A′B′,BC=B′C′,AC=A′C′,∠A=∠A′,∠C =∠C,∠B=∠B′.举一反三:【变式】如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为.【答案】20;解:∵△ABC沿BC方向平移2cm得到△DEF,∴CF=AD=2cm,AC=DF,∵△ABC的周长为16cm,∴AB+BC+AC=16cm,∴四边形ABFD的周长=AB+BC+CF+DF+AD=AB+BC+AC+CF+AD=16cm+2cm+2cm=20cm.故答案为:20cm.四、课堂练习1.图形在平移时,下列特征中不发生改变的有(把你认为正确的序号都填上),①图形的形状;②图形的位置;③线段的长度;④角的大小;⑤垂直关系;⑥平行关系.2.如图所示,△ABC经过平移得到△A′B′C′,图中△_________与△_________大小形状不变,线段AB与A′B′的位置关系是________,线段CC′与BB′的位置关系是________.3.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为cm.4.钟表的分针匀速旋转一周需要60min,经过20min,分针旋转了_______度.5.如图,在等腰直角△ABC中, B=90°,将△ABC绕顶点A逆时针方向旋转60°后得到△AB′C′,则等于__________度.6.如图,△ABC以点A为旋转中心,按逆时针方向旋转60°,得△AB′C′,则△ABB′是______三角形.7.如图,将四边形ABCD平移到四边形EFGH的位置,根据平移后对应点所连的线段平行且相等,写出图中平行的线段和相等的线段.8.等边△OAB在平面直角坐标系中,已知点A(2,0),将△OAB绕点O顺时针方向旋转a°(0<a<360)得△OA1B1.(1)求出点B的坐标;(2)当A1与B1的纵坐标相同时,求出a的值;(3)在(2)的条件下直接写出点B1的坐标.9.如图所示,在长为50m,宽为22m的长方形地面上修筑宽度都为2 m的道路,余下的部分种植花草,求种植花草部分的面积.五、查漏补缺平移二要素的提问,让学生自己举出平移的实例六、课后落实同步习题完成课堂练习1.【答案】①③④⑤⑥;【解析】解:由图形平移的性质,知图形在平移时,其特征不发生改变的有①③④⑤⑥.2.【答案】ABC , A ′B ′C ′,平行,平行;【解析】平移的性质.3.【答案】42;【解析】解:∵将△ABC 绕点B 顺时针旋转60°,得到△BDE,∴△ABC≌△BDE,∠CBD=60°,∴BD=BC=12cm,∴△BCD 为等边三角形,∴CD=BC=CD=12cm,在Rt△ACB 中,AB==13,△ACF 与△BDF 的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=42(cm ),故答案为:42.4.【答案】120°; 【解析】2036012060⨯︒=︒. 5.【答案】105°;【解析】∠BAC ′=∠BAB ′+∠B ′AC ′=60°+45°=105°.6.【答案】等边三角形;【解析】因为△ABC 旋转60°得到△,则AB= AB ′,∠BAB ′=60°,所以是等边三角形.7.【解析】''AB C解:平行的线段:AE∥BG∥DH,相等的线段:AE=BF=OG=DH.8.【解析】解:(1)如图1所示过点B作BC⊥OA,垂足为C.∵△OAB为等边三角形,∴∠BOC=60°,OB=BA.∵OB=AB,BC⊥OA,∴OC=CA=1.在Rt△OBC中,,∴BC=.∴点B的坐标为(1,).(2)如图2所示:∵点B1与点A1的纵坐标相同,∴A1B1∥OA.①如图2所示:当a=300°时,点A1与点B1纵坐标相同.如图3所示:当a=120°时,点A1与点B1纵坐标相同.∴当a=120°或a=300°时,点A1与点B1纵坐标相同.(3)如图2所示:由旋转的性质可知A1B1=AB=2,点B的坐标为(1,2),∴点B1的坐标为(﹣1,).如图3所示:由旋转的性质可知:点B1的坐标为(1,﹣).∴点B1的坐标为(﹣1,)或(1,﹣).9.【解析】解:如图所示②把几条2米宽的小路分别平移到大长方形的上边缘和左边缘,则种植花草部分汇集成一个长方形,显然,这个长方形的长是50-2=48(m),宽是22-2=20(m),于是种植花草部分的面积为48×20=960(m2).。

初中数学北师大版八年级下册《31图形的平移(3)》教学设计

初中数学北师大版八年级下册《31图形的平移(3)》教学设计

北师大版数学八年级下 3.1 图形的平移(3)教学设计画一画:先将图中的“鱼”F向下平移2个单位长度,再向右平移3个单位长度,得到新“鱼”F’.(1)在图中所示的平面直角坐标系中画出新“鱼”F’.答案:(2)能否将“鱼”F ’看成是“鱼”F 经过一次平移得到的?如果能,请指出平移的方向和平移的距离. 答案:能平移的方向:由F 到F ’的方向平移的距离:222313+=(个单位长度) (3)在“鱼”F 和“鱼”F ’中,对应点的坐标之间有什么关 答案:横坐标加3,纵坐标减2.做一做:先将图中“鱼”F 的每个“顶点”的横坐标分别加2,纵坐标不变,得到“鱼”G ;再将“鱼”G 的每个“顶点”的纵坐标分别加3,横坐标不变,得到“鱼”H .“鱼”H 与原来的“鱼”F 相比有什么变化?能否将“鱼”H 看成是原来的“鱼”F 经过一次平移得到的?答案:(1) “鱼”F 向右平移2个单位,再向上平移3个单位长度得到“鱼”H .(2)“鱼”F 沿F 到H 的方向平移13个单位长度得到“鱼”H .追问:横坐标分别加2,纵坐标分别减3呢? 答案:“鱼”F 沿F 到H 的方向平移13个单位长度得到“鱼”H . 议一议:一个图形依次沿x 轴方向、y 轴方向平移后所得图形与原来的图形相比,位置有什么变化?它们对应点的坐标之间有怎样的关系?归纳:一个图形依次沿x 轴方向、y 轴方向平移后所得图形,可以看成是由原来的图形经过一次平移得到的. 例:如图,四边形ABCD 各顶点的坐标分别为A (-3,5),B (-4,3),C (-1,1),D (-1,4),将四边形ABCD 先向上平移3个单位长度,再向右平移4个单位长度,得到四边形A ′B ′C ′D ′.(1)四边形A ′B ′C ′D ′与四边形ABCD 对应点的横坐标有什么关系?纵坐标呢?分别写出点A ',B ',C ',D '的坐标; 解:(1)四边形A ′B ′C ′D ′与四边形ABCD 相比,对应点的横坐标分别增加了4,纵坐标分别增加了3; A ′(1,8),B ′(0,6),C '(3,4),D ′(3,7);(2)如果将四边形A ′B ′C ′D ′看成是由四边形ABCD 经过一次平移得到的,请指出这一平移的平移方向和平移距离.解:(2)如图,连接AA ′,由图可知,AA ′=22435+=如图,已知点A(-1,0),B(1,1),把线段AB平移,使点B移动到点D(4,4)处,这时点A移动到点C处.(1)画出平移后的线段CD,并写出点C的坐标;解:(1)如图,C(2,3).(2)如果平移时只能左右或者上下移动,叙述线段AB是怎样移动到CD的;解:(2)AB向右平移3个单位长度,再向上平移3个单位长度即可得到CD.(3)如果将CD看成是由AB经过一次平移得到的,请指出这一平移的平移方向和平移距离.解:(3)这一平移的平移方向是由A到C的方向,平移距离是32个单位长度.下面让我们一起赏析一道中考题:是()A.(-1,6) B.(-9,6) C.(-1,2) D.(-9,2)答案:C在课堂的最后,我们一起来回忆总结我们这节课所学的知。

北师大版数学八年级下册3.1《图形的平移》说课稿

北师大版数学八年级下册3.1《图形的平移》说课稿

北师大版数学八年级下册3.1《图形的平移》说课稿一. 教材分析《图形的平移》是北师大版数学八年级下册第3.1节的内容。

本节课主要让学生了解平移的定义,理解平移在实际生活中的应用,并学会用平移的方法来简化复杂图形。

通过学习,学生能够掌握图形的平移规律,提高空间想象能力。

二. 学情分析学生在七年级时已经学习了图形的旋转,对图形的变换有了一定的认识。

但平移与旋转存在很大的区别,平移不改变图形的方向,而旋转则会改变图形的方向。

因此,在教学过程中,需要引导学生区分这两种变换,并理解平移的性质。

三. 说教学目标1.知识与技能:理解平移的定义,掌握平移的性质,能运用平移的方法解决实际问题。

2.过程与方法:通过观察、操作、思考、交流等活动,提高空间想象能力。

3.情感、态度与价值观:培养学生的观察能力,激发学生对数学的兴趣。

四. 说教学重难点1.重点:平移的定义及其在实际中的应用。

2.难点:平移规律的探究,以及如何运用平移解决复杂图形的问题。

五. 说教学方法与手段1.采用问题驱动的教学方法,引导学生主动探究、合作交流。

2.利用多媒体课件、实物模型等教学手段,直观展示平移的过程,增强学生的空间想象力。

六. 说教学过程1.导入:通过展示生活中的平移现象,如电梯、滑滑梯等,引导学生思考平移的特点。

2.新课导入:介绍平移的定义,引导学生理解平移不改变图形的方向。

3.实例分析:分析具体图形进行平移前后的变化,让学生体会平移的性质。

4.小组讨论:让学生分组讨论平移在实际中的应用,如地图上的路线规划等。

5.总结规律:引导学生总结平移的规律,并能应用于解决实际问题。

6.练习巩固:布置一些有关平移的练习题,让学生独立完成,检验学习效果。

7.课堂小结:对本节课的内容进行总结,强调平移的性质及应用。

七. 说板书设计1.平移的定义2.平移的性质3.平移在实际中的应用八. 说教学评价1.学生能准确理解平移的定义和性质。

2.学生能运用平移的方法解决实际问题。

北师大版八年级数学下册教案 3-1 第1课时 图形的平移

北师大版八年级数学下册教案 3-1 第1课时 图形的平移

第三章图形的平移与旋转3.1图形的平移第1课时图形的平移教学目标【知识与技能】1.理解并能够说出平移的意义和特征;2.能够进行简单的平移作图.【过程与方法】经历探索图形平移基本性质的过程,进一步提高空间观念,增强审美意识.【情感、态度与价值观】通过收集自己身边“平移”的实例,感受“生活处处有数学”,激发学生学习数学的兴趣;通过欣赏生活中存在的平移图形与学生自己设计的平移图案,使学生感受数学之美.教学重难点【教学重点】平移的主要特征和基本性质.【教学难点】平移性质的探索与理解.教学过程一、情境导入1.图片欣赏2.观察图片,回答以下问题:(1)手扶电梯上的人做什么运动?行驶的汽车呢?(2)手扶电梯上的人的形状、大小在运动前后是否发生了改变?行驶的汽车呢?(3)手扶电梯上的人,如果某部位向前移动了80 cm,那么人的其他部位向什么方向移动?移动了多少距离?(4)如果把推拉前后的一扇窗分别记为四边形ABCD和四边形EFGH,那么四边形ABCD与四边形EFGH 的形状、大小是否相同?二、合作探究探究点1平移的定义及特征典例1如图,某住宅小区内有一片长方形地块,想在长方形地块内修筑同样宽的两条小路(图中阴影部分),余下部分绿化,小路的宽为2 m,则两条小路的总面积是()A.108 m 2B.104 m 2C.100 m 2D.98 m 2[解析] 利用平移可得,两条小路的总面积是30×22-(30-2)×(22-2)=100(m 2).[答案] C探究点2 平移的性质典例2 如图,将一个Rt △ABC 沿着直角边CA 所在的直线向右平移得到Rt △DEF .已知BC =a ,CA =b ,F A =13b ,则四边形DEBA 的面积等于 ( )A.13abB.12abC.23abD.ab[解析] 由题意可得FD =CA =b ,BC =EF =a ,∴AD =FD -F A =b -13b =23b ,∴四边形DEBA 的面积为AD ·EF =23ab.[答案] C平移的性质:一个图形和它经过平移得到的图形中,对应点所连线段平行(或在一条直线上)且相等,对应线段平行(或在一条直线上)且相等,对应角相等.探究点3 平移作图典例3 如图,每个小正方形的边长都相等,△ABC 的三个顶点都在格点(小正方形的顶点)上.(1)平移△ABC ,使顶点A 平移到点D 的位置,得到△DEF ,请在图中画出△DEF ;(点B 的对应点为E )(2)若∠A =50°,则直线AC 与直线DE 相交所得锐角的度数为 °,依据是.[解析] (1)△DEF 如图所示.(2)50;两直线平行,同位角相等(或两直线平行,内错角相等).平移作图的一般步骤:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.三、板书设计图形的平移图形的平移{平移的意义及特征平移的性质{对应点的连线平行且相等对应线段平行且相等对应角相等平移作图教学反思在研究图形平移的定义、特征和性质时,对小组讨论给予适当的指导,包括知识的启发引导、学生的交流合作、对困难学生的帮助等,使小组合作学习更具效率.注意不要让一些思维活跃的学生的回答完全代替其他学生的思考,从而掩盖其他学生的疑问.。

北师大版八年级数学下册第三章《图形平移》导学案

北师大版八年级数学下册第三章《图形平移》导学案

新北师大版八年级数学下册第三章?图形的平移〔1〕?导教案课题 3.1 图形的平移〔 1〕课时一课时课型导学 +展现学生活动〔自主参加、合作研究、展现沟通〕学习目标1.经过详细实例认识图形的平移变换.,知道平移的方向和距离。

例 2:在下边的方格纸中 .2.会找对应点,对应线段。

A〔 1〕作出△ ABC对于 MN对称的图形△ A B C ;学习要点:111重难点学习难点:〔 2〕说明△ A2B2C2是由△ A1B1C1经过如何的平移获得的?M 学生活动〔自主参加、合作研究、展现沟通〕一. 预习沟通:1.平移的观点:在平面内,将一个图形沿某个方向挪动必定的,这样的图形运动称为,平移不改变图形的和。

2.平移的性质:平移不改变图形的和 3.以下现象属于平移的是_______________A.打开抽屉;B. 健身时做呼啦圈运动;C.电扇扇叶的转动;D. 小球从高空竖直着落;E. 电梯的起落运动;F. 飞机在跑道上滑行到停止的运动;G.篮球运发动投出的篮球运动;H.乒乓球竞赛中乒乓球的运动 .A2.将线段 AB平移 1 ㎝,获得线段A1B1, 那么点 A 到 A1的距离是.D 3. 以下列图,△ ABC沿 BC方向平移到△ DEF的地点,假定 BE=2 ㎝,那么 CF= .ECFB,故平移前后的两个图形是的 .所以平移拥有以下性质:〔 1〕对应点所连的线段〔或在同一条直线上〕且.〔 2〕对应线段〔或在同一条直线上〕且.〔 3〕对应角.二、研究释疑:例 1:如图,经过平移,△ ABC的极点 A 移到点 D;〔 1〕指出平移的方向和平移的距离;A〔 2〕画出平移后的三角形.DBC 三、达标检测1.△ ABC经过平移获得△A′ B′ C′,假定∠ A=40 ,∠ B=60 ,那么∠ C′ =______,假定AB=4cm,那么 A′ B′=_________.2. 请将以下列图的“小鱼〞向左平移 5 格.3.如图, Rt △ ABC中,∠ C=90 , AC=BC=4,现将△ ABC沿 CB方向平移到△ A1B1C1的地点。

北师大版数学八年级下册3.1《图形的平移》教案

北师大版数学八年级下册3.1《图形的平移》教案
4.平移的实际应用:结合实际例子,让学生体会平移在现实生活中的应用。
二、核心素养目标
1.培养学生的空间观念:通过图形的平移教学,让学生进一步理解和掌握平移的基本性质,提高对空间图形的认识和把握能力。
2.提升学生的几何作图能力:通过平移的作图方法的学习,使学生能够熟练运用尺规作图技巧,准确表现图形的平移过程。
最后,我认识到在教学过程中,对于难点的解析还需要进一步加强。虽然我已经尽力通过举例和比较来解释难点,但可能还需要寻找更多有效的方法来帮助学生克服这些难点。在接下来的课程中,我会尝试使用更多样的教学方法,如分组合作、互动提问等,以期提高教学效果。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平移的基本概念。平移是指将一个图形上的所有点按照同一方向、同一距离同时移动的图形变换。平移在几何学中具有重要作用,它帮助我们理解和创造各种几何图形。
2.案例分析:接下来,我们来看一个具体的案例。在平面直角坐标系中,点A(x, y)经过平移后得到点A'(x+a, y+b),通过这个案例,我们可以看到平移在实际中的应用,以及它如何帮助我们解决问题。
-举例:在平移过程中,学生可能会误认为平移后的线段长度或角度会发生变化,需要通过实际操作和示例来说明这些几何特征在平移中保持不变。
-空间想象能力的培养:对于某些学生来说,仅凭平面图形想象其三维空间中的平移可能会感到困难。
-举例:教师可以通过提供实物模型或利用信息技术手段,如三维动态图,来帮助学生建立空间概念,理解图形在空间中的平移。
3.重点难点解析:在讲授过程中,我会特别强调平移的定义和性质这两个重点。对于难点部分,如对应点、对应线段和对应角的关系,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新北师大版八年级下册数学-《图形的平移(3)》教案
第三章图形的平移与旋转
1.图形的平移(三)
一、学生起点分析
学生知识技能基础:“图形中的平移”是北师大版数学八年级下册第三章图形的平移与旋转的第一节,它对图形变换的学习具有承上启下的作用。

学生在前面已学习了轴对称及轴对称图形的基础上,认识图形的平移不是很困难,而让学生主动探索平移的基本性质,认识平移在现实生活中的广泛应用是学习本节内容的主要目标,对学生来说也是一个难点。

学生活动经验基础:学生在七年级下学期已经学习了“生活中的轴对称”,初步积累了一定的图形变换的数学活动经验,运用类比的数学思想,从轴对称的眼光看待平移,会降低学生学习的难度,创设特定情境,使学生一直处于轴对称和平移相互交融的氛围之中,会使学生更加主动地去探索平移的基本性质,培养学生良好的数学意识. 学生在前面已学习了轴对称及轴对称图形,在此基础上还将学习生活中的旋转与旋转设计图案等内容。

二、教学任务分析
知识与技能:
在上节课学习一次平移时坐标的变化特点的基础上,继续探究一次平移既有横向又有纵向时坐标的变化特点。

过程与方法:
在活动过程中,提高学生的探究能力和方法。

情感与态度:
通过收集自己身边“平移”的实例,感受“生活处处有数学”,激发学生学习数学的兴趣;通过欣赏生活中平移图形与学生自己设计平移图案,使学生感受数学美。

三、教学过程设计
本节课设计了七个教学环节:第一环节:创设情境;第二环节:活动探究;第三环节:例题讲解;第四环节:展示应用评价自我;第五环节:链接知识归纳小结;第六环节:布置作业;第七环节:导入下节课内容。

第一环节:创设情境
活动内容:
口答练习:
在坐标系中,将坐标作如下变化时,图形将怎样变化?
1.(x,y)——(x,y+4);
2. (x,y)——(x,y-2);
3. (x,y)——(x-1 , y);
4. (x,y)——(3+x , y).
思考:5. (x,y)——(x-1 , y+4)
活动目的:复习巩固前一节课学习的知识,在坐标系中,图形一次平移(横向或纵向),进一步明确平移前后坐标的变化规律;同时提出本节课的研究问题。

效果:给空间让学生回答,可能学生的语言并不规范,有待在后面的学习中教师逐步引导,在这里可以让学生各抒己见,用自己所学的知识合情推理自己的结论,养成一个好的数学思维习惯。

第二环节:活动探究
活动一:探求“鱼”在坐标系中,既横向又纵向平移时,坐标的变化情况.
内容1:
内容2:
内容3:
归纳如下:
活动目的:通过具体事例探究既有横向又有纵向的平移,平移前后坐标的变化规律,通过交流活动归纳总结一般情况。

效果:操作性强又富有挑战性的数学活动,激发了学生学习的兴趣,对平移的基本内涵和基本性质这两个重点,学生掌握得比较好。

但是,在开发学生利用已有知
识,主动进行新知探究方面还不理想。

第三环节:例题讲解
活动内容:
活动目的:对坐标系中的平移有进一步的认识,灵活运用解决相关问题。

第四环节:展示应用评价自我
活动内容:
活动目的:进一步认识平移,理解平移的基本内涵,理解平移前后两个图形对应点坐标之间的关系。

效果:通过练习评价学生的本节课知识的掌握情况。

第五环节:链接知识归纳小结
活动内容:
横坐标分别增加(减少)a个单位、纵坐标分别增加(减少)b个单位时,图形是怎样平移的?请你与同学交流,并总结有哪几种平移方式。

组织学生小结这节课所学的内容,并作适当的补充。

活动目的:完善知识,明确重点知识,
第六环节:布置作业
课本3.3习题
第七环节:导入下节课
活动内容:以下图片中的图案是平移形成的吗?它们是我们下一节课要研究的另一种图形变换。

活动目的:最后提出一个挑战性的问题,虽不能解决,让学生更加急迫地要充实新知识解决未解决的问题,从而使自己获得更大的成功,以成良性循环的学习模式。

四、教学设计反思
1.注意学生活动的指导
教师应对小组讨论给予适当的指导,包括知识的启发引导、学生交流合作中注意的问题及对困难学生的帮助等,使小组合作学习更具实效性。

在小组讨论之前,应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。

2.给学生空间
最后提出的一个挑战性问题,虽不能解决,让学生更加急迫地要充实新知识解决未解决的问题,从而使自己获得更大的成功,以成良性循环的学习模式。

相关文档
最新文档