螺旋桨气动性能实验演示幻灯片

合集下载

船机桨工况配合特性ppt课件

船机桨工况配合特性ppt课件
4、柴油机特性概念: 柴油机工作参数( Ni, Ne,ηi,ηe,gi, ge,Me等)和变量Pe、n
之间的函数关系为称柴油机的特性。
5、柴油机特性分类: 柴油机工作参数( Ni, Ne,ηi,ηe,gi, ge,Me等)随转速 n和随平均 有效压力Pe而变化的规律分别叫做柴油机的速度特性、负荷特性、调速特性、 推进特性、万有特性、减额功率输出特性、限制特性等。
即 Ne 与 n成直线关系,如下图所示.
实际上有如下因素影响: (1)每循环进气量与n 有关; 2)热态状与n 有关; (3)指示效率的变化; ( 4)每循环喷油量也与n 有关。 因此 pe 是变化的。
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
J1<J2<J3
Pp
J1
J2
J3
Pp Cpn3p
定螺矩螺旋桨的水动力特性
np1
np
不同 J 时的推进特性
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
B、柴油机推进特性
柴油机作为船舶主机带螺旋桨并按 P= Kn3 的规律变化的关系称 为柴油机的推进特性。
Q
C
Q
n
2 p
可得螺旋桨需要主机功
率:
Pp
Q
2
n
p
60
C
p
n
3 p
P p — 螺旋桨需要主机功率; C T K T D 4; C Q K Q D 5; C p 0 . 1047 C Q n p
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统

螺旋桨基础理论ppt课件

螺旋桨基础理论ppt课件
进程hp与螺旋桨直径D 的比值称为 进速系数,以J 来表示,即
2 - 16
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
螺旋桨水动力性能
由式(3-36)及式(3-37),可得进速系数J与滑脱比s之间的 关系为
作用在桨叶上的力及力矩
式中:rh为桨毅半径. R 为螺旋桨半径。
式(3 一34 )把螺旋桨的推力、转矩与流场及螺旋桨的 几何特征联系起来。因而比动量理论的结果要精密完整得 多。 当螺旋桨以进速vA和转速n 进行工作时,必须吸收主机所 供给的转矩Q 才能发出推力T ,其所作的有用功率为TVA ,而吸收的功率为2ПnQ ,故螺旋桨的效率为
2 -9
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
作用在桨叶上的力及力矩
根据茹柯夫斯基升力公式,升元体上dr 段产生的升力 将式(3-28)代入式(3-27),并考虑到dD=єdL (є为
此种情况下螺旋桨产生负推力。螺旋桨不遭受旋转阻力时
旋转一周所前进的距离称为无转矩进程或无转矩螺距,并
以P2表示, 对于一定的螺旋桨而言,显然P2> P1> P ,船舶在航行时 ,螺旋桨必须产生向前的推力以克服船之阻力,才能使船
以一定的速度前进,故螺旋桨在实际操作时,其每转一周
前进的距离hp小于实效螺距P1 。实效螺距P1与进程hp之 差(P1-hp)称为实效滑脱,其与实效螺距P1的比值称为 实效2滑- 2脱0 比,以s1来表示,即
叶元体的阻升比),叶元体转矩dQ=rdF , 可得

可调螺距螺旋桨ppt课件

可调螺距螺旋桨ppt课件
可调螺距螺旋桨
1
、概述
船舶推进螺旋桨(CPP)的早期是桨壳与桨叶铸成同一整体,螺旋桨的螺距 角是固定不变的。1908年SEFELE公司研究并制造了首台可变螺距螺旋桨, 它的桨叶与桨壳分开制造,桨叶用螺钉安装到桨壳上并能在桨壳上旋转。这 就是今天我们使用的可变螺距螺旋桨,简称变距桨,又称调距桨。 可变螺距螺旋桨的优良性能早在20世纪初就被人们所认识,但由于当时的生 产和科学技术水平的限制,并没有得到推广应用,直到上个世纪70年代中期 才得到迅速发展。现在,从特种船舶、军用舰艇到一般的远洋货轮,从中、 小功率到几万千瓦大功率的变距桨都已见使用,今后变距桨必须还会获得更 大的发展。
11
谢谢!
12
9
3.改善了船舶的操纵性能。有利于实现驾驶自动化。由于液压传动技术的运用, 使变距桨易于实现遥控,如需改变航速,只需要通过遥控装置来改变螺距角,便 可实现从零到最大航速之间的无级调速,并在主机不停车亦无需换向的情况下, 可以很容易地实现倒航。这一性能,为提高船舶的自动化程度和实现无人机舱提 供了极为有利的条件。 4.提高了船舶的机动性。如第一章柴油机特性中所述,采用定距桨的柴油主机, 其最低航速因受柴油机最低稳定转速的限制(一般为6-7节①)如果要使船舶以 超低速航行,就必须使主机断续地起动、停止,而一旦螺旋桨停转,就会失去舵 效,影响船舶操纵。在大型船舶通过复杂航道,或进出港时,通常是需要超低速 航行的,且又要有良好的舵效和机动性。采用变距桨,则可以在主机不停车的情 况下实现任意的超低速航行,而且在必要时还可以使桨交替地以正车或倒车工作 来保证舵效。此外,采用变距桨也改善了船舶的停船性能。据估算,一艘65000 吨,功率为18000马力的油轮,由17.6节到全停车,采用定距桨需要12分钟,而 采用变距桨仅需要6分50秒,停船距离也大大缩短。

螺旋桨的空气动力特性讲解

螺旋桨的空气动力特性讲解

• •
面的切合向速速度度,U与以=前2Wπ进r表n速示度,所我合们成知的道速,度(,W称为U桨叶C切),
如图 3—5—5所示。桨叶切面的相对气流速度,与此
• (二)前进比 • 桨叶切面合速度的方向;可用前进比( λ)来表示。前进比是飞
行速度同螺旋桨的转速与直径的两者乘积之比。可用下式表示。
合速度与桨弦方向之间的夹角,如图3—5—6所示。桨
叶迎角是随桨叶角、飞行速度和切向速度的改变而变化
的。

(一)桨叶迎角随桨叶角的变化;

如图3—5—6所示,当切向速度和飞行速度都一定
时,桨叶角增大,桨叶迎角也随之增大;桨叶角减小,
桨叶迎角也随之减小。
• (二)桨叶迎角随飞行速度的变化
• 如图3—5—7所示,在桨叶角和切向速度均不变的
旋桨的拉力减小,而旋转阻力力矩增大。

(四)桨叶切面合速度的影响

同飞行速度对机翼的升、阻力的影响一样,桨叶切面的合
速度增大,桨叶的空气动力也会变大,故螺旋桨的拉力和旋转
阻力力矩也都增加。反之,合速度减小,则拉力和旋转阻力力
矩都减小。

在飞行中,飞行员主要是通过改变螺旋桨转速的办法,来
改变合速度的大小。在其他因素不变的条件下,增大转速,切
• 桨叶的切面形状与翼型相似,前桨面的 弯曲度较大,后桨面的弯曲度较小,相当 于机翼的上表面和下表面,桨叶的切面形 状又称叶型。
• 桨叶切面的前缘与后缘的连线,叫做桨 弦(b),或叫桨叶宽度:如图3—5—3所示。
• 桨弦与螺旋桨直径之比(b/D),叫桨叶 相对宽度。
二.螺旋桨的运动 • 飞行中,螺旋桨一面旋转,一面前进。其运动特
于相邻桨叶之间的干扰,会使旋转阻力力矩增加的倍数

螺旋桨图谱设计PPT课件

螺旋桨图谱设计PPT课件
的交点在图谱上读出:
η0 P/D
单 位 kn V1 kn VA1
N
BP1
δ1 D1 D﹡ δ﹡1
η01 (P/D
)
1
数 V2 VA2
N BP2
δ2 D2 D﹡ δ﹡2 η02 (P/D )
第98页/共65页
注意:
N —— 螺旋桨转速(rpm,即r/min),
PD —— 螺旋桨敞水收到马力(hp), VA —— 螺旋桨进速(kn), D —— 螺旋桨直径(m).
ρ --- 为海水密度,取104.51 kgf·s2/m4
BP --- 功率系数 直径系数δ
NPD0.5 VA2.5
BP
33.30
1. 根据造船统计资料选择螺旋桨叶数 2. 螺旋桨叶数对推进性能的影响 3.综合考虑螺旋桨效率与空泡性能 4.螺旋桨叶数的选择与振动的关系
第321页/共65页
三、螺旋桨的直径
直径 , 转速
效率
船舶吃水、尾框间隙
有限船舶直径
设计图谱
螺旋桨直径
船后间隙等因素
修正
第332页/共65页
常处于压载航行的船舶,宜采用直径较小的螺旋 桨,以照顾压载时的效率和避免叶梢露出水面。 从振动方面考虑,螺旋桨与船体间的间隙不宜过 小,否则可能引起严重振动。
第76页/共65页
一、AU型螺旋桨 设计图谱及其应 用
1. B-δ型设计 图谱的建立
AU5-50螺旋 桨敞水性征 曲线组
0.9
AU5-50
0.8
K T = T /ρn D2 4 K Q = Q/ρn2D 5
η0 = KTJ /2πKQ
0.7
J = V A/nD
0.6
K T , 10K Q

船舶推进螺旋桨基础理论PPT课件

船舶推进螺旋桨基础理论PPT课件
34
第34页/共42页
船舶推进第三章 螺旋桨基础理论
2、当转速不变,随进速的 增大,攻角随之减小,从而 力矩和推力也相应减小。
当进速的增大到某一数力大小相等方向相 反,故叶元体的推力等于零。
螺旋桨不发出推力时旋转一周所前进的 距离称为无推力进程或实效螺距 。
4、推力的另一种表达式:
轴向诱导速度越大, 推进器产生的推力也 越大。
9
第9页/共42页
船舶推进第二章 螺旋桨几何特征
六、理想推进器的效率
推进器的效率等于有效功率与消耗功率的比值 1、推进器在静水中航行时产生推力,则其有 效功率为:
2、推进器工作时,单位时间内尾流所取得的 能量为:
10
第10页/共42页
也就是说,有限翼展的机翼微段相当于二因次 机冀,故机翼微段将受到与VR垂直的升力dL和 与VR方向一致的粘性阻力dD。
26
第26页/共42页
船舶推进第三章 螺旋桨基础理论
三、螺旋桨的作用力
27
第27页/共42页
船舶推进第三章 螺旋桨基础理论
上式把螺旋桨的推力、转矩与流场及螺旋桨的 几何特征联系起来,因而比动量理论的结果要 精密完整得多。
24
第24页/共42页
船舶推进第三章 螺旋桨基础理论
由于自由涡的存在,在空间产生一个诱导速 度场。在机冀后缘处,诱导速度垂直于运动 方向,故也称下洗速度。
25
第25页/共42页
船舶推进第三章 螺旋桨基础理论
考虑了尾涡的诱导速度后,我们可以将有限翼 展的机翼微段近似地看作二元机冀的一段,如 果已知在y处的环量,从茹柯夫斯基升力公式 可知,dy段机翼所受的升力dL垂直于来流VR, 其大小为:
船舶推进第三章 螺旋桨基础理论

螺旋桨气动性能实验

螺旋桨气动性能实验

▼螺旋桨模型可由精制加压木材,镁、铝轻金属, 钢及复合材料等制作。材料的选择主要取决于模 型螺旋桨的转速ns、直径D及气流速压。低速风洞 :气流速压小,当ns和D小时,可选择木材;当ns 和D较大时,可选择镁、铝合金。本文螺旋桨模 型选用木材。
▼全尺寸螺旋桨是柔性的,缩尺模型不可能做成与 实物结构刚度相似,而是将其做成刚体,其型面 可按在飞机巡航状态的外载荷下全尺寸螺旋桨变 形后的外形来加工。
实验目的
单独螺旋桨的气动特性实验是对于给定 的螺旋桨(螺旋桨的直径、桨叶剖面形 状(叶型)及其配置平面形状及实度等) 几何参数)测定气动参数,分析气动性 能。
相似参数
在螺旋桨的气动试验中,如果缩尺模型和全尺寸模型的绕流流场 能保证力学相似,则模型的气动力特性就能正确反映实物流场的 特性。保证流场力学相似首先必须以绕流物的几何相似及流动方 位角相同为前提。所以在螺旋桨试验中,必须保持模型和实物远 前方来流和螺旋桨转轴之间的夹角,以及桨叶上各对应截面的桨 叶角分别相同。除了这两个基本条件外,通过量纲分析就可以得 到一些启示来达到螺旋桨模型与实物的流场力学相似。 对形状一定的螺旋桨,其气动力特性(如拉力T、扭矩Q、功率P以
V n sD
CT
T n2D
4
CQ
Q n2D
5
CP
P n3D
5
2 Q n2D
5
2
CQ
TV CT P CP
4. 改变螺旋桨桨叶安装角,按照相同的方法 测出不同实验风速下的拉力系数等气动参 数
实验设备
1. 驱动装置一般采用变频交流电机;螺旋桨的转速通常采用光栅电子计 数器计量。
2. 稳速压控制系统与数据采集系统: 实验风速使用稳速压控制系统控制,该系统是在风洞直流调节装置双 闭环系统的基础上,增加一个速压闭环系统,并用PSI8400系统进行 实时校准。 数据采集系统使用美国PSI公司的PSI8400电子扫描阀,天平测力实验 使用模拟量通道。

螺旋桨基础理论分解课件

螺旋桨基础理论分解课件
相似参数
螺旋桨的相似参数包括桨叶角、螺距比、转速、雷诺数等,这些参 数在相似理论中起着重要作用。
相似定理
根据相似理论,可以通过改变螺旋桨的相似参数来研究其性能变化规 律,从而实现对实尺度螺旋桨性能的预测。
螺旋桨的尺度效应及其影响
定义及内涵
螺旋桨的尺度效应是指螺旋桨的性能随其尺寸变化而变化的现象。当螺旋桨的尺寸增大或 减小时,其周围的流场、湍流度、粘性等也会发生变化,从而影响螺旋桨的性能。
01
采用主动流动控制技术,如涡流 发生器、射流控制等,对螺旋桨 叶尖涡进行主动干预,提高螺旋 桨失速性能。
02
通过以上改进措施,可以有效提 高螺旋桨的空化和失速性能,保 证螺旋桨在各种工况下的稳定工作。
05
螺旋桨的相似理论与尺度效应
螺旋桨的相似理论
相似定 义
螺旋桨的相似理论基于流体力学的相似原理,即两个螺旋桨在几何 形状、运动状态、动力特性等方面完全相似,则它们的性能也将相 似。
• 试验设计与执行:在进行螺旋桨模型试验时,需要选择合适的模型尺寸、试验 设备等,并精确控制试验条件,以获得准确的试验数据。
• 数据处理与误差分析:对试验数据进行处理时,需要考虑各种误差来源,如测 量误差、环境干扰等,并采取合适的误差分析方法,以提高数据的可靠性。
• 换算方法与公式:为了实现螺旋桨模型试验数据与实尺度性能的换算,可以采 用相似的换算公式或方法。这些方法通常基于相似理论和尺度效应的研究成果, 通过调整相关参数来实现换算。换算过程中需要注意单位统一和适用范围。
形状优化
通过参数化建模和CFD评 估,可以对螺旋桨的叶型、 弦长、扭角等参数进行优 化,以寻求最佳性能。
控制策略优化
考虑螺旋桨与飞行器的相 互作用,CFD可用于优化 控制策略,如变速、变距等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
T =f (D ,n s ,V , , , a,.......) 取 D ,V ,为 基 本 量 , 由 定 理 得
CT f ( ,Re, M a) 其中
CT=
T
n
2 s
D
4
V nsD
Re
V b 0.7
(
b

0 .7









7
0
%







)
Ma V a
Hale Waihona Puke 同 理 可 得 : CQ f ( ,Re, M a)
2 7 .8 2 7 .8 1200 * 4 nm *1
nm 4800r / m in




R em
V b 0.7
Res/ 4
0 .5 * 1 0 6
已 进 入 自 准 区 。 如 果 模 型 Re未 进 入 自 准 区 ,
适 当 调 整 实 验 风 速 , 兼 顾 M a和 Re。
13
3. 对于某一给定的安装角,在不同的实验风速(对应不 同的前进比)下,用天平测定模型螺旋桨的拉力及扭 矩。用下式计算出前进比、拉力系数、扭矩系数、功 率系数及螺旋桨效率。
2
实验目的
单独螺旋桨的气动特性实验是对于给定 的螺旋桨(螺旋桨的直径、桨叶剖面形 状(叶型)及其配置平面形状及实度等) 几何参数)测定气动参数,分析气动性 能。
3
相似参数
在螺旋桨的气动试验中,如果缩尺模型和全尺寸模型的绕流流场 能保证力学相似,则模型的气动力特性就能正确反映实物流场的 特性。保证流场力学相似首先必须以绕流物的几何相似及流动方 位角相同为前提。所以在螺旋桨试验中,必须保持模型和实物远 前方来流和螺旋桨转轴之间的夹角,以及桨叶上各对应截面的桨 叶角分别相同。除了这两个基本条件外,通过量纲分析就可以得 到一些启示来达到螺旋桨模型与实物的流场力学相似。 对形状一定的螺旋桨,其气动力特性(如拉力T、扭矩Q、功率P以 及效率 )主要取决于下列因素:直径D、转速ns、螺旋桨的前进速 度V、大气环境的空气密度 、空气粘性系数 。于是可以写出下 列表达式:
螺旋桨气动性能实验
王静静 杨茵 钟敏
1
螺旋桨简介及其研究背景
虽然航空推进技术早已进入喷气时代,但是在航空发展 史上起着重要作用并产生拉力的气动部件--螺旋桨并没有退 出这个领域。目前世界上多数支线飞机、通用航空飞机和我 国研制的几乎所有民用飞机,尤其是我国的多数无人机仍采 用螺旋桨作为拉力部件。螺旋桨 的 性能计算是螺旋桨设计和 应用中最重用的部分,而在进行新的螺旋桨的设计和性能测 定的时候,需要经过大量的实验来验证理论设计结果。初看 起来,螺旋桨的气动实验最好用全尺寸桨在实际飞行现场中 进行。这样就能直接测出真实飞行状态下的性能数据。但这 是不现实也是不必要的。且不说空中现场试验受到安全性、 经济性以及测试精度等的限制。往往还要求在全尺寸桨造出 前就预测其性能,当然亦就无法进行实物试验。目前国内外 绝大多数螺旋桨开发性研究都先用缩尺模型在风洞中进行, 既方便又经济。
拉力系数 扭矩系数 效率 参考文献 0.0329 0.0022 0.824
8
风洞: 实验准备模拟低速螺旋桨实验,选用西北 工业大学NF-3风洞螺旋桨实验段,横截面 为 正 八 角 形 , 对 边 距 离 2.2m , 实 验 段 长 4.8m , 实 验 最 大 风 速 145m/s , 湍 流 度 ≦0.08%
2. 稳速压控制系统与数据采集系统: 实验风速使用稳速压控制系统控制,该系统是在风洞直流调节装置双 闭环系统的基础上,增加一个速压闭环系统,并用PSI8400系统进行 实时校准。 数据采集系统使用美国PSI公司的PSI8400电子扫描阀,天平测力实验 使用模拟量通道。
17
3.气动力测力天平:
T=CTns2D4
Q=CQns2D5
以巡航状态为例 T 0.0329*1.25*(4800/ 60)2 *14 263.2N Q 0.0022*1.25*(4800/ 60)2 *15 17.6Nm 因此可选二分量天平,T,Q的量程分别为 300,20 但实际上应计算出各飞行状态下的T,Q, 找出最大值,根据最大值选择天平。
10
▼螺旋桨模型可由精制加压木材,镁、铝轻金属, 钢及复合材料等制作。材料的选择主要取决于模 型螺旋桨的转速ns、直径D及气流速压。低速风洞 :气流速压小,当ns和D小时,可选择木材;当ns 和D较大时,可选择镁、铝合金。本文螺旋桨模 型选用木材。
▼全尺寸螺旋桨是柔性的,缩尺模型不可能做成与 实物结构刚度相似,而是将其做成刚体,其型面 可按在飞机巡航状态的外载荷下全尺寸螺旋桨变 形后的外形来加工。
9
模型
▼单独螺旋桨实验,为了减少洞壁干扰,其直径一 般不大于风洞实验段当量直径的50%(在开口风 洞中模型可稍大一些)。螺旋桨模型的桨叶翼型 前后缘半径按统一的缩尺比例缩小后,通常尺寸 很小,无法加工,这时,允许适当放大。由于本 文选择西北工业大学NF-3风洞螺旋桨实验段,所 以最大直径不能大于1.1m,模型缩比≦1:4。
14
V n sD
CT
T n2D
4
CQ
Q n2D
5
CP
P n3D
5
2 Q n2D
5
2 C Q
TV CT
P CP
15
4. 改变螺旋桨桨叶安装角,按照相同的方法 测出不同实验风速下的拉力系数等气动参 数
16
实验设备
1. 驱动装置一般采用变频交流电机;螺旋桨的转速通常采用光栅电子计 数器计量。
11
实验步骤
1. 起飞,选定模拟飞行状态 2. 爬升,平飞,顺桨,自转等状态。
2. 确定实验风速
3.
根据运动相似和动力相似要求即模型实验和实
物螺旋桨飞行的前进比相等,算得各飞行状态下
的实验风速。
4.
如巡航状态下,有
12
如果完全模拟前进比和马赫数,
计算实验模型所需的转速
由 VS Vm 得 nsD S nmDm
5
• 由以上分析知:对几何形状相似,又安装角相同的 螺旋桨,其拉力系数和扭矩系数并不直接取决于 V、D、ns 、 、 等个别参数,它取决于 、Re 、M这些组合参数(严格来说,还有气流紊流度、 螺旋桨表面粗糙度等等)。通常这些组合参数就称 为相似参数。
6
前进比的物理解释
7
实验对象
选择实验模型,其直径为4m, 巡航时转速为1200r/m,来流 速度为27.8m/s,桨叶数3,发动机功率N=200ch(以马力计) 。 翼形:ARA-D 雷诺数2.0e6
相关文档
最新文档