翼型气动特性实验指导书2017版
低速机翼的气动特性实验指导书(学生实验报告)

2、记录不同迎角下各测压管读数(单位cm),计算各测压孔的静压与来流的静压差 ,从而计算出各测压点压强系数
表3实验数据表(来流风速 = 20m/s,迎角 4°)
i
Y(mm)
i
Y(mm)
1
3.75
8.25
0.025
0.055
13
3.75
-5.4
0.025
-0.036
2
7.5
18
45
-6.75
0.3
-0.045
7
60
24
0.4
0.16
19
60
-6.45
0.4
-0.043
8
75
22.2
0.5
0.148
20
75
-5.7
0.5
-0.038
9
90
19.35
0.6
0.129
21
90
-4.65
0.6
-0.031
10
105
15.75
0.7
0.105
22
105
-3.6
0.7
-0.024
5、调节机翼的迎角α,再次记录数据,直到各迎角下数据均记录完毕。
6、如果需要测定其它风速下的气动力数据,回到步骤4继续进行实验。
7、缓慢增大迎角,观看机翼失速时的压力分布的变化。
8、风洞停车。
9、实验完毕,整理实验数据,绘制 ~ , ~ 曲线,计算升力系数 ,压差阻力系数 。并绘制 ~α曲线, ~α曲线。
用图解法计算机翼上表面压力系数 曲线与 轴围成的面积减去机翼下表面压力系数 曲线与 轴围成的面积,两面积之差就是法向力系数 。而弦向力系数 的数值等于 曲线与 轴所围的面积减去 曲线与 轴所围的面积之差。
第七章 亚音速翼型和机翼的气动特性

§7.2小扰动线化理论
• 速度位方程线化 • 压强系数线化 • 边界条件线化
飞行器或部件的空气动力学问题,大都是远前方 直匀来流受到物体的扰动问题。为了适应高速飞 行,需要减少阻力,因此机翼的相对厚度和弯度 都比较小,而且巡航阶段迎角也不大。因此机翼 对流场的扰动,除个别地方以外,总的来说是不 大的,如图7-1所示,这种扰动称为小扰动。现采 用风轴系,轴与远前方未受扰动的直匀流一致, 这样前方来流只在方向有一个速度分量 。
升力是由压强分布的积分而得到的,而俯仰力矩 和升力只差一个 向的力臂;所以亚音速流中翼型 的升力系数 和俯仰力矩系数 ,等于不可压流的 相应值乘以
(7-32) (7-33)
由于线化理论范围内升力与翼型的厚度无关,且 高速飞机一般采用对称翼型( )的机翼,因此 其升力系数和俯仰力矩系数在亚音速时分别为: (7-34)
(7-45)
引入扰动速度位 (“'”号同样省略),上式 可写成:
(7-10)
对二维流动,(7-10)可写成 (7-11)
式中
对
的超音速流,(7-11)可改写为
(7-12)
式中 对亚音速流 , ,程(7-11)为椭 圆型的线性二阶偏微分方程;对超音速流 , 方程(7-12)为双曲型的线性二阶偏微 分方程。
7.2.2 压强系数的线化
第七章
亚音速翼型和机翼的气动特性
内容
§ 7.1 速度位方程 § 7.2 小扰动线化理论 § 7.3 亚音速流中薄翼型的气动特性 § 7.4 亚音速薄机翼的气动特性及 M 数对气 动特性的影响
(V ) 0
§7.1
速度位方程
对不可压位流,速度位满足拉普拉斯方程。一个具 体位流问题的解决,在数学上归结为求解给定边 界条件的拉普拉斯方程。 对定常、等熵可压位流,由于连续方程中包含密 度,速度位满足的方程不再是拉普拉斯方程了, 而是一个非线性的偏微分方程。 流动定常时,连续方程为
空气动力学实验报告

NACA0012翼型气动特性分析报告报告人:一、引言现在,无论是我国还是世界上其他国家,都把航天事业的发展放到了重要的位置,因此航天事业的发展可以说是非常的火热的,在这样的大背景下,我国更应该加大发展力度,要保持在世界上的先进,将就必须从航天领域的大学生抓起。
因此老师知道我们进行了这次NACA0012翼型气动特性的实验,从大处说是为了国家,从小处说也是为了我们莘莘学子,因此这次的实验是非常有意义的。
这份报告主要研究的是NACA0012翼型的气动特性,包括理论分析求出一份气动特性,实验又得出一份气动特性,并将这两者比较观察实验值和理论值之间是否有差异,差别有多大,并分析其中的原因,得出结论。
在具体进行之前首先要引入翼型的定义,翼型就是平行于机翼根部的剖面线剖切机翼得到的剖面。
而翼型的气动特性主要包括翼型表面压强分布,升力系数,力矩系数。
这份报告的主要目的是,1、通过翼型求流函数和验证翼型本身是一条流线。
2、通过理论分析求出翼型的气动特性。
3、通过实验数据求翼型的气动特性。
4、分析这其中的差距及其原因。
5、通过这次报告的写作,体验数据处理的具体过程。
二、实验过程:该实验是在风洞中,用20m/s的速度吹NACA0012翼型,在翼型上布置27个点,用管子将这27个点连接到排管上,通过排管中水柱的高度可得出各点处的压强分布。
变换不同的迎角(0 2 4 6 8 10 20),分别进行实验,记录排管中水柱的高度。
实验过程中的图片如下:本来这儿有四张实验过程的图片,但加入图片后是文件过大无法发送,所以将图片删除。
实验数据:hb=[3.8 4 3.8 3.78 3.8 4.05 3.82 3.88 3.85 3.9 3.85 3.8 3.95 3.8 3.82 3.95 3.85 3.9 3.8 3.85 3.85 3.8 3.8 3.87 3.89 3.81 3.9 3.85];静止时各点水柱高度。
h0=[4.2 4.58 7.32 7.68 7.7 7.78 7.6 7.3 7.4 7.3 7.1 6.95 6.726.7 6.52 6.6 6.8 6.81 6.85 6.927.22 7.42 7.5 7.61 7.657.52 7.5 6.48];有速度迎角为0时水柱高度(以下相同)。
翼型和机翼的气动特性(精)

3.2 定常理想可压流速位方程
在等熵流动中,密度只是压强的函数 ( p) , d p 1 p 2 是正压流体,故 ,同样有 x dp x a x
1 p 1 p 2 2 , z a z y a y
将欧拉方程中的压强导数通过音速代换成密度导数,代入 连续方程,即得只含速度和音速的方程:
况相比,无本质区别,只是在翼型上下流管收缩处,亚音速
可压流在竖向受到扰动的扩张,要比低速不可压流的流线为 大,即压缩性使翼型在竖向产生的扰动,要比低速不可压流
的为强,传播得更远。
上面现象可以用一维等熵流的理论来分析。取AA’和BB’
之间的流管,我们知道,有
dA 2 dV (1 M ) A V
u' v' w' 1, 1, 1, 忽略二阶小量,上式成为 V V V
f f 1, 1, x z
v' 面
f V x
EXIT
3.3 小扰动线化理论
由于物体的厚度、弯度很小,当迎角较小时有
v' 面 v' y 0
从而得到线化的物面边界条件
v' y 0
y x
2 式中, 2 1 M
0
由上述方程解出速度势后,可以计算翼型表面上的压 强系数分布,其他的气动特性如升力、力矩可通过积分求
得。
EXIT
3.4 亚声速可压流中薄翼型的气动特性
一、戈泰特法则
上面式中带上标′的参数代表的是不可压流场中的参数。
EXIT
3.4 亚声速可压流中薄翼型的气动特性
亚声速翼型绕流与相应的不可压低速翼型之间的几何
参数的关系为:
翼型气动特性实验指导书2017版

《空气动力学》课程实验指导书翼型压强分布测量与气动特性分析实验一、实验目的1 熟悉测定物体表面压强分布的方法,用多管压力计测出水柱高度,利用伯努利方程计算出翼型表面压强分布。
2 测定给定迎角下,翼型上的压强分布,并用坐标法绘出翼型的压强系数分布图。
3 采用积分法计算翼型升力系数,并绘制不同实验段速度下的升力曲线。
4 掌握实验段风速与电流频率的校核方法。
二、实验仪器和设备(1) 风洞:低速吸气式二元风洞。
实验段为矩形截面,高0.3米,宽0.3米。
实验风速20,30,40V ∞=/m s 。
实验段右侧壁面的静压孔可测量实验段气流静压p ∞,实验段气流的总压0p 为实验室的大气压a p 。
表2.1 来流速度与电流频率的对应(参考)表2.2 翼型测压点分布表上表面下表面(2) 实验模型:NACA0012翼型,弦长0.12米,展长0.09米,安装于风洞两侧壁间。
模型表面开测压孔,前缘孔编号为0,上下翼面的其它孔的编号从前到后,依次为1、2、3……。
(如表-2所示)(3) 多管压力计:压力计斜度90θ=,压力计标定系数 1.0K =。
压力计左端第一测压管通大气,为总压管,其液柱长度为I L ;左端第二测压管接风洞收缩段前的风洞入口侧壁静压孔,其液柱长度为IN L ;左端第三、四、五测压管接实验段右侧壁面的三个测压孔,取其液柱长度平均值为II L 。
其余测压管分成两组,分别与上下翼面测压孔一一对应连接,并有编号,其液柱长度为i L 。
这两组测压管间留一空管通大气,起分隔提示作用。
三、实验原理测定物体表面压强分布的意义如下:首先,根据表面压强分布,可以知道物体表面上各部分的载荷分布,这是强度设计的基本数据;其次,根据表面压强分布,可以了解气流绕过物体时的物理特性,如何判断激波,分离点位置等。
在某些风洞中(例如在二维风洞中,模型紧夹在两壁间,不便于装置天平),全靠压强分布来间接推算出作用在机翼上的升力或力矩。
测定压强分布的模型构造如下:在物体表面上各测点垂直钻一小孔,小孔底与埋置在模型内部的细金属管相通,小管的一端伸出物体外(见图1),然后再通过细橡皮管与多管压力计上各支管相接,各测压孔与多管压力计上各支管都编有号码,于是根据各支管内的液面升降高度,立刻就可判断出各测点的压强分布。
第7章 超音速翼型和机翼的气动特性(3)

∫
bn
0
dy 1 dxn + bn dxn f
2
∫
bn
0
dy dxn dxn c
2
无限斜置翼的波阻系数公式
根据上述超声速无限斜置翼气动特性公式计算的升力 线斜率随后掠角的变化和零升波阻系数随后掠角的变化理 论曲线见下图: 论曲线见下图:
无限斜置翼的波阻系数公式
无限斜置翼的压强系数和载荷系数公式
dy u dy (C p u ) n = ∓ α ± ( ) f ± ( l ) c l 2 dx dx cos χ Ma∞ cos 2 χ − 1 2
法向载荷系数为: 法向载荷系数为:
dy (∆C p ) n = (C pl − C pu ) n = α − ( dx ) f 2 2 cos χ Ma∞ cos χ − 1 4
bn = b cos χ
如果上述波阻系数公式中的表面导数保持为法 向导数不作代换, 向导数不作代换,则波阻系数公式还可表达为 : 4α 2 cos χ 4 I cos 3 χ C db = + 2 2 2 Ma∞ cos χ − 1 Ma∞ cos 2 χ − 1
其中 1 I= bn
∫
bn
0
dy 1 dxn + dx bn n f
2
无限斜置翼的波阻系数公式
(C d b ) n = 4 2 1 α n + 2 bn Ma∞n − 1
∫
bn
0
dy dx n
1 dx n + bn f
2
∫
bn
0
dy dx n
翼型气动特性及其设计优化

翼型气动特性及其设计优化翼型是航空、航天领域中最基本的构件之一,其气动特性的优化对于提高飞行能力,降低油耗,增加航程等方面有着重要的作用。
本文将从基本概念开始,通过对气动特性的分析和探讨,介绍如何进行翼型优化设计。
一、翼型基本概念翼型是指截面形状成翼形的构件,它在空气中运动时,会产生升力和阻力。
升力是垂直向上的力,阻力是沿着运动方向的力。
而翼型的特性包括以下几个方面:升力系数、阻力系数、升阻比、稳定性等。
其中,升力系数是表示翼型升力产生能力的指标,通常用Cl来表示。
阻力系数则是表示翼型阻力产生能力的指标,通常用Cd来表示。
升阻比是Cl/Cd,是一个衡量翼型效率的重要参数。
稳定性则是指翼型在空气中运动时的稳定性。
二、翼型气动特性分析翼型的气动特性是翼型优化设计的基础。
了解翼型的气动特性可以帮助设计人员更好地掌握其特点,并在设计时针对性地进行优化。
1. 升力系数分析升力系数Cl是翼型气动特性中最为重要的一个系数,它与翼型截面形状、攻角、雷诺数等因素密切相关。
翼型升力系数的大小与翼型的凸度、弯曲度、良好的分离、截面厚度等有关。
2. 阻力系数分析阻力系数Cd是指翼型运动时产生的阻力,它与翼型的截面形状、表面摩擦力、压力分布等有关。
在设计优化中,阻力系数的减小常常是设计的目标之一。
3. 升阻比分析升阻比是翼型在不同的条件下(攻角、雷诺数)所产生的升力系数与阻力系数之比。
好的翼型设计应该追求高升阻比,以提高飞行效率。
4. 稳定性分析稳定性是指翼型在运动过程中所表现出的稳定性能力,包括长期稳定性和短期稳定性。
翼型的稳定性与其几何特征、流场特性、攻角等因素密切相关。
三、翼型优化设计1. 翼型参数分析翼型优化设计需要对翼型的参数进行分析,例如凸度、弯曲度、良好的分离、截面厚度等参数。
在优化设计过程中应该根据设计需要和实际情况对这些参数进行调整。
2. 数值模拟分析数值模拟分析是翼型优化设计的重要方法之一。
通过CFD流体力学分析软件进行数值模拟分析,可以快速准确地评估翼型的气动特性,优化翼型设计方案。
飞机机翼的气动特性研究与优化设计

飞机机翼的气动特性研究与优化设计在航空工程领域,飞机机翼的气动特性研究与优化设计是一项重要的工作。
机翼的气动特性直接影响着飞机的飞行性能和安全性。
本文将对飞机机翼的气动特性进行研究,并提出优化设计方案,以期提高飞机的性能和安全性。
一、气动力学基础在开始研究飞机机翼的气动特性之前,我们首先需要了解一些气动力学基础知识。
气动力学是研究空气与物体运动相互作用的科学,而飞机机翼则是在飞行中扮演着至关重要的角色。
机翼产生升力和阻力是其最基本的气动特性。
升力使飞机能够克服重力并维持在空中飞行,而阻力则是抵抗飞机前进的力量。
除此之外,机翼的升阻比、失速特性、气动操纵特性等也是需要研究与优化的关键要素。
二、机翼气动特性研究方法为了研究飞机机翼的气动特性,科学家和工程师们采用了多种研究方法。
其中,数值模拟、风洞试验和实际飞行测试是最常见的方法。
1. 数值模拟数值模拟是通过计算机模拟飞机在各种飞行状态下与空气之间的相互作用,从而得出机翼的气动特性。
数值模拟方法可以节省时间和成本,并且可以对各种参数进行敏感性分析,提供了许多有价值的信息。
2. 风洞试验风洞试验是通过在实验室里建立一个人工流体环境,模拟飞机在真实空气中的飞行情况。
利用风洞试验可以获得具体的数据和图像,并验证数值模拟的准确性。
3. 实际飞行测试实际飞行测试是验证数值模拟和风洞试验结果的最终步骤。
通过在真实飞行中对机翼的气动特性进行观测和测量,可以对研究结果进行验证和修正。
三、飞机机翼气动特性的优化设计了解了机翼的气动特性研究方法后,我们可以开始讨论如何进行机翼的优化设计。
机翼的优化设计旨在减小阻力、提高升力,并尽量降低飞机的空气阻力。
1. 翼型设计翼型的选择对机翼的气动特性有着重要的影响。
不同的翼型具有不同的升阻比、失速速度和气动操纵特性。
通过翼型的优化设计,可以在提高升力的同时减小阻力,提高整体飞行性能。
2. 翼展与梢加载荷分布翼展和梢加载荷分布也是影响机翼气动特性的关键因素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《空气动力学》课程实验指导书
翼型压强分布测量与气动特性分析实验
一、实验目的
1 熟悉测定物体表面压强分布的方法,用多管压力计测出水柱高度,利用伯努利方程计算出翼型表面压强分布。
2 测定给定迎角下,翼型上的压强分布,并用坐标法绘出翼型的压强系数分布图。
3 采用积分法计算翼型升力系数,并绘制不同实验段速度下的升力曲线。
4 掌握实验段风速与电流频率的校核方法。
二、实验仪器和设备
(1) 风洞:低速吸气式二元风洞。
实验段为矩形截面,高0.3米,宽0.3米。
实验风速
20,30,40V ∞=/m s 。
实验段右侧壁面的静压孔可测量实验段气流静压p ∞,实验段气流的总压0p 为实验室的大气压a p 。
表2.1 来流速度与电流频率的对应(参考)
表2.2 翼型测压点分布表
上表面
下表面
(2) 实验模型:NACA0012翼型,弦长0.12米,展长0.09米,安装于风洞两侧壁间。
模
型表面开测压孔,前缘孔编号为0,上下翼面的其它孔的编号从前到后,依次为1、2、3 ……。
(如表-2所示)
(3) 多管压力计:压力计斜度90θ=,压力计标定系数 1.0K =。
压力计左端第一测压管
通大气,为总压管,其液柱长度为I L ;左端第二测压管接风洞收缩段前的风洞入口侧壁静压孔,其液柱长度为IN L ;左端第三、四、五测压管接实验段右侧壁面的三个测压孔,取其液柱长度平均值为II L 。
其余测压管分成两组,分别与上下翼面测压孔一一对应连接,并有编号,其液柱长度为i L 。
这两组测压管间留一空管通大气,起分隔提示作用。
三、实验原理
测定物体表面压强分布的意义如下:首先,根据表面压强分布,可以知道物体表面上各部分的载荷分布,这是强度设计的基本数据;其次,根据表面压强分布,可以了解气流绕过物体时的物理特性,如何判断激波,分离点位置等。
在某些风洞中(例如在二维风洞中,模型紧夹在两壁间,不便于装置天平),全靠压强分布来间接推算出作用在机翼上的升力或力矩。
测定压强分布的模型构造如下:在物体表面上各测点垂直钻一小孔,小孔底与埋置在模型内部的细金属管相通,小管的一端伸出物体外(见图1),然后再通过细橡皮管与多管压力计上各支管相接,各测压孔与多管压力计上各支管都编有号码,于是根据各支管内的液面升降高度,立刻就可判断出各测点的压强分布。
多管压力计的原理与普通压力计相同,都是基于连通器原理,只是把多个管子装在同一架子上而已,这样就可同时观察多点的压强分布情况,为了提高量度的准确性,排管架的倾斜度可任意改变。
图3.1 接多管压力计上各相应支管 图3.2 实验安装示意图
实验段风速固定、迎角不变时,根据连通器原理可知,翼面上第i 点的当地静压i p 与实验段的静压p ∞关系为:
sin sin i i II p K gL p K gL ρθρθ∞+=+液液
即
()s i
n ,(0,1,2,3i i I I
i p p p K g L L i ρθ∞∆=-=-=液 (1) 实验段的气流静压p ∞与大气压a p (即总压0p )关系为:
0sin sin II I p K gL p K gL ρθρθ∞+=+液液
根据伯努利方程,则实验段的气流动压为:
201
()sin 2
a II I q p p V K g L L ρρθ∞∞∞≡-=
=-液 (2) 同理,风洞入口段收缩管前的气流动压为:
2IN 0IN IN 1()sin 2
a IN I q p p V K g L L ρρθ≡-=
=-液 (3) a ρ、ρ液分别为空气密度和压力计工作液(水)密度。
于是,翼面上第i 点的压强系数为
i II i
i II I
p L L Cp q L L ∞∆-≡
=
- (4) 翼型在给定迎角下的升力由上下表面的压力差产生,升力系数的值即从翼型前缘到后缘对压力系数进行积分得到的:
(p p )[(p )(p )]c
c
l u l u L dx p p dx ∞∞=-=---⎰⎰
1
00
1*()()*c l pl pu pl pu L x C C C dx C C d q c c c ∞==-=-⎰⎰
其中,pl C 为翼型下表面的压力系数,pu C 为翼型上表面的压力系数,c 为翼型的平均气动弦长。
四、实验步骤
(1) 记录实验室的大气参数、压力计工作液(水))密度:
○
1气温:30a
t C =︒;
○
2海拔:m h 400=; ○
3工作液(水)密度:3
995.65/kg m ρ=液; ○4重力加速度g :29.79/g m s =; ○
5大气压强: 95920a p Pa =;
○
6翼型弦长:mm c 120=; (2) 将压力计座底调为水平,再调节液面高度使测压管液面与刻度“0”平齐,斜角90θ=。
(3) 将风洞壁面测压孔、翼面测压孔与多管压力计的测压管对接好,检查接头有无漏气。
(4) 将模型迎角调节到位并固定,风洞开车,由变频器进行风速调节,迎角控制机构进
行迎角调节。
实验中迎角为4
8-,增量为2°。
(5) 记录数据:在风速稳定和迎角不变时,读取并记录大气压管液柱高度I L 、风洞入口
处液柱高度IN L 、风洞实验段液柱高度II L 、翼型表面各测点的液柱高度i L 。
(6) 关闭风洞,整理实验场地,将记录交老师检查。
(7) 整理实验数据,写好实验报告。
五、实验要求
实验中注意观察,上下翼面的压强随迎角的变化,尤其是前缘点压强和上翼面后段的压强的变化。
六、实验报告要求
(1) 原始数据完整。
实验室的大气数据;压力计的系数;工作液数据;风速数据。
实验
段风速计算公式:
V ∞=
(m/s )
其中空气密度a ρ由下式计算:
287.053*(273.15)
a
a a p t ρ=
+ (kg/m 3)
(2) 根据记录的实验室数据、风洞实验段压力数据以及电机频率,进行实验段风速与电
机频率的校核,并与参考数据进行对比分析。
(3) 列表记录在不同迎角下的翼型表面压强系数数据,迎角为参数,用坐标法给出翼型
的压强系数分布图。
(4) 根据计算的压强系数分布,采用积分法计算翼型的升力系数,并绘出升力系数随攻
角变化的曲线
七、思考题
1. 如何根据压强分布,判断驻点的位置?
2. 如何根据压强分布,判断分离现象的发生?
3. 如何粗略地判断出零升角(升力为零的角度)?
4. 如何获得风洞入口处,即收缩段前的气流速度?
5. 如何估算风洞收缩段的面积收缩比?
6. 为何模型上,上表面前半部的测压孔较密?
八、实验结果
1、实验室实验参数
(见第四节:实验步骤)
2、实验段风速校核
(与参考数据做对比,并做误差原因分析)
3、翼型表面压力测量原始数据与压力分布曲线3.1原始数据
3.2 压力分布曲线
(不同流速,不同攻角下的表面压力系数分布)4、升力系数与曲线
4.1 升力系数(积分法)
4.2 升力系数曲线
(不同风速下,升力系数随攻角变化曲线)。