人教版七年级下册数学第二单元 算术平方根教案与教学反思

合集下载

平方根人教版数学七年级下册教案3篇

平方根人教版数学七年级下册教案3篇

平方根人教版数学七年级下册教案3篇平方根人教版数学七年级下册教案1 人教版七年级数学下册《10.1平方根》教学设计PPT课件导学案教案课题: 10.1 平方根〔1〕教学目的 1.理解算术平方根的概念,会用根号表示正数的算术平方根,并理解算术平方根的非负性;2.理解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根;3.通过对实际生活中问题的解决,让学生体验数学与生活实际是严密联络着的,通过探究活动培养动手才能和激发学生学习数学的兴趣。

教学难点根据算术平方根的概念正确求出非负数的算术平方根。

知识重点算术平方根的概念。

教学过程〔师生活动〕设计理念情境导入同学们,20xx年10月15日,这是我们每个中国人值得骄傲的日子.因为这一天,“神舟”五号飞船载人航天飞行获得圆满成功,实现了中华民族千年的飞天梦想〔多媒体同时出示“神舟”五号飞船升空时的画面〕.那么,你们知道宇宙飞船分开地球进人轨道正常运行的速度是在什么范围吗?这时它的速度要大于第一宇宙速度〔米/秒〕而小于第二宇宙速度:〔米/秒〕.、的大小满足 .怎样求、呢?这就要用到平方根的概念,也就是本章的主要学习内容.这节课我们先学习有关算术平方根的概念.请看下面的问题.“神舟”五号成功发射和平安着陆,标志着我国在攀登世界科技顶峰的征程上又迈出具有重大历史意义的一步,是我们伟大祖国的荣耀.此内容有感染力,使学生对本章知识的应用价值有一个感性认识,同时激发学生的好奇心和学习的兴趣.这里的计算实际上是幂和乘方的指数求底数的问题,是乘方的逆运算,学生以前没有见过,由此引出了本章所要研究的主要内容,以及研究这些内容的大体思路.提出问题感知新知多媒体展示教科书第160页的问题〔问题略〕,然后提出问题:你是怎样算出画框的边长等于5dm的呢?〔学生考虑并交流解法〕这个问题相当于在等式扩=25中求出正数x的值.练习:教科书第160页的填表.练习:教科书第160页的填表.这个问题抽象成数学问题就是正方形的面积求正方形的边长,这与学生以前学过的正方形的边长求它的面积的过程互逆,教学时可以让学生初步体会这种互逆的过程,为后面的学习做准备。

平方根人教版数学七年级下册教案

平方根人教版数学七年级下册教案

平方根一、教学目标1.知识与技能:理解平方根的概念,掌握平方根的性质,会求一个正数的平方根。

2.过程与方法:通过自主探究、合作交流,发展学生的推理能力和解决问题的能力。

3.情感态度与价值观:培养学生对数学的兴趣,增强学生学好数学的信心。

二、教学重难点1.重点:平方根的概念和性质。

2.难点:求一个正数的平方根。

三、教学过程1.导入新课师:同学们,我们已经学习了算术平方根,那么什么是平方根呢?今天我们就来学习平方根。

2.自主探究(1)写出下列各数的平方根:1,4,9,16。

(2)观察上面的结果,你发现了什么规律?生1:我发现,一个正数有两个平方根,它们互为相反数。

生2:我还发现,0的平方根是0,而负数没有平方根。

3.例题讲解例1:求下列各数的平方根:(1)49(2)0.01(3)0.25师:请同学们先独立思考,然后和同桌交流一下。

生1:对于(1)49,我们可以直接写出它的平方根为±7。

生2:对于(2)0.01,我们可以先求出它的算术平方根,再写出它的平方根为±0.1。

生3:对于(3)0.25,我们同样可以先求出它的算术平方根,再写出它的平方根为±0.5。

生1:一个正数有两个平方根,它们互为相反数。

生2:0的平方根是0。

生3:负数没有平方根。

5.练习巩固师:请同学们完成下面的练习题,巩固平方根的知识。

(1)求下列各数的平方根:①64②0.04③1(2)判断题:①9的平方根是3。

()②0的平方根是0。

()③负数有平方根。

()6.课堂小结师:今天我们学习了平方根,大家掌握得怎么样?请同学们分享一下自己的收获。

生1:我学会了平方根的概念和性质。

生2:我会求一个正数的平方根了。

生3:我对平方根有了更深的理解。

7.作业布置(1)教材P20习题1、2。

(2)预习下一节内容:立方根。

四、课后反思重难点补充:1.重点:平方根的概念和性质师:同学们,我们之前学过平方,比如2的平方是4,那么你们能告诉我,哪个数的平方是4吗?生:2的平方是4。

七年级数学下《平方根》教案

七年级数学下《平方根》教案

七年级数学下《平方根》教案一、教学目标1.知识与技能:学生能够理解平方根的概念,掌握平方根的基本性质,能够进行简单的平方根运算。

2.过程与方法:通过观察、思考和探究,培养学生的数学思维能力和解决问题的能力。

3.情感态度与价值观:激发学生对数学的好奇心和探究欲,培养他们认真思考、勇于探索的精神。

二、教学内容与过程1.导入:通过回顾正方形的面积,引出平方根的概念。

教师可提出一些问题,如:“如果一个正方形的面积为8平方米,那么它的边长是多少?”引导学生思考并引出平方根的概念。

2.知识讲解:详细讲解平方根的定义、性质和运算方法。

通过实例进行解释,帮助学生深入理解平方根的概念。

同时,强调平方根与算术平方根的区别与联系。

3.探究活动:设计探究活动,让学生自己动手操作,探索平方根的基本性质和运算方法。

探究活动可以包括求一些数的平方根、比较不同数的平方根的大小等。

4.应用实践:设计实际问题,让学生运用所学知识解决,如求一些实际问题中的平方根等。

同时,可以引导学生探索平方根在实际生活中的应用。

5.总结与提升:总结平方根的主要知识点,强调重点和难点。

通过综合性题目,提升学生运用知识解决实际问题的能力。

同时,可以引导学生思考平方根与其他数学知识的联系,为后续学习打下基础。

三、教学方法与手段1.教学方法:采用启发式、探究式和合作学习的方法,引导学生主动探索和思考。

同时,注重实例教学,通过实例帮助学生理解抽象的数学概念。

2.教学手段:利用实物模型、PPT演示、数学软件等辅助教学工具,帮助学生更好地理解平方根的概念和性质。

同时,鼓励学生动手操作,培养他们的实践能力。

四、教学评价与反馈1.课堂互动:通过课堂提问、小组讨论等方式,及时了解学生的学习情况,调整教学策略。

同时,鼓励学生积极参与课堂活动,发表自己的观点和见解。

2.作业评价:布置相关练习题,要求学生按时完成,并进行批改和反馈。

同时,关注学生的作业完成情况,对有困难的学生进行个别辅导。

人教版七年级下册数学第二单元 算术平方根教案与教学反思

人教版七年级下册数学第二单元 算术平方根教案与教学反思

第六章实数6.1平方根第1课时算术平方根【知识与技能】1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性.2.了解开方与乘方互为逆运算,会用平方运算或计算器求某些非负数的算术平方根.【过程与方法】通过学习算术平方根,建立初步的数感和符号感,发展抽象思维.【情感态度】通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的,通过探究活动培养动手能力和学习兴趣.【教学重点】理解算术平方根的概念.【教学难点】根据算术平方根的概念正确求出非负数的算术平方根.一、情境导入,初步认识教师出示下列问题1,并引导学生分析.问题1由学生直接给出结果.问题1 求出下列各数的平方.1,0,(-1),-1/3,3,1/2.问题2下列各数分别是某实数的平方,请求出某实数.25,0,4,4/25,1/144,-1/4,1.69.对学生进行提问,针对学生可能会得出的一个值,由学生互相交流指正,再由教师指明正确的考虑方式.由于52=25,(-5)2=25,故平方为25的数为5或-5.02=0,故平方为0的数为0.22=4,(-2) =4,故平方为4的数为2或-2.问题3 学校要举行美术比赛,小壮想裁一块面积为25dm2的正方形画布画一幅画,这块画布的边长应取多少?分析:本题实质是要求一个平方后得25的数,由上面的讨论可知这个数为±5,但考虑正方形的边长不能为负数,所以正方形边长应取5dm.二、思考探究,获取新知教师归纳出新定义:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,记作a,读作“根号a”,a叫作被开方数.规定:0的算术平方根是0.例1求下列各数的算术平方根.分析:正数的算术平方根是正数,零的算术平方根是零,负数没有算术平方根.【教学说明】(1)算术平方根是非负数,要注意不要弄错算术平方根的符号.如:不要把23-)(=3写成23-)(=-3;(2)要审清题意,不要被表面现象迷惑.如求81的算术平方根,错误地理解为求81的算术平方根错误!未找到引用源。

人教版七年级数学下册算术平方根教学设计

人教版七年级数学下册算术平方根教学设计

《算术平方根》教学设计一、教学目标知识技能了解算术平方根的概念,会用根号表示一个数的算术平方根.数学思考经历从实例中探索、归纳算术平方根概念的形成过程,体会开方与乘方互为逆运算。

解决问题初步学会从数学的角度发现问题和提出问题,会用平方运算求某些非负数的算术平方根.情感态度让学生在游戏闯关的过程中体会学习数学的乐趣,在讨论交流的过程中找到探索数学的成就感,从而树立学好数学的信心。

二、创设情境,游戏导课师:同学们喜欢打网上小游戏吗?喜欢这个游戏吗?(教师大屏幕展示游戏)生:合着音乐节拍,兴趣盎然的高声回答“喜欢”。

师:这个游戏是改版的,怎么打?生1:不知道生2:选择9吧?更多同学陷入了沉思。

(目的:利用游戏,激发学生的兴趣;设置悬念,激起学生强烈的好奇心、求知欲。

)目的达成。

师:深入探究本节课的知识,你就能拿到游戏的攻关秘诀。

52二、探究(沉着冷静耐心填,其中奥妙我发现)师:请同学们在学案上完成自主探究。

1.如图1,如果编排一支横纵人数相等的正方形队伍需要100人,每排应该站多少人?(说出你的算法)2.如图2,学校要举行美术作品比赛,小欧很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,试着算出画布的边长应取多少?(说出你的算法)生:第1题是10人,第2题是5分米。

师:说的非常正确!谁能告诉我,你是怎么算的?生:因为102=100,所以每排应站10人。

因为52=25,所以画布的边长应取5分米。

师:思路真清晰!继续填写下表。

3.填表生:边长依次是1,3,4,6, 。

设计意图:从现实生活中提出数学问题,使学生积极主动地投入到数学活动中去,并为学习算术平方根提供背景和生活素材.其中方队问题对学生渗透了爱国主义教育。

同时在求正方形边长的活动中,从学生已有求一个数平方的经验出发,建立新旧知识之间的联系,为引入算术平方根这种新运算作好铺垫。

师:观察以上三个问题实际上都是已知 ,求的问题。

《算术平方根》教学设计与教学反思

《算术平方根》教学设计与教学反思

13.1 算术平方根【教学目标】知识与技能:正确理解算术平方根的概念,并会求一个数的算术平方根。

过程与方法:通过实例引出,启发、归纳。

情感与态度:使学生认识数学与人类生活的密切联系。

【教学重点】算术平方根概念的理解。

【教学难点】算术平方根的应用。

【教学用具】小黑板。

【教学过程】一、通过阅读引言,使学生了解本章要学的内容(学生读,其他学生边看边听,老师加以说明)。

二、创设情境,引出问题:1、让学生写出1〜15的平方(学生一个一个上黑板写)。

2、学生打开课本到P68思考及问题。

然后填表:(学生上黑板去填,目的是让学生熟悉平方数有平方)三、新知探究:(从上面的表格中引出算术平方根概念,如-叫做9的算术2 4平方根。

学生试着归纳,老师修正)。

1、算术平方根的概念:如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根。

即:如果x2= a,那么x叫做a的算术平方根。

2、表示:x二ja,读作:“根号a”,a叫做被开方数。

3、规定:0的算术平方根是0.4、范例讲解:例1、求下列各数的算术平方根:⑴ 100;⑵ 49;⑶ 0.01;⑷ 0.0001; ⑸ 0.64解:⑴•/ 10 2= 100,••• 100的算术平方根是10,即:.100 = 10.⑵〜⑸由学生完成,老师讲评纠正。

四、课堂小结:让学生讨论自己对算术平方根的理解(班上交流)。

五、布置作业:课本P75第1题:(1)~⑷.【板书设计】教学反思】本节课从引言涉及卫星运行的第一宇宙速度和第宇宙速度引出,激发学生的兴趣。

然后让学生读、了解本章要学的内容——平方根与算术平方根;让学生写出1〜15的平方数有两个目的:一个是15个人上去写,调动其积极性,但比较浪费时间;另一个是让学生记住这些数,以后做题常用。

从上课看效果还可以。

本节课是尝试着和学生共同归纳算术平方根的概念,虽然有些不成熟,但效果比直接给出学生理解的好,给后面的学习打下了基础。

总体上来说,有点前松后紧,学生练习时间较少,课堂教学效果基本达到预期的目的。

2.2平方根-平方根、算术平方根(教案)

2.2平方根-平方根、算术平方根(教案)
2.提升学生的逻辑推理能力:在教学过程中,引导学生通过平方根的性质推导出相关结论,培养他们的逻辑推理能力。
3.增强学生的数学建模和数学应用意识:将平方根和算术平方根与现实生活中的问题相结合,让学生在实际情境中运用所学知识解决问题,提高数学建模和数学应用能力。
这些核心素养目标将有助于学生更好地理解和掌握平方根与算术平方根的概念,为后续数学学习打下坚实基础。
-算术平方根的单一性:学生可能会混淆算术平方根和平方根的概念,认为每个正数有两个算术平方根。
-负数没有平方根:学生需要理解为什么负数没有平方根,这涉及到实数范围的拓展。
-实际问题的应用:将平方根和算术平方根应用于实际问题,如何从问题中抽象出数学模型,是学生可能遇到的难点。
举例:针对平方根的双重性,可以让学生通过具体的例子(如4的平方根是2和-2)进行操作和讨论,以加深理解。对于算术平方根的单一性,可以通过强调“非负”一词来帮助学生区分。至于负数没有平方根,可以通过图像(如抛物线y=x²)来展示,说明在实数范围内没有平方后得到负数的点。在实际问题应用方面,可以设计一些与生活相关的题目,如计算正方形边长,让学生学会将实际问题转化为数学模型。
三、教学难点与重点
1.教学重点
-平方根的定义:平方根是解决乘法问题的逆运算,是本节课的核心内容。学生需要理解平方根表示的意义,掌握求一个数的平方根的方法。
-算术平方根的定义:算术平方根是平方根的特殊情况,学生需要明确算术平方根的概念,学会计算一个正数的算术平方根。
-平方根和算术平方根的性质:包括正数的平方根有两个,互为相反数;0的平方根是0;负数没有平方根;正数的算术平方根只有一个,为非负数等。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《平方根-平方根、算术平方根》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要求解一个数的平方根的情况?”(如求解一个正方形场地的面积)。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平方根的奥秘。

七年级《平方根》数学教学反思(优秀范文五篇)

七年级《平方根》数学教学反思(优秀范文五篇)

七年级《平方根》数学教学反思(优秀范文五篇)第一篇:七年级《平方根》数学教学反思平方根这一节是数的开方的第一课时,主要是一节以概念为主的新授课。

求平方根与开平方是互逆运算,因此在本课的教学中,我充分利用这一点来引人新课的教学。

教学的实践中难免会有一些错漏,为了弥补教学中的许多不足,数学网特地收集了相关的七年级《平方根》数学教学反思,仅供大家参考学习。

教学过程设计1.设置情景引入平方根概念的引入,由实际问题引入(一个正方形的面积为16,它的边长为多少?面积为9时?4时?边长分别为多少呢?),到提出问题(面积为a的正方形,边长是多少呢?),再到解决问题(若设正方形的边长为x,则符合题意的方程为),最后归纳出问题的实质(要找一个正数,使这个数的平方等于a)。

本环节通过学生动脑,动口,充分调动了学生学习的积极性,同时也激发了学生的求知欲望。

2.通过复习过渡首先由学生回答3道计算平方的算式,然后由学生通过观察,并结合互逆运算的知识,启发学生找出等式两边存在的联系,最后我在学生总结的基础上,进行点播:等号右边的数叫做等号左边各数的平方数;反过来,等号左边各数就叫做等号右边各数的平方根。

这样做,有利于使学生意识到本章的学习将是前面所学知识的一个再发展的过程,并激发学生饱满的学习热情,引导他们以积极的态度和旺盛的精力主动探索,并且在思考中感受思维的美,在探索解决问题中体验快乐,从而获得最佳效益。

3.引导概念的符号表示通过学生动脑,动口对平方根概念进行正说与逆说(如:9的平方根是,反过来是9的平方根),加深对平方根概念的初步理解;然后在上面叙述的基础上提出平方根概念的符号表示方法后,再次利用学生所举的上列等式,提出问题:请你用符号语言来表示等式右边各数的平方根,并计算出结果。

本环节,学生对平方根概念的理解经历了由文字语言到符号语言的转化,由直观到抽象的转化,通过学生正反两面多次的叙述,达到了由量变到质变的过程,使符号感的建立水到渠成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章实数
上信中学陈道锋
6.1平方根
第1课时算术平方根
【知识与技能】
1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性.
2.了解开方与乘方互为逆运算,会用平方运算或计算器求某些非负数的算术平方根.
【过程与方法】
通过学习算术平方根,建立初步的数感和符号感,发展抽象思维.
【情感态度】
通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的,通过探究活动培养动手能力和学习兴趣.
【教学重点】
理解算术平方根的概念.
【教学难点】
根据算术平方根的概念正确求出非负数的算术平方根.
一、情境导入,初步认识
教师出示下列问题1,并引导学生分析.问题1由学生直接给出结果.
问题1 求出下列各数的平方.
1,0,(-1),-1/3,3,1/2.
问题2下列各数分别是某实数的平方,请求出某实数.
25,0,4,4/25,1/144,-1/4,1.69.
对学生进行提问,针对学生可能会得出的一个值,由学生互相交流指正,再由教师指明正确的考虑方式.
由于52=25,(-5)2=25,故平方为25的数为5或-5.
02=0,故平方为0的数为0.
22=4,(-2) =4,故平方为4的数为2或-2.
问题3 学校要举行美术比赛,小壮想裁一块面积为25dm2的正方形画布画一幅画,这块画布的边长应取多少?
分析:本题实质是要求一个平方后得25的数,由上面的讨论可知这个数为±5,但考虑正方形的边长不能为负数,所以正方形边长应取5dm.
二、思考探究,获取新知
教师归纳出新定义:
一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,记作a,读作“根号a”,a叫作被开方数.
规定:0的算术平方根是0.
例1求下列各数的算术平方根.
分析:正数的算术平方根是正数,零的算术平方根是零,负数没有算术平方根.
【教学说明】(1)算术平方根是非负数,要注意不要弄错算术平方根的符号.
如:不要把23-)(=3写成23-)
(=-3;(2)要审清题意,不要被表面现象迷惑.如求81的算术平方根,错误地理解为求81的算术方根81.
探究:当a 为负数时,a2有没有算术平方根?其算术平方根与a 有什么关系?举例说明所得结论.
【教学指导】当a 为负数时,a2为正数,故a2有算术平方根,如a=-5
时,a2=(-5)2=25,252 a =5,5是-5的相反数,故a<0时,a2的算术平方根与a 互为相反数,表示为-a.
当a2为正数时,a 的算术平方根表示为2a ,其值为a,即2a =a.当a=0时, 2a =0.
【教学说明】应用上述结论解题时,可如例题的解答写出过程,熟练后再直接写出结果.对2a 结果的讨论,可以检验学生是否真正理解了算术平方根的含义.学生中出现的问题,可由学生间交流讨论.
教师向学生介绍用计算器求算术平方根的方法,并由学生实际运用,体会方法.
三、运用知,深化理解
【教学说明】学生自主探究,教师巡视,了解学生对本节课知识的掌握情况,及时予以指导,帮助学巩固新知.
【答案】1.A 2.A 3.D
四、师生互动,课堂小结
1.读一读本节课学习的主要内容,说出平方根与平方的关系.
2.算术平方根的意义是什么样的?
3.怎样求一个正数的算术平方根?
【教学说明】小组间学生互相交流并总结.
1.布置业:从教材“习题6.”中选取.
2.完成练习册中本课时的练习.
本课时采用观察、思考、讨论等探究活动归纳得出相应结论,使学生感受到算术平方根的概念与以前学过的求一个数的平方之间的联系.教学时应注意让学生通过探究活动经历一个由特殊到一般的认识过程,从而更好地接受新知识.
【素材积累】
1、不求与人相比,但求超越自己,要哭旧哭出激动的泪水,要笑旧笑出成长的性格。

倘若想达成目标,便得摘心中描绘出目标达成后的景象;那么,梦想必会成真。

求人不如求己;贫穷志不移;吃得苦中苦;方为人上人;失意不灰心;得意莫忘形。

桂冠上的飘带,不是用天才纤维捻制而成的,而是用痛苦,磨难的丝缕纺织出来的。

你的脸是为了呈现上帝赐给人类最贵重的礼物——微笑,一定要成为你工作醉大的资产。

2、不求与人相比,但求超越自己,要哭旧哭出激动的泪水,要笑旧笑出成长的性格。

倘若你想达成目标,便得摘心中描绘出目标达成后的景象;那么,梦想必会成真。

求人不如求己;贫穷志不移;吃得苦中苦;方为人上人;失意不灰心;得意莫忘形。

桂冠上的飘带,不是用天才纤维捻制而成的,而是用痛苦,磨难的丝缕纺织出来的。

你的脸是为了呈现上帝赐给人类最贵重的礼物——微笑,一定要成为你工作醉大的资产。

相关文档
最新文档