第10章图形的相似
初中数学华东师大九年级上册第章图形的相似-相似三角形

AB AC
过点E作EF∥AB,交BC于F,
则四边形BFED是平行四边形 ∴DE=BF.又∵。EF∥AB,
∴ BF AE BC AC
DE AE BC AC
AD AE DE
∴
∴
AB AC BC
F
△ADE∽△ABC
相似三角形判定预备定理:
平行于三角形一边的直线和其他两边( 或两边的延长线)相交,所构成的三角形与 原三角形相似。
1、若ABC∽ A ' B 'C ',相似比为k (k1),则k的值应是( )
(A)A: A' (B)BC : B ' C ' (C) A ' : A (D)A ' B ' : AB
2、若两个相似三角形的相似比为1,则这两个三角形必________.
3、已知ABC∽ A ' B ' C ',如果A=55° , B=100°,则
课后作业:
天府数学课外分层训练册P129-130
B
C B'
C'
则ABC ____ A'B'C'
∽
2、如图,DE∥BC,
且 AD AE则DAEDE___ABC。∽ AB AC BC
A
D
E
B
C
想 一想
如果ABC∽DEF,对应角有什么关系 ?对应边呢?
相似三角形性质:对应角相等,对应边 成比例。
由上面 结论完成下列各题:
1、若 ABC∽DEF, 则A=____,
三角形呢?为什么?
小试牛刀
2、如图,DE∥BC,
且 AD AE则 DAEDE___ABC。 AB AC BC
常见的相似图形

《相似图形》这一章节是初二数学乃至整个初中数学课程中较为重要的章节,同时也是较难学的章节之一。
不少同学在学习相似三角形时感到吃力,看着复杂的图形不知道哪几对三角形相似,对于证明两个三角形相似也无从下手。
这就需要同学们熟练掌握相似三角形基本图形及变型,建立图感,就能在复杂的图形中迅速识别相似的三角形,从而准确、快速地解决相关问题。
首先,让我们来认识一下相似三角形的四种基本图形。
一、A型如图1,D、E分别是△ABC边AB、AC上的点,DE∥BC,由判定定理一,得出△ABC∽△ADE。
【提示】这种基本图形很像英文字母A,因此我们将它称为A型。
同学们应该注意观察图中的已知条件并加以应用,比如公共角。
二、反A共角型1、如图2,这种图形是A型的变型。
若DE与BC不平行,△ABC与△ADE能否相似?我们可以移动成段DE,使∠AED=∠B,由相似三角形的判定定理得△ABC∽△ADE【提示】B、C的对应点由D、E变成E、D,因而对应角和对应线段也发生了相应的变化,这种图形形象地称为反A共角型。
2、变型Ⅰ继续移动成段DE,使E点与C点重合,并保持∠AED=∠B,如图3所示,得△ABC∽△ACD,从而有=,即AC2=AD·AB(比例中项概念)3、变型Ⅱ当AC⊥BC,CD⊥AB时,变成图4,对应点没变,上述结论仍成立,就得出射影定理这个重要定理。
△ABC∽△ACD∽△CBD由△ACD∽△CBD,对应边成比例得出:CD2=AD·DBAC2=AD·ABBC2=BD·AB【提示】图3、图4这两种基本图形形象地称为反A共角共变型。
三、X型如图5,D、E分别是△ABC的边BA、CA延长线上的点,DE∥BC,△ADE∽△ABC这种基本图形形象地称为X型。
四、蝶型如图6,DE不平行AB,当∠B=∠E时,△ABC∽△DEC,这种图形形象地称为蝶型。
认识完了基本图形,现在来学习学习如何利用基本图形建立图感。
图形的相似章末重难点题型(举一反三)(原卷版)

【考点1 比例线段】【方法点拨】对于四条线段a、b、c、d,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,如 a:b=c:d(即ad=bc),这四条线段是成比例线段,简称比例线段.【例1】(秋•朝阳区校级月考)下面四组线段中,成比例的是()A.a=2,b=3,c=4,d=5B.a=1,b=2,c=2,d=4C.a=4,b=6,c=5 d=10D.a=√2,b=√3,c=3,d=√2【变式1-1】(•成都模拟)已知a,b,c,d是成比例线段,其中a=3cm,b=2cm,c=6cm,则d的长度为()A.4cm B.5cm C.6cm D.9cm【变式1-2】(•龙岗区校级模拟)若a是2,4,6的第四比例项,则a=;若x是4和16的比例中项,则x=.【变式1-3】(秋•皇姑区期末)已知四条线段a ,3,a +1,4是成比例线段,则a 的值为 . 【考点2 黄金分割】【方法点拨】黄金分割:把线段AB 分成两条线段AC 和BC (AC >BC ),且使AC 是AB 和BC 的比例中项(即AB :AC =AC :BC ),叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点.其中AC =√5−12AB≈0.618AB ,并且线段AB 的黄金分割点有两个.【例2】(•福建模拟)在线段AB 上,点C 把线段AB 分成两条线段AC 和BC ,如果ACAB=BC AC,那么点C 叫做线段AB 的黄金分割点.若点P 是线段MN 的黄金分割点,当MN =1时,PM 的长是 . 【变式2-1】(秋•静安区期中)如果点C 是线段AB 的黄金分割点,那么下列线段比的值不可能是√5−12的为( ) A .AC BCB .BC ACC .BCABD .AB BC【变式2-2】(春•相城区期末)如图,已知点E 是正方形ABCD 的边AB 边上的黄金分割点,且AE >EB ,若S 1表示AE 为边长的正方形面积,S 2表示以BC 为长,BE 为宽的矩形面积,S 3表示正方形ABCD 除去S 1和S 2剩余的面积,则S 3:S 2的值为( )A .√5−12B .√5+12C .3−√52D .3+√52【变式2-3】(•泸州)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G 将一线段MN 分为两线段MG ,GN ,使得其中较长的一段MG 是全长MN 与较短的一段GN 的比例中项,即满足MG MN=GN MG=√5−12,后人把√5−12这个数称为“黄金分割”数,把点G 称为线段MN 的“黄金分割”点.如图,在△ABC 中,已知AB =AC =3,BC =4,若D ,E 是边BC 的两个“黄金分割”点,则△ADE 的面积为( )A .10﹣4√5B .3√5−5C .5−2√52D .20﹣8√5【考点3 比例的基本性质】【方法点拨】解决此类问题通常利用设k 法即可有效解决,注意方程思想以及分类讨论思想的灵活运用. 【例3】(•徐汇区一模)已知:a :b :c =2:3:5 (1)求代数式3a−b+c 2a+3b−c的值; (2)如果3a ﹣b +c =24,求a ,b ,c 的值.【变式3-1】(秋•永登县期末)已知a 、b 、c 是△ABC 的三边,且满足a+43=b+32=c+84,且a +b +c =12,请你探索△ABC 的形状.【变式3-2】(秋•碑林区校级月考)已知2a b+c+d=2b a+c+d=2c a+b+d=2d a+b+c=k ,求k 值.【变式3-3】(秋•雁江区校级月考)已知a 、b 、c 均为非零的实数,且满足a+b−c c=a−b+c b=−a+b+ca,求(a+b)(b+c)(c+a)abc的值.【考点4 平行线分线段成比例】【方法点拨】平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.【例4】(•下城区二模)如图,直线l 1∥l 2∥l 3,AC 分别交l 1,l 2,l 3于点A ,B ,C ;DF 分别交l 1,l 2,l 3于点D ,E ,F ;AC 与DF 交于点O .已知DE =3,EF =6,AB =4. (1)求AC 的长;(2)若BE :CF =1:3,求OB :AB .【变式4-1】(•亳州模拟)如图,已知AB ∥CD ∥EF ,它们依次交直线l 1、l 2于点A 、D 、F 和点B 、C 、E ,如果AD :DF =3:1,BE =10,那么CE 等于( )A .103B .203C .52D .152【变式4-2】(•哈尔滨模拟)如图,在△ABC 中,AD ∥BC ,点E 在AB 边上,EF ∥BC ,交AC 边于点F ,DE 交AC 边于点G ,则下列结论中错误的是( )A .AE BE=AF CFB .AG GF=DG EGC .AG GF=AE EBD .AEAB=AF AC【变式4-3】(秋•平房区期末)已知,在△ABC 中,点D 为AB 上一点,过点D 作DE ∥BC ,DH ∥AC 分别交AC 、BC 于点E 、H ,点F 是BC 延长线上一点,连接FD 交AC 于点G ,则下列结论中错误的是( )A .AD DB=AE DHB .CFDE=DH CGC .FD FG=EC CGD .CH BC=AE AC【考点5 相似三角形的判定】【方法点拨】相似三角形的判定方法汇总:1、定义法:三个对应角相等,三条对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角 形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似【例5】(秋•瑞安市期末)如图,下面图形及各个选项均是由边长为1的小方格组成的网格,三角形的顶点均在小方格的顶点上,下列四个选项中哪一个阴影部分的三角形与已知△ABC相似()A.B.C.D.【变式5-1】(•农安县一模)在△ABC中,∠ACB=90°,用直尺和圆规在AB上确定点D,使△ACD∽△CBD,根据作图痕迹判断,正确的是()A.B.C.D.【变式5-2】(秋•顺义区期末)如图,在正方形网格上有5个三角形(三角形的顶点均在格点上):①△ABC,②△ADE,③△AEF,④△AFH,⑤△AHG,在②至⑤中,与①相似的三角形是()A.②④B.②⑤C.③④D.④⑤【变式5-3】(秋•灌云县期末)如图,点A、B、C、D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C 、D 、E 为顶点的三角形与△ABC 相似,则点E 的坐标不可能是( )A .(4,2)B .(6,0)C .(6,3)D .(6,5)【考点6 相似三角形的性质(周长)】【方法点拨】掌握相似三角形周长比等于对应边的比是解题关键.【例6】(•利辛县模拟)如图,在△ABC 中,AD 平分∠BAC 交BC 于点D ,点E 在AD 上,如果∠ABE =∠C ,AE =2ED ,那么△ABE 与△ADC 的周长比为( )A .1:2B .2:3C .1:4D .4:9【变式6-1】(•海南)如图,在▱ABCD 中,AB =10,AD =15,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE 于点G ,若BG =8,则△CEF 的周长为( )A .16B .17C .24D .25【变式6-2】(•潍坊)如图,点E 是▱ABCD 的边AD 上的一点,且DE AE=12,连接BE 并延长交CD 的延长线于点F ,若DE =3,DF =4,则▱ABCD 的周长为( )A .21B .28C .34D .42【变式6-3】(•平顶山一模)如图,已知平行四边形ABCD ,点E 在DC 上,DE :EC =2:1,连接AE 交BD 于点F ,则△DEF 与△BAF 的周长之比为( )A .4:9B .1:3C .1:2D .2:3【考点7 相似三角形的性质(面积)】【方法点拨】掌握相似三角形面积比是对应边比的平方的性质是解题关键.【例7】(秋•商河县期末)如图,在△ABC 中,DE ∥BC ,BE 和CD 相交于点F ,且S △EFC =3S △EFD ,则S△ADE:S △ABC 的值为( )A .1:3B .1:8C .1:9D .1:4【变式7-1】(•海珠区一模)如图,在平行四边形ABCD 中,点E 在DA 的延长线上,且AE =13AD ,连接CE 交BD 于点F ,交AB 于点G ,则S △BGC :S 四边形ADCG 的值是( )A .35B .53C .57D .34【变式7-2】(•松桃县模拟)如图,D 、E 分别是△ABC 的边AB 、BC 上的点,且DE ∥AC ,AE 、CD 相交于点O ,若S △DOE :S △COA =1:25,则S △DOE 与S △COE 的比是( )A .1:25B .1:5C .1:4D .1:3【变式7-3】(秋•汝阳县期末)已知如图,DE 是△ABC 的中位线,点P 是DE 的中点,CP 的延长线交AB于点Q,那么S△CPE:S△ABC=.【考点8 相似基本模型(A字型)】【方法点拨】基础模型:A字型(平行)反A字型(不平行)【例8】(•松江区一模)已知:如图,点D,F在△ABC边AC上,点E在边BC上,且DE∥AB,CD2=CF•CA.(1)求证:EF∥BD;(2)如果AC•CF=BC•CE,求证:BD2=DE•BA.【变式8-1】(秋•青羊区校级月考)如图:AD∥EG∥BC,EG交DB于点F,已知AD=6,BC=8,AE=6,EF =2.(1)求EB 的长; (2)求FG 的长.【变式8-2】(•东明县模拟)如图所示,在△ABC 中,DE ∥BC ,AD =5,BD =10,AE =3. (1)求CE 的长.(2)在△ABC 中,点D ,E ,Q 分别是AB ,AC ,BC 上,且DE ∥BC ,AQ 交DE 于点P .小明认为DP BQ=PE QC,你认为小明的结论正确吗?请说明你的理由.【变式8-3】(•东莞市一模)如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,∠AED =∠B ,线段AG 分别交线段DE ,BC 于点F ,G ,且AD AC=DF CG.(1)求证:△ADF ∽△ACG ; (2)若AD AC=37,求AF FG的值.【考点9 相似基本模型(X字型)】【方法点拨】基础模型:X字型(平行)反X字型(不平行)【例9】(秋•滨江区期末)如图,AD与BC交于点O,EF过点O,交AB与点E,交CD与点F,BO=1,CO=3,AO=32,DO=92.(1)求证:∠A=∠D.(2)若AE=BE,求证:CF=DF.【变式9-1】(秋•花都区期末)如图:已知▱ABCD,过点A的直线交BC的延长线于E,交BD、CD于F、G.(1)若AB=3,BC=4,CE=2,求CG的长;(2)证明:AF2=FG×FE.【变式9-2】(秋•朔城区期末)如图,AG∥BD,AF:FB=1:2,BC:CD=2:1,求GEED的值【变式9-3】(秋•黄浦区期中)如图,已知在△ABC中,BE平分∠ABC交AC于E,点D在BE延长线上,且BA•BC=BD•BE.(1)求证:△ABD∽△EBC;(2)求证:AD2=BD•DE.【考点10 相似基本模型(AX型)】【方法点拨】A字型及X字型两者相结合,通过线段比进行转化.【例10】(•丛台区校级三模)如图,△ABC中,D.E分别是AB、AC上的点,且BD=2AD,CE=2AE.(1)求证:△ADE∽△ABC;(2)若DF=2,求FC的长度.【变式10-1】(•江夏区模拟)如图,在平行四边形ABCD 中,点E 在边BC 上,连结AE 并延长,交对角线BD 于点F 、DC 的延长线于点G .如果CE BE=23,求FEEG的值.【变式10-2】(秋•五华县期末)已知,如图,在平行四边形ABCD 中,M 是BC 边的中点,E 是边BA 延长线上的一点,连接EM ,分别交线段AD 于点F 、AC 于点G . (1)求证:△AFG ∽△CMG ; (2)求证:GF GM=EF EM.【变式10-3】(•黄浦区一模)如图,已知AB ∥CD ,AC 与BD 相交于点E ,点F 在线段BC 上,AB CD=12,BF CF=12.(1)求证:AB ∥EF ;(2)求S △ABE :S △EBC :S △ECD .【考点11 相似基本模型(作平行线)】【方法点拨】解决此类问题的关键是作平行线去构造相似三角形从而利用相似三角形的性质去解决问题. 基础模型:【例11】(•长丰县一模)如图,△ABC 中,D 为BC 中点,E 为AD 的中点,BE 的延长线交AC 于F ,则AF FC为( )A .1:5B .1:4C .1:3D .1:2【变式11-1】(•金华模拟)如图,D 、E 分别是△ABC 的边BC 、AB 上的点,AD 、CE 相交于点F ,AE =15EB ,BD =13BC ,则CF :EF = .【变式11-2】(秋•福田区校级期末)如图,AD 是△ABC 的中线,点E 是线段AD 上的一点,且AE =13AD ,CE 交AB 于点F .若AF =2cm ,则AB = cm .【变式11-3】(•青白江区模拟)如图,等边三角形ABC 中,AB =3,点D 是CB 延长线上一点,且BD =1,点E 在直线AC 上,当∠BAD =∠CDE 时,AE 的长为 .【考点12 相似基本模型(双垂直型)】【方法点拨】直角三角形被斜边上的高分成两个直角三角形与原三角形相似,即△ACD ∽△ABC ∽△CBD.【例12】(•越城区一模)如图,在△ABC 中,∠ACB =90°,CD 是AB 边上的高.如果BD =4,CD =6,那么BC :AC 是( )A .3:2B .2:3C .3:√13D .2:√13.【变式12-1】(•张家口模拟)如图,矩形ABCD 中,F 是DC 上一点,BF ⊥AC ,垂足为E ,AD AB=12,△CEF的面积为S 1,△AEB 的面积为S 2,则S 1S 2的值等于( )A .116B .15C .14D .125【变式12-2】(秋•玉田县期末)边长为1的正方形ABCD ,在BC 边上取一动点E ,连接AE ,作EF ⊥AE ,交CD 边于点F ,若CF 的长为316,则CE 的长为 .【变式12-3】(•南岗区二模)如图,AC是矩形ABCD的对角线,过点B作BE⊥AC于点E,BE的延长线交AD于点F,若DF=EF,BC=2,则AF的长为.【考点13 相似基本模型(手拉手型)】【方法点拨】基础模型:旋转放缩变换,图中必有两对相似三角形.【例13】(秋•福田区校级期末)如图,在△ABC与△ADE中,∠ACB=∠AED=90°,∠ABC=∠ADE,连接BD、CE,若AC:BC=3:4,则BD:CE为()A.5:3B.4:3C.√5:2D.2:√3【变式13-1】(秋•昭平县期末)如图,AB=3,AC=2,BC=4,AE=3,AD=4.5,DE=6,∠BAD=20°,则∠CAE的度数为()A.10°B.20°C.40°D.无法确定【变式13-2】(秋•漳浦县期末)如图,△ABC∽△ADE,∠BAC=∠DAE=90°,AB与DE交于点O,AB =4,AC=3,F是DE的中点,连接BD,BF,若点E是射线CB上的动点,下列结论:①△AOD∽△FOB,②△BOD∽△EOA,③∠FDB+∠FBE=90°,④BF=56AE,其中正确的是()A.①②B.③④C.②③D.②③④【变式13-3】(•亳州模拟)已知:如图,在△ABC 中,点D 、E 分别在边BC 、AC 上,点F 在DE 的延长线上,AD =AF ,AE •CE =DE •EF . (1)求证:△ADE ∽△ACD ;(2)如果AE •BD =EF •AF ,求证:AB =AC .【考点14 相似基本模型(一线三等角型)】【方法点拨】基础模型:如图1,∠B=∠C=∠EDF 推出△BDE ∽△CFD (一线三等角) 如图2,∠B=∠C=∠ADE 推出△ABD ∽△DCE (一线三等角)如图3,特别地,当D 时BC 中点时:△BDE ∽△DFE ∽△CFD 推出ED 平分∠BEF ,FD 平分∠EFC. 【例14】(•肥东县二模)如图,在△ABC 中,AB =AC =6,D 是AC 中点,E 是BC 上一点,BE =52,∠AED =∠B ,则CE 的长为( )A .152B .223C .365D .649【变式14-1】(秋•资阳区期末)如图,在等边△ABC 中,P 为BC 上一点,D 为AC 上一点,且∠APD =60°,BP =2,CD =1,则△ABC 的边长为( )A .3B .4C .5D .6【变式14-2】(秋•杨浦区校级月考)如图,已知在△ABC 中,AB =AC =6,BC =5,D 是AB 上一点,BD =2,E 是BC 上一动点,联结DE ,并作∠DEF =∠B ,射线EF 交线段AC 于F . (1)求证:△DBE ∽△ECF ;(2)当F 是线段AC 中点时,求线段BE 的长;(3)联结DF ,如果△DEF 与△DBE 相似,求FC 的长.【变式14-3】(•嘉定区二模)已知:△ABC ,AB =AC ,∠BAC =90°,点D 是边BC 的中点,点E 在边AB 上(点E 不与点A 、B 重合),点F 在边AC 上,联结DE 、DF . (1)如图1,当∠EDF =90°时,求证:BE =AF ; (2)如图2,当∠EDF =45°时,求证:DE 2DF 2=BE CF.【考点15 相似三角形中的动点问题】【例15】(春•文登区期末)如图,Rt △ABC ,∠C =90°,AC =10cm ,BC =8cm .点P 从点C 出发,以2cm /s 的速度沿CA 向点A 匀速运动,同时点Q 从点B 出发,以1cm /s 的速度沿BC 向点C 匀速运动,当一个点到达终点时,另一个点随之停止.(1)求经过几秒后,△PCQ 的面积等于△ABC 面积的25?(2)经过几秒,△PCQ 与△ABC 相似?【变式15-1】(秋•渭滨区期末)如图所示,在等腰△ABC 中,AB =AC =10cm ,BC =16cm .点D 由点A 出发沿AB 方向向点B 匀速运动,同时点E 由点B 出发沿BC 方向向点C 匀速运动,它们的速度均为1cm /s .连接DE ,设运动时间为t (s )(0<t <10),解答下列问题: (1)当t 为何值时,△BDE 的面积为7.5cm 2;(2)在点D ,E 的运动中,是否存在时间t ,使得△BDE 与△ABC 相似?若存在,请求出对应的时间t ;若不存在,请说明理由.【变式15-2】(•晋安区一模)如图,在△ABC 中,点D 、E 分别在边BC 、AC 上,连接AD 、DE ,且∠B =∠ADE =∠C .(1)证明:△BDA ∽△CED ;(2)若∠B =45°,BC =2,当点D 在BC 上运动时(点D 不与B 、C 重合),且△ADE 是等腰三角形,求此时BD 的长.【考点16 相似三角形中的折叠问题】【例16】(•渝中区校级三模)如图,在△ABC 中,∠ACB =90°,点D 、E 分别在AC ,BC 上,且∠CDE =∠B ,将△CDE 沿DE 折叠,点C 恰好落在AB 边上的点F 处,若BC =12,AB =20,则CD 的长为( )A .193B .254C .258D .6【变式16-1】(•台安县一模)在正方形ABCD 中,点E 为BC 边的中点,把△ABE 沿直线AE 折叠,B 点落在点B ′处,B ′B 与AE 交于点F ,连接AB ′,DB ′,FC .下列结论:①AB ′=AD ;②△FCB ′为等腰直角三角形;③∠CB ′D =135°;④BB ′=BC ;⑤AB 2=AE •AF .其中正确的个数为( )A .2B .3C .4D .5【变式16-2】(•拱墅区二模)如图,在矩形纸片ABCD 中,AB =6,BC =10,点E 在CD 上,将△BCE 沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG=S△FGH;④AG+DF=FG.其中正确的是.(填写正确结论的序号)【变式16-3】(春•文登区期末)已知,矩形ABCD,点E是AD上一点,将矩形沿BE折叠,点A恰好落在BD上点F处.(1)如图1,若AB=3,AD=4,求AE的长;(2)如图2,若点F恰好是BD的中点,点M是BD上一点,过点M作MN∥BE交AD于点N,连接EM,若MN平分∠EMD,求证:DN•DE=DM•BM.【考点17 相似三角形的实际应用】【方法点拨】解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题,利用相似及方程思想有效解决.【例17】(•莲湖区二模)数学实践小组想利用镜子的反射测量池塘边一棵树的高度AB.测量和计算的部分步骤如下:①如图,树与地面垂直,在地面上的点C处放置一块镜子,小明站在BC的延长线上,当小明在镜子中刚好看到树的顶点A时,测得小明到镜子的距离CD=2米,小明的眼睛E到地面的距离ED=1.5米;②将镜子从点C沿BC的延长线向后移动10米到点F处,小明向后移动到点H处时,小明的眼睛G又刚好在镜子中看到树的顶点A,这时测得小明到镜子的距离FH=3米;③计算树的高度AB;【变式17-1】(•山西一模)“创新实践”小组想利用镜子与皮尺测量大树AB的高度,因大树底部有障碍物,无法直接测量到大树底部的距离.聪明的小颖借鉴《海岛算经》的测量方法设计出如图所示的测量方案:测量者站在点F处,将镜子放在点M处时,刚好看到大树的顶端,沿大树方向向前走2.8米,到达点D 处,将镜子放在点N处时,刚好看到大树的顶端(点F,M,D,N,B在同一条直线上).若测得FM=1.5米,DN=1.1米,测量者眼睛到地面的距离为1.6米,求大树AB的高度.【变式17-2】(•凉山州)如图,一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?【考点18 作图—位似变换】【方法点拨】掌握画位似图形的一般步骤为(先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;然后根据位似比,确定能代表所作的位似图形的关键点;最后顺次连接上述各点,得到放大或缩小的图形).【例18】(•长丰县一模)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,1),B(1,4),C(3,2).请解答下列问题:(1)画出△ABC关于y轴对称的图形△A1B1C1,并直接写出C1点的坐标;(2)以原点O为位似中心,位似比为1:2,在y轴的右侧,画出△ABC放大后的图形△A2B2C2,并直接写出C2点的坐标;(3)如果点D(a,b)在线段BC上,请直接写出经过(2)的变化后对应点D2的坐标.【变式18-1】(春•文登区期末)已知,△ABC在平面直角坐标系的位置如图所示,点A,B,C的坐标分别为(1,0),(4,﹣1),(3,2).△A1B1C1与△ABC是以点P为位似中心的位似图形.(1)请画出点P的位置,并写出点P的坐标;(2)以点O为位似中心,在y轴左侧画出△ABC的位似图形△A2B2C2,使相似比为1:1,若点M(a,b)为△ABC内一点,则点M在△A2B2C2内的对应点的坐标为.【变式18-2】(春•南关区校级期末)如图,在平面直角坐标系中,给出了格点△ABC(顶点均在正方形网格的格点上),已知点A的坐标为(﹣4,3).(1)画出△ABC关于y轴对称的△A1B1C1.(2)以点O为位似中心,在给定的网格中画△A2B2C2,使△ABC与△A2B2C2位似,且点A2的坐标为(8,﹣6).(3)△ABC与△A2B2C2的位似比是.【变式18-3】(•合肥二模)在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,﹣2),B(2,﹣1),C(4,﹣3).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以点O为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1;(3)设点P(a,b)为△ABC内一点,则依上述两次变换后点P在△A2B2C2内的对应点P2的坐标是.。
《图形的相似》相似PPT优质课件

《图形的相似》相似PPT优质课件
人教版九年级数学下册《图形的相似》相似PPT优质课件,共37页。
学习目标
1.了解相似图形和相似比的概念.
2.理解相似多边形的定义.
3.能根据多边形相似进行相关的计算.
探究新知
相似图形的定义
指能够完全重合的两个图形,即它们的形状和大小完全相同.
相似图形的关系
两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到.
相似多边形的定义和相似比的概念
下图是两个等边三角形,它们相似吗?它们的对应角、对应边分别有什么关系?
两个等边三角形相似,它们的对应角相等,对应边成比例.
下图是两个正六边形,它们相似吗?它们的对应角、对应边分别有什么关系?
两个正六边形相似,它们的对应角相等,对应边成比例.
两个边数相等的正多边形相似,且对应角相等、对应边成比例.
归纳:
相似多边形的定义:
各角分别相等、各边成比例的两个多边形叫做相似多边形.
相似多边形的特征:
相似多边形的对应角相等,对应边成比例.
相似比:
相似多边形的对应边的比叫做相似比.
课堂小结
形状相同的图形叫做相似图形
相似图形的大小不一定相同
对应角相等,对应边成比例
相似多边形对应边的比叫做相似比
... ... ...
关键词:图形的相似PPT课件免费下载,相似PPT下载,.PPTX格式;。
相似图形的知识点总结(16篇)

相似图形的知识点总结(16篇)篇1:相似图形的知识点总结相似图形的知识点总结知识点1.概念把形状相同的图形叫做相似图形。
(即对应角相等、对应边的比也相等的图形)解读:(1)两个图形相似,其中一个图形可以看做由另一个图形放大或缩小得到.(2)全等形可以看成是一种特殊的相似,即不仅形状相同,大小也相同.(3)判断两个图形是否相似,就是看这两个图形是不是形状相同,与其他因素无关.知识点2.比例线段对于四条线段a,b,c,d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即(或a:b=c:d)那么这四条线段叫做成比例线段,简称比例线段.知识点3.相似多边形的性质相似多边形的性质:相似多边形的对应角相等,对应边的比相等.解读:(1)正确理解相似多边形的定义,明确“对应”关系.(2)明确相似多边形的“对应”来自于书写,且要明确相似比具有顺序性.知识点4.相似三角形的概念对应角相等,对应边之比相等的三角形叫做相似三角形.解读:(1)相似三角形是相似多边形中的一种;(2)应结合相似多边形的性质来理解相似三角形;(3)相似三角形应满足形状一样,但大小可以不同;(4)相似用“∽”表示,读作“相似于”;(5)相似三角形的对应边之比叫做相似比.知识点5.相似三角的判定方法(1)定义:对应角相等,对应边成比例的两个三角形相似;(2)平行于三角形一边的直线截其他两边(或其他两边的延长线)所构成的三角形与原三角形相似.(3)如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.(4)如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.(5)如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似.(6)直角三角形被斜边上的高分成的两个直角三角形与原三角形都相似.知识点6.相似三角形的性质(1)对应角相等,对应边的比相等;(2)对应高的比,对应中线的比,对应角平分线的比都等于相似比;(3)相似三角形周长之比等于相似比;面积之比等于相似比的平方.(4)射影定理篇2:相似图形相似图形教学交流课教案:第四章相似图形教学目标:1、知道线段比的概念。
形状相同的图形教学反思

篇一:9下27.1《图形的相似》教学反思27.1 图形的相似(教学反思)“相似”这一章所研究的问题是在前面研究图形的全等和一些全等变换基础上的拓广和发展.本节从生活中形状相同的图形出发,引出相似图形的概念,在此基础上,进一步研究相似多边形的特征.其中相似多边形对应角相等,对应边的比相等的性质是本章的重点内容,也是后面继续学习相似三角形的基础.本课设计从兴趣入手,抓住学生注意力,为学生提供充足的自足学习的时间和空间,创造了一个有利于学生生动活泼、主动发展的教育环境.围绕问题引导学生进行探索性的研究活动.过程中出现的差错或疑惑,教师不包办,让学生自己发现、纠正和解释清楚.在这个过程中,学生不仅仅学会了判断两图形是否相似,更重要的是经历了探索相似图形的性质特征,与人合作,与人交流的过程,在思维能力,兴趣与动机,态度与习惯方面获得充分发展.学习的过程是自我生成的过程,这种生成是他人无法取代的,是由内向外的生长,而不是由外向内的灌输,其基础是学生原有的知识和经验.本课教学中充分尊重学生已有的知识与经验,让学生感受知识产生,发展的过程,学会观察、发现、归纳等学习方法.在教学中让学生利用三角板和量角器去度量探究相似多边形的对应角相等,对应边的比相等.通过动手操作提高学生参与数学活动的积极性,让学生深入探讨,认真挖掘,并让学生尝到学习成功的喜悦.相似图形”大量存在于我们的生活中,教学过程中以数学知识发生为依托,设计数学情境.从欣赏三幅相似图片入手创设问题情境,直观形象,且贴近学生的生活,从而引起学生对“相似图形”的有意注意.以题型变换为手段,设计数学情境.围绕知识点,在本课学生训练的题型中,有填空、选择、开放题,形式有别,知识相通,避免了训练的单调.借助多媒体.根据本课内容特点,运用色彩斑斓的图片展示及形象生动的小动画,引起学生对所学内容的学习兴趣和改善学习的乏味心理,促进学生的心理由潜伏状态转变为活跃状态.本节课采用的评价方法主要有:观察、抽问和练习抽查等.教学中随时观察学生对学习的态度表现,如注意力集中的程度、情感的参与和行为参与的情况;通过提问和练习,评价学生对学习内容的认知程度,如对学习内容的思维反应是否积极;课堂练习、回答问题的正确程度;练习的正确率等等.为了使评价更有效,不能只按少数学生的反应作出判断,应注意收集不同信息.通过收集的信息,对学生的问题作出及时的矫正和评说,并对教学内容和教学过程作适当的调控,最终达到教学目标.篇二:八年级数学下册《4.3 形状相同的图形》教学设计北师大版辽宁省辽阳九中八年级数学下册《4.3 形状相同的图形》教学设计北师大版一、学生知识状况分析学生的知识技能基础:学生在七年级已经学了全等图形,对全等图形的特征已经掌握;在八年级学习了平面直角坐标系,通过“变化的鱼”感受了图形坐标的变化与图形形状的变化之间的关系。
《相似》全章复习与巩固(知识讲解)九年级数学下册基础知识专项讲练(人教版)

专题27.43《相似》全章复习与巩固(知识讲解)【学习目标】1、了解比例的基本性质,线段的比、成比例线段;2、通过具体实例认识图形的相似,探索相似图形的性质,理解相似多边形对应角相等、对应边成比例、周长的比等于相似比、面积的比等于相似比的平方,探索并掌握相似三角形的判定方法,并能利用这些性质和判定方法解决生活中的一些实际问题;3、了解图形的位似,能够利用位似将一个图形放大或缩小,在同一直角坐标系中,感受位似变换后点的坐标的变化;4、结合相似图形性质和判定方法的探索和证明,进一步培养推理能力,发展逻辑思维能力和推理论证的表达能力,以及综合运用知识的能力,运用学过的知识解决问题的能力.【要点梳理】【知识点一】成比例线段1、定义:四条线段,,,a b c d 中,如果a 与b 的比等于c 与d 的比,即a cb d=,那么这四条线段,,,a b c d 叫做成比例线段,简称比例线段。
2、性质:(1)基本性质:如果a cb d=,那么ad bc =;反之,若ad bc =(),,,0a b c d 都不等于,那么a c b d =(2)等比性质:如果()==0a c m b d n b d n =+++≠ ,那么a c m a b d n b +++=+++ (3)合比性质:如果a c b d =,那么a b c d b d ++=,a b c d b d --=【知识点二】平行线分线段成比例1、定理:两条直线被一组平行线所截,所得的对应线段成比例2、推论:平行于三角形一边的直线与其他两边相交,截得的对应线段成比例【知识点三】相似多边形1、定义:各角分别相等,各边成比例的两个多边形叫做相似多边形。
相似多边形对应边的比叫做相似比2、性质:相似多边形的周长比等于相似比,面积比等于相似比的平方【知识点四】相似三角形1、定义:三角分别相等,三边成比例的两个三角形叫做相似三角形2、判定:(1)两角分别相等的两个三角形相似(2)两边成比例且夹角相等的两个三角形相似(3)三边成比例的两个三角形相似3、性质:(1)相似三角形的对应角相等,对应边成比例(2)相似三角形对应高的比,对应中线的比,对应角平分线的比都等于相似比(3)相似三角形的周长比等于相似比,面积比等于相似比的平方【知识点五】黄金分割点C 把线段AB 分成两条线段AC 和BC ()AC BC >,如果AC BC AB AC=,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比,即:0.618:1AC AB ≈【知识点六】位似图形1、定义:一般的,如果两个相似多边形任意一组对应顶点P ,'P 所在的直线都经过同一点O ,且有'OP =()0k OP k ⋅≠,那么这样的两个多边形叫做位似多边形,点O 叫做位似中心2、性质:位似图形上任意一对对应点到位似中心的距离之比等于相似比3、画图步骤:(1)尺规作图法:①确定位似中心;②确定原图形中的关键点关于中心的对应点;③描出新图形(2)坐标法:在平面直角坐标系中,将一个多边形每个顶点的横坐标、纵坐标都乘于同一个数()0k k ≠,所对应的图形与原图形位似,位似中心是坐标原点,它们的相似比为k【典型例题】类型一、成比例线段和平行线分线段成比例1.已知三条线段a b c ,,满足1324a b c +==,且17a b c ++=.(1)求a b c ,,的值;(2)若线段d 是线段a 和b 的比例中项,求d 的值.【点拨】本题考查了比例的性质,比例线段,利用“设k 法”用k 表示出a 、b 、c 可以使计算更加简便.【变式1】已知:2:3,:3:4a b b c ==,且26a b c +-=,求,,a b c 的值【答案】4a =,6b =,8c =.【分析】根据比的性质,可得a ,b ,c 用k 表示,根据解方程,可得k 的值,即可得答案.解:∵:2:3a b =,:3:4b c =,∴设2a k =,3b k =,4c k =,∴()22346k k k ⋅+-=,整理得:36k = ,解得:2k =,∴24a k ==,36b k ==,48c k ==.【点拨】本题考查了比例的性质,利用比例的性质得出2a k =,3b k =,4c k =是解题关键.【变式2】如图所示,以长为2的定线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF PD=,以AF为边作正方形AMEF,点M在AD上.,的长;(1)求AM DM(2)点M是AD的黄金分割点吗?为什么?【点拨】此题综合考查了正方形的性质、勾股定理和黄金分割的概念.先求得线段AM,DM的长,然后求得线段AM和AD,DM和AM之间的比,根据黄金分割的概念进行判断.2.如图,已知AD∥BE∥CF,它们以此交直线l1、l2于点A、B、C和D、E、F.若25DE EF =,AC=14,(1)求AB 的长.(2)如果AD=7,CF=14,求BE 的长.【点拨】本题考查平行线分线段成比例的知识,解题的关键是掌握三条平行线截两条直线,所得的对应线段成比例.【变式1】如图,已知AD//BE//CF,它们依次交直线1l、2l于点A、B、C和点D、E、F,且AB=6,BC=8.(1)求DEDF的值;(2)当AD=5,CF=19时,求BE的长.【点拨】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例;熟练掌握平行线分线段成比例,通过作辅助线运用平行线分线段成比例求出BH 是解决问题的关键.【变式2】如图,在ABC ∆中,点D 是边AB 上的一点.(1)请用尺规作图法,在ABC ∆内,求作ADE ∠,使ADE B ∠=∠,DE 交AC 于E ;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若2AD DB =,求AE EC的值.【点拨】本题考查了作一个角等于已知角,平行线分线段成比例定理,熟练掌握利用尺规作一个角等于已知角的作图方法是解题的关键.类型二、相似三角形判定和性质3.如图,在ABC 中,90ACB ∠=︒,CD 是边AB 上的中线,EF 垂直平分CD ,分别交AC ,BC 于E ,F ,连接DE ,DF .(1)求证:OCE OFD ∽△△.(2)当7AE =,24BF =时,求线段EF 的长.【答案】(1)见分析(2)25EF =【分析】(1)如图(见分析),先根据线段垂直平分线的性质可得90EOC DOF ∠=∠=︒,ED EC =,FD FC =,再根据三角形全等的判定定理证出EDF ECF ≅ ,根据全等三角形的性质可得12∠=∠,从而可得421∠=∠=∠,然后根据相似三角形的判定即可得证;(2)如图(见分析),延长FD 至G ,使DG DF =,连接AG ,EG ,先根据线段垂直平分线的判定与性质可得EG EF =,再根据三角形全等的判定定理证出ADG BDF ≅△△,根据全等三角形的性质可得24AG BF ==,7B ∠=∠,然后根据平行线的判定与性质可得90EAG ∠=︒,最后在Rt AEG △中,利用勾股定理即可得.(1)证明:∵EF 垂直平分CD ,∴90EOC DOF ∠=∠=︒,ED EC =,FD FC =,在EDF 和ECF △中,ED EC FD FC EF EF =⎧⎪=⎨⎪=⎩,∴()EDF ECF SSS ≅ ,∴12∠=∠,∵90ACB ∠=︒,90EOC ∠=︒,∴233490∠+∠=∠+∠=︒,∴421∠=∠=∠,在OCE △和OFD △中,9014EOC DOF ∠=∠=︒⎧⎨∠=∠⎩,∴OCE OFD .(2)解:如图,延长FD 至G ,使DG DF =,连接AG ,EG .则ED 垂直平分FG ,【点拨】本题考查了相似三角形的判定、三角形全等的判定定理与性质、线段垂直平分线的判定与性质等知识点,较难的是题(2),构造全等三角形和直角三角形是解题关键.【变式1】如图,四边形ABCD 中,AC 平分∠DAB ,∠ADC=∠ACB=90°,E 为AB 的中点,(1)求证:AC 2=AB•AD ;(2)求证:CE ∥AD ;(3)若AD=4,AB=6,求的值.=.∴AF4【变式2】如图,在△ABC中,(1)求作:∠BAD=∠C,AD交BC于D.(用尺规作图法,保留作图痕迹,不要求写作法).(2)在(1)条件下,求证:AB2=BD•BC.【点拨】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了相似三角形的判定与性质.中,过点C作CD//AB,E是AC的中点,连接DE并延长,4.如图,在ABC交AB于点F,交CB的延长线于点G,连接AD,CF()1求证:四边形AFCD是平行四边形.()2若GB3=,BC6=,3BF=,求AB的长.2【变式1】已知:如图6,菱形ABCD,对角线AC、BD交于点O,BE⊥DC,垂足为E,交AC于点F.求证:(1)△ABF∽△BED;(2)求证:AC BD BE DE=.【变式2】如图,已知▱ABCD.(1)用直尺和圆规在BC边上取一点E,使AB=AE,连结AE;(保留作图痕迹,不写作法)(2)在(1)的前提下,求证:AE=CD;∠EAD=∠D;(3)若点E为BC的中点,连接BD,交AE于F,直接写出EF:FA的值.【答案】(1)见分析(2)证明见分析(3)1:2分析:(1)以点A为圆心,AB为半径作圆,该圆与BC的交点即为所求的点E;(2)根据平行四边形的对边互相平行可得AD∥BC,再根据两直线平行,内错角相等可得∠AEB=∠EAD,根据等边对等角可得∠ABE=∠AEB,即可得证;(3)由四边形ABCD是平行四边形,可证得△BEF∽△AFD即可求得EF∶FA的值.解:(1)如图所示:;(2)证明:在平行四边形ABCD中,AD∥BC,∴∠AEB=∠EAD,∵AE=AB,∴∠ABE=∠AEB,∴∠B=∠EAD,∵∠B=∠D,∴∠DAE=∠D;(3)解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△BEF ∽△AFD ,∴=,∵E 为BC 的中点,∴BE=BC=AD ,∴EF :FA=1:2.【点拨】此题考查了相似三角形的判定与性质与平行四边形的性质,熟练掌握平行四边形的性质是关键.5.如图,在ABC 中,点D 、点E 分别在AC 、AB 上,点P 是BD 上的一点,联结EP 并延长交AC 于点F ,且A EPB ECB ∠=∠=∠.(1)求证:BE BA BP BD ⋅=⋅;(2)若90ACB ∠=︒,求证:CP BD ⊥.【变式1】已知ADE C ∠=∠,AG 平分BAC ∠交DE 于F ,交BC 于G .(1)求证:ADF ∽ACG ;(2)连接DG ,若DG AC ∥,25AF AG =,6AD =,求CE 的长度.【点拨】本题考查了相似三角形的判定和性质、角平分线的性质、平行线的性质、等腰三角形的判定和性质,解决本题的关键是掌握以上的定理并熟练的运用.【变式2】如图,∠A=∠C=∠EDF,CF=4,CD=AD=6;(1)求AE的长.(2)求证:△ADE∽△DFE.【点拨】此题考查了相似三角形的判定和性质,掌握相似三角形的判定方法以及根据相似三角形性质列出比例式进行求解是解题的关键.类型三、相似三角形拓展与提升6.已知△ABC中,∠ACB=90°,AC=BC=4cm,点P从点A出发,沿AB方向cm的速度向终点B运动,同时动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,设运动的时间为t秒.(1)如图①,若PQ⊥BC,求t的值;(2)如图②,将△PQC沿BC翻折至△P′QC,当t为何值时,四边形QPCP′为菱形?【点拨】此题是相似形综合题,主要考查的是菱形的性质、等腰直角三角形的性质,线段垂直平分线的性质,用方程的思想解决问题是解本题的关键.【变式1】已知,点E 、F 、G 、H 分别在正方形ABCD 的边AB 、BC 、CD 、AD 上.(1)如图1,当四边形EFGH 是正方形时,求证:AE AH AB +=;(2)如图2,已知AE AH =,CF CG =,当AE 、CF 的大小有_________关系时,四边形EFGH 是矩形;(3)如图3,AE DG =,EG 、FH 相交于点O ,:4:5OE OF =,已知正方形ABCD 的边长为16,FH 长为20,当OEH △的面积取最大值时,判断四边形EFGH 是怎样的四边形?证明你的结论.【答案】(1)见分析(2)AE CF =(3)平行四边形,证明见分析【分析】(1)利用平行四边形的性质证得BEF AHE ∠=∠,根据角角边证明AEH BFE △≌△.(2)当AE CF =,证得AEH FCG △≌△,EBF △是等腰直角三角形,∠HEF =∠EFG =90°,即可证得四边形EFGH 是矩形.(3)利用正方形的性质证得AEGD 为平行四边形,过点H 作HM BC ⊥,垂足为点M ,交EG 于点N ,由平行线分线段成比例,设4OE x =,5OF x =,HN h =,则可表示出HN ,从而把△OEH 的面积用x 的代数式表示出来,根据二次函数求出最大值,则可得OE =OG ,OF =OH ,即可证得平行四边形.解:(1)∵四边形ABCD 为正方形,∴90A B ∠=∠=︒,∴90AEH AHE ∠+∠=°.∵四边形EFGH 为正方形,∴EH EF =,90HEF ∠=︒,∴90AEH BEF ∠+∠=︒,∴BEF AHE ∠=∠.在AEH △和BFE △中,∵90A B ∠=∠=︒,AHE BEF ∠=∠,EH FE =,∴AEH BFE △≌△.∴AH BE =.∴AE AH AE BE AB +=+=;(2)AE CF =;证明如下:∵四边形ABCD 为正方形,∴90A B ∠=∠=︒,AB =BC =AD =CD ,∵AE =AH ,CF =CG ,AE =CF ,∴AH =CG ,∴AEH FCG △≌△,∴EH =FG .∵AE =CF ,∴AB -AE =BC -CF ,即BE =BF ,∴EBF △是等腰直角三角形,∴∠BEF =∠BFE =45°,∵AE =AH ,CF =CG ,∴∠AEH =∠CFG =45°,∴∠HEF =∠EFG =90°,∴EH ∥FG ,∴四边形EFGH 是矩形.(3)∵四边形ABCD 为正方形,∴AB CD ∥.【点拨】此题考查了正方形的性质,矩形的判定和平行四边形的性质与判定,平行线分线段成比例定理,全等三角形的判定与性质,等腰三角形的性质,二次函数的最值,有一定的综合性,解题的关键是熟悉这些知识并灵活运用.【变式2】已知点E在正方形ABCD的对角线AC上,正方形AFEG与正方形ABCD有公共点A.(1)如图1,当点G 在AD 上,F 在AB(2)将正方形AFEG 绕A 点逆时针方向旋转9(0)0αα︒<<︒,如图2,求:CE DG 的值为多少;(3)AB =AG AD =,将正方形AFEG 绕A 逆时针方向旋转(0360)αα︒<<︒,当C ,G ,E 三点共线时,请直接写出DG 的长度.正方形AFEG 绕A 点逆时针方向旋转DAG CAE∴∠=∠12AG AD AE AC == GAD EAC ∴ ∽ 82AB =,22AG =82AD AB ∴==,AG =,,G E C 三点共线,Rt AGC △中,GC AC =由(2)知△ADG∽△【点拨】本题考查了平行线分线段成比例,相似三角形的性质与判定,正方形的性质,勾股定理,旋转的性质,综合运用以上知识是解题的关键.类型三、位似7.如图,在6×8的网格图中,每个小正方形边长均为1,点O和△ABC的顶点均为小正方形的顶点.⑴以O为位似中心,在网格图中作△A′B′C′,使△A′B′C′和△ABC位似,且位似比为1:2⑵连接⑴中的AA′,求四边形AA′C′C的周长.(结果保留根号)【点拨】此题主要考查了位似图形的画法以及勾股定理等知识,利用位似比得出对应点位置是解题关键.【变式一】如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(5,2).(1)以点B为位似中心,在网格内画出△ABC的位似△A1BC1,使得△A1BC1与△ABC的位似比为2;(2)直接写出点A1的坐标和△A1BC1的面积.(2)如图所示1A :()3,7;11Δ116846222A BC S =⨯-⨯⨯-⨯【点拨】此题考查了位似变换和三角形面积求法,【变式二】如图,ABC 在平面直角坐标系内,三个顶点的坐标分别为()1,3A ,()2,1B ,()5,2C (正方形网格中,每个小正方形的边长为1),以点O 为位似中心,把ABC 按相似比2:1放大,得到对应A B C '''V .(1)请在第一象限内画出A B C '''V ;(2)若以点A 、B 、C 、D 为顶点的四边形是平行四边形,请直接写出满足条件的点D 的坐标.【答案】(1)见分析(2)()14,4D ;()26,0D ;()32,2D -【分析】(1)根据点O 为位似中心,()1,3A ,()2,1B ,()5,2C ,把ABC 按相似比2:1放大,得到对应A B C '''V ,求出点'A ,'B ,'C 的坐标,在网格中描点顺次连线即得;C(2)设D(x,y),∵平行四边形的对角线互相平分,且综上,()14,4D ;()26,0D ;()32,2D -.【点拨】本题主要考查了位似三角形,平行四边形,解决问题的关键是熟练掌握位似三角形的定义及画法,平行四边形对角线的性质和线段中点坐标公式.。
2022中考数学考点专题训练——专题十:图形的相似(含答案)

备战2022最新中考数学考点专题训练——专题十:图形的相似1.如图,点D为△ABC外一点,AD与BC边的交点为E,AE=3,DE=5,BE=4,要使△BDE∽△ACE,且点B,D的对应点为A,C,那么线段CE的长应等于.2.如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于.3.如图,△ABC中,AB=5,BC=3,CA=4,D为AB的中点,过点D的直线与BC交于点E,若直线DE截△ABC所得的三角形与△ABC相似,则DE=.4.如图,在平面直角坐标系中有两点A(4,0),B(0,2),如果点C在x轴上(C与A不重合)当点C的坐标为时,使得△BOC∽△AOB.5.如图,在△ABC中,AB=9,AC=6,BC=12,点M在AB边上,且AM=3,过点M作直线MN与AC边交于点N,使截得的三角形与原三角形相似,则MN=.6.如图,C为线段AB上的一点,△ACM、△CBN都是等边三角形,若AC=3,BC=2,则△MCD与△BND的面积比为.7.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为米.8.如图,F是平行四边形ABCD对角线BD上的点,BF:FD=1:3,则BE:EC=.9.将一个面积为1的等边三角形挖去连接三边中点所组成的三角形(如第①图)后,继续挖去连接剩余各个三角形三边中点所成的三角形(如第②图、第③图)…如此进行挖下去,第④个图中,剩余图形的面积为,那么第n(n为正整数)个图中,挖去的所有三角形的面积和为(用含n的代数式表示).10.如图,已知:在梯形ABCD中,AD∥BC,AD=3,BC=5,点E在AB上,且AE:EB=2:3,过点E作EF∥BC交CD于F,则EF 的长是.11.如图,在Rt△ABC中,∠C=90°,点D在边AB上,线段DC 绕点D逆时针旋转,端点C恰巧落在边AC上的点E处.如果=m,=n.那么m与n满足的关系式是:m=(用含n的代数式表示m).12.如图,直线y=x+1与x轴交于点A,与y轴交于点B,△BOC 与△B′O′C′是以点A为位似中心的位似图形,且相似比为1:3,则点B的对应点B′的坐标为.13.如图,△ABC中,∠ACB=90°,AC=8cm,BC=6cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A 的方向运动,设E点的运动时间为t秒(0≤t<15),连接DE,当△BDE是直角三角形时,t的值为.14.如图,在△ABC中,AB=9,AC=6,BC=12,点M在AB边上,且AM=3,过点M作直线MN与AC边交于点N,使截得的三角形与原三角形相似,则MN=.15.如图所示,已知点E在AC上,若点D在AB上,则满足条件(只填一个条件),使△ADE与原△ABC相似.16.如图,直线a∥b∥c,直线AC分别交a,b,c于点A,B,C,直线DF分别交a,b,c于点D,E,F.若=,则=.17.已知点P是线段AB的黄金分割点,且AP>BP,AB=4,那么AP=.18.如图,在四边形ABCD中,∠BAC=∠BDC=90°,AB=AC=,CD=1,对角线的交点为M,则DM=.19.已知△ABC为钝角三角形,其最大边AC上有一点P(点P与点A,C不重合),过点P作直线l,使直线l截△ABC所得的三角形与原三角形相似,这样的直线l可作的条数是.20.已知AM是△ABC中BC边上的中线,P是△ABC的重心,过P 作EF(EF∥BC),分别交AB、AC于E、F,则=.21.如图,在▱ABCD中,对角线AC,BD相交于点O,P是BC边中点,AP交BD于点Q.则的值为.22.如图,在凸四边形ABCD中,AB∥CD,点E和F在边AB上,且CE∥AD,DF∥BC,DF与CE相交于点G,若△EFG的面积等于1,△CDG的面积等于2,则四边形ABCD的面积等于.23.《九章算术》中记载了一种测量井深的方法.如图所示,在井口B处立一根垂直于井口的木杆BD,从木杆的顶端D观察井水水岸C,视线DC与井口的直径AB交于点E,如果测得AB=1.6米,BD=1米,BE=0.2米,那么AC为米.24.在平面直角坐标系中,将△AOB以点O为位似中心,为位似比作位似变换,得到△A1OB1,已知A(2,3),则点A1的坐标是.25.如图,正方形ABCD中,点N为AB的中点,连接DN并延长交CB的延长线于点P,连接AC交DN于点M.若PN=3,则DM 的长为.26.已知直角坐标系中,点A(0,3),B(﹣6,0).连结AB,作直线y=1,交AB于点P1,过P1作P1Q1⊥x轴于Q1;连结AQ1,交直线y=1于点P2,P2Q2⊥x轴于Q2;…以此类推.则点Q3的坐标为;△PnQnA的面积为=(用含n的代数式表示).27.如图,在△ABC中,AD平分∠BAC,与BC边的交点为D,且DC=BC,DE∥AC,与AB边的交点为E,若DE=4,则BE的长为.28.如图,在▱ABCD中,延长CD至点E,使DE=DC,连接BE 与AC于点F,则的值是.29.如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论:①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若=,则3S△EDH=13S△DHC,其中结论正确的有.30.在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为12m,那么这栋建筑物的高度为m.31.如图,在直角坐标系中,每个小正方形的边长均为1个单位长度,△ABO的顶点坐标分别为A(﹣2,﹣1),B(﹣2,﹣3),O(0,0),△A1B1O1的顶点坐标分别为A1(1,﹣1),B1(1,﹣5),O1(5,1),△ABO与△A1B1O1是以点P为位似中心的位似图形,则P点的坐标为.32.如图G为△ABC的重心,GE∥AC,若S△ABC=72,则S△GDE =.33.李老师从“淋浴龙头”受到启发,编了一个题目:在数轴上截取从0到3的对应线段AB,实数m对应AB上的点M,如图1;将AB折成正三角形,使点A,B重合于点P,如图2;建立平面直角坐标系,平移此三角形,使它关于y轴对称,且点P的坐标为(0,2),PM与x轴交于点N(n,0),如图3.当m=时,n=.34.如图,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC的面积比是4:9,则OB′:OB=.35.如图,△ABC∽△ADE,∠BAC=∠DAE=90°,AB=6,AC=8,F为DE中点,若点D在直线BC上运动,连接CF,则在点D运动过程中,线段CF的最小值是.备战2022最新中考数学考点专题训练——专题十:图形的相似参考答案1.如图,点D为△ABC外一点,AD与BC边的交点为E,AE=3,DE=5,BE=4,要使△BDE∽△ACE,且点B,D的对应点为A,C,那么线段CE的长应等于.【答案】解:∵∠AEC=∠BED,∴当=时,△BDE∽△ACE,即=,∴CE=.故答案为.2.如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于.【答案】解:∵AG=2,GD=1,∴AD=3,∵AB∥CD∥EF,∴=,故答案为:.3.如图,△ABC中,AB=5,BC=3,CA=4,D为AB的中点,过点D的直线与BC交于点E,若直线DE截△ABC所得的三角形与△ABC相似,则DE=.【答案】解:∵D为AB的中点,∴BD=AB=,∵∠DBE=∠ABC,∴当∠DBE=∠ACB时,△BDE∽△BAC时,如图1,则=,即=,解得DE=2;当∠BDE=∠ACB时,如图2,DE交AC于F,∵∠DAF=∠CAB,∴△ADF∽△ACB,∴△BDE∽△BCA,∴=,即=,解得DE=,综上所述,若直线DE截△ABC所得的三角形与△ABC相似,则DE =2或.故答案为2或.4.如图,在平面直角坐标系中有两点A(4,0),B(0,2),如果点C在x轴上(C与A不重合)当点C的坐标为时,使得△BOC∽△AOB.【答案】解:∵△BOC∽△AOB,∴=,∴=,∴OC=1,∵点C在x轴上,∴点C的坐标为(1,0)或(﹣1,0);故答案为:(1,0)或(﹣1,0).5.如图,在△ABC中,AB=9,AC=6,BC=12,点M在AB边上,且AM=3,过点M作直线MN与AC边交于点N,使截得的三角形与原三角形相似,则MN=.【答案】解:如图1,当MN∥BC时,则△AMN∽△ABC,故==,则=,解得:MN=4,如图2所示:当∠ANM=∠B时,又∵∠A=∠A,∴△ANM∽△ABC,∴=,即=,解得:MN=6,故答案为:4或6.6.如图,C为线段AB上的一点,△ACM、△CBN都是等边三角形,若AC=3,BC=2,则△MCD与△BND的面积比为.【答案】解:∵△ACM、△CBN都是等边三角形,∴△ACM∽△CBN,∴CM:BN=AC:BC=3:2;∵△ACM、△CBN都是等边三角形,∴∠MCA=∠NDB=∠BND=60°,∴∠MCN=60°=∠BND,∴∠CMD=∠NBD(三角形内角和定理)∴△MCD∽△BND∴△MCD与△BND的面积比为()2=()2=.7.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为米.【答案】解:根据题意,易得△MBA∽△MCO,根据相似三角形的性质可知=,即=,解得AM=5m.则小明的影长为5米.8.如图,F是平行四边形ABCD对角线BD上的点,BF:FD=1:3,则BE:EC=.【答案】解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴△BEF∽DAF,∴BE:AD=BF:FD=1:3,∴BE:BC=1:3,∴BE:EC=1:2.故答案为:1:2.9.将一个面积为1的等边三角形挖去连接三边中点所组成的三角形(如第①图)后,继续挖去连接剩余各个三角形三边中点所成的三角形(如第②图、第③图)…如此进行挖下去,第④个图中,剩余图形的面积为,那么第n(n为正整数)个图中,挖去的所有三角形的面积和为(用含n的代数式表示).【答案】解:观察这几个图,可以看出来,分别在每个图形中,以每个小白三角形为一个基本图形,那么在这个图形中,就会有很多以一个白色三角形为基础的图形.则可以观察出规律,在第N个图形中,会有4n个基本形;也可以看出有3n白色三角形.那么剩余部分的面积就应该是:×大三角形的面积,即×大三角形的面积,那么第④个图中,剩余图形的面积为或,∵三角形的面积是1第n(n为正整数)个图中,挖去的所有三角形的面积和为:1﹣.故答案为:或;1﹣.10.如图,已知:在梯形ABCD中,AD∥BC,AD=3,BC=5,点E在AB上,且AE:EB=2:3,过点E作EF∥BC交CD于F,则EF 的长是.【答案】解:过点A作AN∥CD,分别交EF,BC于点M,N,∵AD∥BC,EF∥BC,∴AD∥EF∥BC,∴四边形AMFD与四边形ANCD是平行四边形,∴CN=MF=AD=3,∴BN=BC﹣CN=5﹣3=2,∵EF∥BC,∴△AEM∽△ABN,∴EN:BM=AE:AB,∵AE:EB=2:3,∴AE:AB=2:5,∴EM=BN=0.8,∴EF=EM+FM=0.8+3=3.8.故答案为:3.8.11.如图,在Rt△ABC中,∠C=90°,点D在边AB上,线段DC 绕点D逆时针旋转,端点C恰巧落在边AC上的点E处.如果=m,=n.那么m与n满足的关系式是:m=(用含n的代数式表示m).【答案】解:作DH⊥AC于H,如图,∵线段DC绕点D逆时针旋转,端点C恰巧落在边AC上的点E处,∴DE=DC,∴EH=CH,∵=n,即AE=nEC,∴AE=2nEH=2nCH,∵∠C=90°,∴DH∥BC,∴=,即m===2n+1.故答案为:2n+1.12.如图,直线y=x+1与x轴交于点A,与y轴交于点B,△BOC 与△B′O′C′是以点A为位似中心的位似图形,且相似比为1:3,则点B的对应点B′的坐标为.【答案】解:∵直线y=x+1与x轴交于点A,与y轴交于点B,令x=0可得y=1;令y=0可得x=﹣2,∴点A和点B的坐标分别为(﹣2,0);(0,1),∵△BOC与△B′O′C′是以点A为位似中心的位似图形,且相似比为1:3,∴==,∴O′B′=3,AO′=6,∴B′的坐标为(﹣8,﹣3)或(4,3).故答案为:(﹣8,﹣3)或(4,3).13.如图,△ABC中,∠ACB=90°,AC=8cm,BC=6cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A 的方向运动,设E点的运动时间为t秒(0≤t<15),连接DE,当△BDE是直角三角形时,t的值为.【答案】解:当DE⊥AB于点E,设t秒时,E点没有到达B点前,∠BED=90°,∵∠B=∠B,∠ACB=∠BED=90°,∴△BED∽△BCA,∴=,∵∠ACB=90°,AC=8cm,BC=6cm,D为BC的中点,∴AB=10cm,BD=3cm,∴=,解得:t=8.2,设t秒时,当E点到达B点后,∠BED=90°,∵∠B=∠B,∠ACB=∠BED=90°,∴△BED∽△BCA,∴=,∵∠ACB=90°,AC=8cm,BC=6cm,D为BC的中点,∴AB=10cm,BD=3cm,∴=,解得:t=11.8,当DE⊥CB于DE,设t秒时,∠BDE=90°,∵DE∥AC,∴△BED∽△BAC,∴==,∵∠ACB=90°,AC=8cm,BC=6cm,D为BC的中点,∴AB=10cm,BD=3cm,∴=解得:t=5,综上所述:t的值为5s或8.2s或11.8s.故答案为:5s或8.2s或11.8s.14.如图,在△ABC中,AB=9,AC=6,BC=12,点M在AB边上,且AM=3,过点M作直线MN与AC边交于点N,使截得的三角形与原三角形相似,则MN=.【答案】解:如图1,当MN∥BC时,则△AMN∽△ABC,故==,则=,解得:MN=4,如图2所示:当∠ANM=∠B时,又∵∠A=∠A,∴△ANM∽△ABC,∴=,即=,解得:MN=6,故答案为:4或6.15.如图所示,已知点E在AC上,若点D在AB上,则满足条件(只填一个条件),使△ADE与原△ABC相似.【答案】解:已知点E在AC上,若点D在AB上,则满足条件∠B =∠AED(只填一个条件),使△ADE与原△ABC相似,故答案为:∠B=∠AED.16.如图,直线a∥b∥c,直线AC分别交a,b,c于点A,B,C,直线DF分别交a,b,c于点D,E,F.若=,则=.【答案】解:∵=,∴=,∵直线a∥b∥c,∴==,故答案是:.17.已知点P是线段AB的黄金分割点,且AP>BP,AB=4,那么AP=.【答案】解:由于P为线段AB=4的黄金分割点,且AP是较长线段;则AP=AB=×4=2﹣2.故答案为2﹣2.18.如图,在四边形ABCD中,∠BAC=∠BDC=90°,AB=AC=,CD=1,对角线的交点为M,则DM=.【答案】解:在△ABC中,∵∠BAC=90°,且AB=AC=,∴BC===,在△BCD中,∵∠BDC=90°,CD=1,∴BD===3,又∵∠BAC=∠BDC=90°,∠AMB=∠DMC,∴△AMB∽△DMC,∴==,即==,解得:DM=,故答案为:.19.已知△ABC为钝角三角形,其最大边AC上有一点P(点P与点A,C不重合),过点P作直线l,使直线l截△ABC所得的三角形与原三角形相似,这样的直线l可作的条数是.【答案】解:如图1:过点P作PE∥AB的平行线,或者作PD∥BC的平行线,都可使截得的三角形与原三角形相似;过点P可作直线交边AC于点F,使得∠PFC=∠A,可得△CFP∽△CAB,∴有3条;如图2:只有2条.∴这样的直线l可作的条数是3条或2条.故答案为:3或2.20.已知AM是△ABC中BC边上的中线,P是△ABC的重心,过P 作EF(EF∥BC),分别交AB、AC于E、F,则=.【答案】解:如图分别过B、C两点作BG、CK平行于AM交直线EF于G、K,则有=,=,两式相加,又平行四边形BCKG中,PM=(BG+CK),而由P为重心得AP =2PM,故.故答案为:1.21.如图,在▱ABCD中,对角线AC,BD相交于点O,P是BC 边中点,AP交BD于点Q.则的值为.【答案】解:连接OP,∵四边形ABCD是平行四边形,∴AO=OC,BO=OD,∵PC=PB,∴OP∥AB,OP=AB,∴==,∴=,故答案为.22.如图,在凸四边形ABCD中,AB∥CD,点E和F在边AB上,且CE∥AD,DF∥BC,DF与CE相交于点G,若△EFG的面积等于1,△CDG的面积等于2,则四边形ABCD的面积等于.【答案】解:∵AB∥CD,∴△EFG∽△CDG,∴S△EFG:S△CDG=()2=()2,又∵△EFG的面积等于1,△CDG的面积等于2,∴()2=()2=,∴==,∴==﹣1,∵DF∥BC,∴△EFG∽△EBC,∴S△EFG:S△EBC=()2=3﹣2,∴S△EBC=3+2,∴S四边形GFBC=3+2﹣1=2+2,同理S四边形GDAE=2+2,∴S四边形ABCD=1+2+2+2+2+2=7+4.故答案为:7+4.23.《九章算术》中记载了一种测量井深的方法.如图所示,在井口B处立一根垂直于井口的木杆BD,从木杆的顶端D观察井水水岸C,视线DC与井口的直径AB交于点E,如果测得AB=1.6米,BD=1米,BE=0.2米,那么AC为米.【答案】解:∵BD⊥AB,AC⊥AB,∴BD∥AC,∴△ACE∽△BDE,∴,∴=,∴AC=7(米),故答案为:7.24.在平面直角坐标系中,将△AOB以点O为位似中心,为位似比作位似变换,得到△A1OB1,已知A(2,3),则点A1的坐标是.【答案】解:∵将△AOB以点O为位似中心,为位似比作位似变换,得到△A1OB1,A(2,3),∴点A1的坐标是:(×2,×3),即A1(,2).故答案为:(,2).25.如图,正方形ABCD中,点N为AB的中点,连接DN并延长交CB的延长线于点P,连接AC交DN于点M.若PN=3,则DM 的长为.【答案】解:∵四边形ABCD为正方形,N为中点,∴AD=PB,AN=BN,∠DAN=∠PBN=90°,在△PBN和△DNA中∴△PBN≌△DNA(SAS),∴DN=PN=3,即DM+MN=3,∵AB∥CD,∴△AMN∽△CMD,∴==,∴DM=2,故答案为:2.26.已知直角坐标系中,点A(0,3),B(﹣6,0).连结AB,作直线y=1,交AB于点P1,过P1作P1Q1⊥x轴于Q1;连结AQ1,交直线y=1于点P2,P2Q2⊥x轴于Q2;…以此类推.则点Q3的坐标为;△PnQnA的面积为=(用含n的代数式表示).【答案】解:①∵点A(0,3),B(﹣6,0),作直线y=1,交AB 于点P1,∴OA=3,OB=6,P1Q1=P2Q2=P3Q3=1,∵P1Q1⊥x轴于Q1,P2Q2⊥x轴于Q2,…,∴P1Q1∥P2Q2∥P3Q3∥…∥PnQn∥y轴,∴△BP1Q1∽△ABO,△P2Q1Q2∽△AQ1O,△P3Q2Q3∽△AQ2O,…,∴,,,…,∴BQ1=2,Q1Q2=,Q2Q3=,…,∴Q1(﹣4,0),Q2(﹣,0),Q3(﹣,0),…,P1(﹣4,1),P2(﹣,1),P3(﹣,0),…,即Q1(﹣,0),Q2(﹣,0),Q3(﹣,0),…,P1(﹣,1),P2(﹣,1),P3(﹣,0),…,∴Qn﹣1(﹣,0),Qn(﹣,0),Pn﹣1(﹣,1)Pn (﹣,1),故点Q3的坐标为:Q3(﹣,0),故答案为:Q3(﹣,0);②∵△AP1Q1的面积=△ABQ1的面积﹣△BP1Q1的面积=•BQ1•OA﹣•BQ1•P1Q1=BQ1,△AP2Q2的面积=△AQ1Q2的面积﹣△Q1P Q2的面积=•Q1Q2•OA﹣•Q1Q2•P2Q2=Q1Q2,…,∴△PnQnA的面积=Qn﹣1Qn=﹣﹣(﹣)=.故答案为:.27.如图,在△ABC中,AD平分∠BAC,与BC边的交点为D,且DC=BC,DE∥AC,与AB边的交点为E,若DE=4,则BE的长为.【答案】解:∵AD平分∠BAC,∴∠BAD=∠CAD,∵DE∥AC,∴∠CAD=∠EDA,∴∠EAD=∠EDA,∴EA=ED=4,∵DE∥AC,∴=,而DC=BC,∴BE=2AE=8.故答案为8.28.如图,在▱ABCD中,延长CD至点E,使DE=DC,连接BE 与AC于点F,则的值是.【答案】解:在▱ABCD中,AB∥CD,AB=CD,∵DE=DC,∴AB=CD=DE=CE,∵AB∥CD,∴△ABF∽△CEF,∴==.故答案为:.29.如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论:①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若=,则3S△EDH=13S△DHC,其中结论正确的有.【答案】解:①∵四边形ABCD为正方形,EF∥AD,∴EF=AD=CD,∠ACD=45°,∠GFC=90°,∴△CFG为等腰直角三角形,∴GF=FC,∵EG=EF﹣GF,DF=CD﹣FC,∴EG=DF,故①正确;②∵△CFG为等腰直角三角形,H为CG的中点,∴FH=CH,∠GFH=∠GFC=45°=∠HCD,在△EHF和△DHC中,,∴△EHF≌△DHC(SAS),∴∠HEF=∠HDC,∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF﹣∠HDC=∠AEF+∠ADF=180°,故②正确;③∵△CFG为等腰直角三角形,H为CG的中点,∴FH=CH,∠GFH=∠GFC=45°=∠HCD,在△EHF和△DHC中,,∴△EHF≌△DHC(SAS),故③正确;④∵=,∴AE=2BE,∵△CFG为等腰直角三角形,H为CG的中点,∴FH=GH,∠FHG=90°,∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD,在△EGH和△DFH中,,∴△EGH≌△DFH(SAS),∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,∴△EHD为等腰直角三角形,过H点作HM垂直于CD于M点,如图所示:设HM=x,则DM=5x,DH=x,CD=6x,则S△DHC=×HM×CD=3x2,S△EDH=×DH2=13x2,∴3S△EDH=13S△DHC,故④正确;故答案为:①②③④.30.在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为12m,那么这栋建筑物的高度为m.【答案】解:设这栋建筑物的高度为xm,由题意得,=,解得x=24,即这栋建筑物的高度为24m.故答案为:24.31.如图,在直角坐标系中,每个小正方形的边长均为1个单位长度,△ABO的顶点坐标分别为A(﹣2,﹣1),B(﹣2,﹣3),O(0,0),△A1B1O1的顶点坐标分别为A1(1,﹣1),B1(1,﹣5),O1(5,1),△ABO与△A1B1O1是以点P为位似中心的位似图形,则P点的坐标为.【答案】解:如图,P点坐标为(﹣5,﹣1).故答案为(﹣5,﹣1).32.如图G为△ABC的重心,GE∥AC,若S△ABC=72,则S△GDE =.【答案】解:∵G为△ABC的重心,∴AD为△ABC的中线,DG:AG=1:2,∴S△ADC=S△ABC=×72=36,∵GE∥AC,∴△DEG∽△DCA,∴=()2=()2=,∴S△DEG=×36=4.故答案为4.33.李老师从“淋浴龙头”受到启发,编了一个题目:在数轴上截取从0到3的对应线段AB,实数m对应AB上的点M,如图1;将AB折成正三角形,使点A,B重合于点P,如图2;建立平面直角坐标系,平移此三角形,使它关于y轴对称,且点P的坐标为(0,2),PM与x轴交于点N(n,0),如图3.当m=时,n=.【答案】解:∵AB=3,△PDE是等边三角形,∴PD=PE=DE=1,以DE的垂直平分线为y轴建立直角坐标系,∵△PDE关于y轴对称,∴PF⊥DE,DF=EF,DE∥x轴,∴PF=,∴△PFM∽△PON,∴=,∵m=,∴FM=﹣,∴=,解得:ON=4﹣2,即n=4﹣2.故答案为:4﹣2.34.如图,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC的面积比是4:9,则OB′:OB=.【答案】解:由位似变换的性质可知,△A′B′C′∽△ABC.∵△A'B'C'与△ABC的面积的比4:9,∴△A'B'C'与△ABC的相似比为2:3,∵A′B′∥AB==,故答案为2:3;35.如图,△ABC∽△ADE,∠BAC=∠DAE=90°,AB=6,AC=8,F为DE中点,若点D在直线BC上运动,连接CF,则在点D运动过程中,线段CF的最小值是.【答案】解:如图,连接CE,∵△ABC∽△ADE,∴∠ACD=∠AEG,又∵∠AGE=∠DGC,∴△AGE∽△DGC,∴=,又∵∠AGD=∠EGC,∴△AGD∽△EGC,∴∠ADG=∠ECG,又∵Rt△ADE中,∠ADG+∠AEG=90°,∴∠ECG+∠ACD=90°,即∠DCE=90°,∵F是DE的中点,∴CF=DE,∵△ABC∽△ADE,∴当AD⊥BC时,AD最短,此时DE最短,当AD⊥BC时,AD==4.8,∵=,即=,∴DE=8,∴CF=×8=4.故答案为:4.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E
D
C
B
A E
R
Q
S
P
D
C
B
A
A D
E
C
B
例1
D
A
第十章图形的相似期末复习教学案
复习目标与要求:
(1)了解比例的基本性质,了解线段的比、成比例线段,了解黄金分割;
(2)认识图形的相似,了解两个三角形相似的概念,探索三角形相似的条件与性质,并能运用它进行有关的计算与说理。
知识梳理:
(1)比例的基本性质,线段的比、成比例线段,黄金分割;
(2)图形的相似,两个三角形相似的概念,三角形相似的条件与性质。
基础知识练习:
1.如图,△ABC 中,D 、E 分别是AB 、AC 上的点,DE ∥BC ,
DE =1,BC =3,AB =6,则AD 的长为 ( ) A 、1 B 、1.5 C 、2 D 、2.5
2.已知:如图,小明在打网球时,要使球恰好能打过网,而且落在离网5米的
位置上, 则球拍击球的高度h 应为 ( ) A 、0.9m B 、1.8m C 、2.7m D 、6m
3.如图,ΔABC 中,∠C=90°,CD ⊥AB ,DE ⊥AC ,则图中与ΔABC 相似的三角形有( )
A .1个
B .2个
C .3个
D .4个
4.在比例尺为1∶5000000的中国地图上,量得宜昌市与武汉市相距7.6厘米,那么宜昌市与武汉市两地的实际相距千米。
5.三角形三边之比为3:5:7与它相似的三角形的最长边是21,则另两边之和是( ) A 、24 B 、21 C 、19 D 、9
6.已知
=
,则
=,
=,
=.
7.已知线段AB ,点P 是它的黄金分割点,AP >PB ,设以AP 为边的正方形面积为S 1,以PB 、AB 为边的矩形面积为S 2,则( )
A.、S 1>S 2B 、S 1=S 2C 、S 1<S 2D 、S 1、S 2大小关系不确定
8.如图,在□ABCD 中直线PS 分别交AB 、CD 的延长线于P 、S ,交BC 、AD 于点Q 、E 、R ,图中相似三角形共有( )
A 、6对
B 、7对
C 、8对
D 、9对
9.如图,∠ABE=∠DBC ,要使△ABC ∽△DBE ,则要添加的条件是或或。
例题分析:
例1、如图,四边形ABCD 中,AD ∥BC ,∠A =90°,BD ⊥DC ,试说明:△ABD ∽△DCB ;
例2、如图,在△ABC 中,∠1=∠2=∠3,试说明:△ABC ∽△DEF. A
C
B
D
F
E
2
5 1 4
3
6
A
C
B
D
图(2)
B
C
A
E
D
图(3)
A
E
C
B
D
图(1)
例3、如图,已知D 、E 分别是△ABC 的边AB 、AC 上的点,若∠A=35°,∠C=85°,
∠AED=60°,则AD·AB=AE·AC,请你说明理由.
例4、如图,矩形ABCD 中,AB ∶BC=1∶2,点E 在AD 上,且DE =3AE ,试说明:△ABC ∽△EAB 。
例5、如图,在正方形网格上有△A 1B 1C 1和△A 2B 2C 2,这两个三角形相似吗?为什么?
例6、如图,D 为△ABC 内一点,E 为△ABC 外一点,且满足AE
AC
DE BC AD AB ==,试说明:①△ABD∽△ACE;
②∠ABD=∠ACE.
例7、如图,在正方形ABCD 中,点M 、N 分别在AB 、BC 上,AB=4,AM=1,BN=0.75 (1)△ADM 与△BMN 相似吗?为什么?
(2)试问:DM 与MN 有什么关系(位置与数量)?
课后练习
1、如图(1), AE 与BD 相交于C ,要△ABC ∽△DEC ,需要条件。
2、已知:如图(2)要△ABC ∽△ACD ,需要条件。
3、已知:如图(3)要△ABE ∽△ACD ,需要条件。
A E
D
C
B A E
D
C
B A 1
B 1
C 1 B 2 A 2 C 2
第4题图
B
A 第5题图
F
E D
C
B
A E
F
D C B
A
第6题图
B A F E D E D
C
B A P
C
D B A (1)E
N M D C B A
F (2)E N M D C B A
4、如图(4),在△ABC 中,AB =4cm ,AC =2cm ,在AB 上取一点D ,当AD =________时, △ACD ∽△ABC 。
5、如图,在△ABC 中,高BD 、CE 相交于点F.图中与△AEC 相似的三角形有( )
A 、1个
B 、2个
C 、3个
D 、4个
6、如图,在□ ABCD 中,E 是AD 的中点,点F 在AB 上,且△CBF ∽△CDE.若AB=10,AD=6,则AF 的值为( )
A 、5
B 、8.2
C 、 6.4
D 、1.8
7、如图,△ABC 是等边三角形,点D 、E 分别在BC 、AC 上,且BD=CE ,AD 、BE 相交于点F 。
(1)试说明△ABD ≌△BCE (2)△AEF 与△BEA 相似吗?为什么?
(3)BD 2
=AD ·DF 吗?为什么?
8、如图,点E 是四边形ABCD 的对角线BD 上的一点,且∠BAC=∠BDC=∠DAE , (1)试说明:BE ·AD=CD ·AE (2)根据图形特点,猜想
DE
BC 可能等于哪两条线段的比(只需写出图形中已有的线段的一组比即可),
并说明理由。
9、已知AB ⊥BD 于D ,AB=6,CD=4,BD=14,则在BD 上是否存在点P ,使以C 、D 、P 为顶点的三角形与以P 、B 、A 为顶点的三角形相似?如果存在,求DP 的长;如果不存在,说明理由。
10、如图①,在直角梯形ABCD 中,AD//BC ,顶点D 、B 分别在AM 、DN 上移动,(点D 不与A 重合,点C 不与B 重合),E 是AB 上的动点,(点E 不与A 、B 重合),在移动过程中始终保持DECE ,且AD+DE=AB=a 。
(1)试说明:△ADE ∽△BEC
(2)如图,当E 在AB 中点时,试说明①AD+BC=CD ②DE 、CE 分别平分∠ADC 、∠NCD ; (3)设AE=m ,则△BEC 的周长是否与m 的值有关?若有关,试用含m 的代数式表示△BEC 的周长;若无关,情说明理由。
(1)B C
(2)B C E F D
C
B A
(2)
A B
C
F
E
D
(1)
D E
F
C
A
B
A(P)
C
y
x
O(D)11、(1)在Rt △ABC 的斜边AB 上异于点A 、B 两点处有一点P ,过点P 作直线截△ABC 使得截得的三角形与△ABC 相似,满足条件的直线有条。
(2)若点P 在AC 上,(与A 、C 不重合),过点P 过点P 作直线截△ABC 使得截得的三角形与△ABC 相似,满足条件的直线有条。
12、如图,在△ABC 中,AD 是中线,CF 为任一直线,CF 交AD 于点E ,交AB 于点F , (1)试说明:
FB
AF
ED AE 2=;
(2)若AB=AC ,E 为AD 中点,那么AB 与AF 有什么数量关系?说明理由。
13、如图(1),AB ⊥BD ,CD ⊥BD ,AD 与BC 相交于点E ,EF ⊥BD , (1)试说明:
EF
CD AB 111=+;
(2)若将图中的垂直改为斜交,(1)中结论还成立吗?为什么? (3)在(2)中找出S △ABD 、S △BED 和S △BDC 的数量关系,并说明理由。
14、如图,矩形ABCD 的两边在坐标轴上,点D 与原点重合,对角线BD 所在直线的函数关系式为
x y 4
3
=
,AD=8。
矩形ABCD 沿DB 方向以每秒1个单位长度的速度移动,同时点P 从点A 出发匀速移动,沿矩形ABCD 的便经过点B 到达点C ,用了14秒。
(1)求矩形ABCD 的周长。
(2)图形移动5秒时,求点P 的坐标。
(3)设移动时间为t ,当0≤t ≤6时,点P 所经过的路线是一条线段,求出线段所在直线的函数关系式。
(4)当点P 在线段AB 或BC 上移动时,过点P 作x 轴、y 轴的垂线,垂足分别为e 、f ,则矩形PEDO 是否能与矩形ABCD 相似?若能,求出t 的值;若不能,说明理由。