初一数学上册第一章与第二章知识点与习题
初一数学上册第一章与第二章知识点与习题.doc

第二章:整式加减单项式一、定义:数与字母乘积的代数式。
(单独的一个数或单独的一•个字母也是单项式) 重点提醒:单项式屮不能含有加、减运算,只含有乘法、乘方运算和数字作为分母的除法运算,其中分母(除数)不能为0,分母不能为字母。
如:鱼是单项式,辿丄空不3 3 x y是单项式。
3 Y例:在代数式-,-j+2-5m中 _________ 为单项式,_____ 为多项式.a 4二、单项式的系数单项式包扌舌数字因数和字母因数两个方面,其中数字因数叫单项式的系数。
重点提醒:(1)单项式的系数包括数字前面的符号。
如-5x2y单项式的系数为-5(2)单项式的系数是带分数时,通常写成假分数。
三、单项式的次数单项式的次数:一个单项式屮所有字母的指数和叫做这个单项式的次数。
重点提醍:(1)单项式的次数仅仅与字母有关,单个字母的次数是1,单独一个非零数的次数是0比如,单项式b次数为1;单项式-6次数为0;单项式7X102ab2c次数为4,与102无关(2)在单项式屮系数与数字因数有关,次数与字母因数有关。
(3)为什么单独一个非零数的次数是0〈1〉在单项式的次数表示所有字母的指数和,单独一个非零数所指的是一个常数项,常数项里面没有字母,所以常数项的次数是0。
<2) “单独一个”指单项式,“非零数”指常数,“次数”是所冇字母的指数和,“0 “指所冇字母的指数都是0比如单项式-6,也可以看成是-6XaO=-6Xl=-6,所以单独一个非零数的次数是0例、—才的系数是一’次数是一多项式一、 定义:几个单项式的和叫多项式,多项式中,每个单项式叫多项式的项,其中不含字母的项叫常数项。
例:下列说法正确的是()•A.整式就是多项式C. X 4+2X 3是七次二项次 二、多项式的次数多项式的次数:在一个多项式中,次数最高的项的次数叫这个多项式的次数 重点提醒:(1) 多项式中,每个单项式叫多项式的项,项包括它両面的符号。
如:多项式x3+x2y-xy-6,它的项包括x3、x2y> -xy 、-6(2) 多项式的次数不是所冇项的次数之和,而是次数最高项的次数。
七年级上册第一章知识点加题型

七年级上册第一章知识点加题型为了帮助七年级学生更好地掌握第一章的知识点,本文将介绍第一章的知识点以及常见的题型,希望能够帮助大家更好地备考。
知识点一:整数整数是数学中一个非常基本的概念,我们常见的正整数是1、2、3、4、5、6等等,而负整数是-1、-2、-3、-4、-5、-6等等。
我们可以用数轴来表示整数,其中整数0位于数轴的中心位置,正整数在0的右边,负整数在0的左边。
常见题型:1. 求两个整数之和/差/积/商。
例如:已知a=3,b=-5,那么a+b=? a-b=? a×b=?a÷b=?2. 比较两个整数的大小。
例如:已知a=2,b=5,比较a与b的大小。
3. 计算整数的绝对值。
例如:已知a=-3,那么|a|=?知识点二:分数分数由分子和分母组成,分母表示分成几份,分子表示取了几份。
例如,1/2表示将整体分成两份,取其中的一份。
常见的题型:1. 将分数化成最简分数形式。
例如:将8/12化为最简分数形式。
2. 将分数转化为小数。
例如:将3/4转化为小数。
3. 比较两个分数的大小。
例如:已知a=1/2,b=3/4,比较a与b的大小。
知识点三:代数式代数式由数字、字母和运算符号组成,其中运算符号包括加号、减号、乘号、除号、括号等。
代数式中的字母可以表示任何数字,这样的字母称为未知量或变量。
常见的题型:1. 求代数式的值。
例如:已知a=2,b=3,求a+b、a-b、a×b、a÷b等。
2. 化简代数式。
例如:将2x+3x化为x的系数形式。
知识点四:图形图形是几何学中的基本概念,包括点、直线、线段、射线、角度、平面图形、立体图形等。
常见的题型:1. 识别图形。
例如:识别出图形中的点、直线、线段、射线等。
2. 计算图形的面积和周长。
例如:已知矩形的长是3cm,宽是2cm,求其面积和周长。
3. 判断图形的位置关系。
例如:判断两条直线是否相交,以及相交的类型是什么。
以上就是七年级上册第一章的知识点以及常见的题型,希望本文对大家备考有所帮助,祝大家取得好成绩!。
人教版初中数学七年级上册第一二章知识点总结及典型例题剖析.

人教版七年级数学知识点第一章有理数1.1正数和负数①把0以外的数分为正数和负数。
0是正数与负数的分界。
(既不是正数也不是负数)②负数:比0小的数正数:比0大的数0既不是正数,也不是负数1.2有理数1.2.1有理数①正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
②所有正整数组成正整数集合,所有负整数组成负整数集合。
正整数,0,负整数统称整数。
1.2.2数轴①具有原点,正方向,单位长度的直线叫数轴。
1.2.3相反数①只有符号不同的数叫相反数。
②0的相反数是0 正数的相反数是负数负数的相反数是正数1.2.4绝对值①绝对值|a|②性质:正数的绝对值是它的本身负数的绝对值的它的相反数0的绝对值的01.2.5数的大小比较①数学中规定:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。
一般取右为正方向谛賁钔憊賊谒对悅創镀頑怄簀詁畝鑰饰斬粝渎图颏顥軺頊证測笕诙钔薺師書闈鉬饞胶夹讳詔綠锆颞閬虚尴執啬丽鯤锛饅绣饲韌铃铫冈濒匦。
②正数大于0,0大于负数,正数大于负数。
两个负数,绝对值大的反而小。
1.3有理数的加减法1.3.1有理数的加法①同号两数相加,取相同的符号,并把绝对值相加。
1+1=2 (-2)+(-2)=-4②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
蜗鵜帧铸疠綻麦铄驊試请網钉坏燜鏟譎鸚銷贺鲨綈鸽鸱濺巯摻垒鸩捣晔箋閆攏慘铁蕆澮鈣忾针银觇诣輇鋮憤垆騁慣凫务唢鯛侣嗫丧愤绫懶。
(-4)+3=-1(-3)+(+3)=0③一个数同0相加,仍得这个数。
④加法交换律:两个数相加,交换加数的位置,和不变。
a+b=b+a⑤加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
(a+b)+c=(a+c)+b1.3.2有理数的减法①减去一个数,等于加这个数的相反数。
a-b=a+(-b)1.4有理数的乘除法1.4.1有理数的乘法①两数相乘,同号得正,异号的负,并把绝对值相乘。
七年级数学上册第一、二单元知识点汇总

七年级数学上册第一、二单元知识点汇总七年级数学上册第一、二单元知识点汇总第一章数学与我们同行一、生活数学1、生活中的数学观察、积累生活中常见的数学符号,了解它们表达的意义如:身份证号码、邮政编码……2、生活中的图形观察、认识生活中的图形,感知它们与数学知识的联系如:城市建筑群、超市的商品……二、活动思考1、数学活动——动手操作、探索新知数学活动包括观察、试验、操作、猜想、归纳等。
2、数学思考——规律探索数形结合、从特殊到一般的思想方法图形规律、数字规律三、思想方法转化思想、建模思想、归纳思想、从特殊到一般……四、常见题型探究数字、图形规律题实践操作题图案设计题简单的数字推理题第二章有理数一、正数和负数1、正数和负数的概念(1)负数:比0小的数。
(2)正数:比0大的数。
0既不是正数,也不是负数。
(3)注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)。
②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
2、具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃。
3、0表示的意义(1)0表示“ 没有”,如教室里有0个人,就是说教室里没有人;(2)0是正数和负数的分界线,0既不是正数,也不是负数。
二、有理数1、有理数的概念(1)正整数、0、负整数统称为整数(0和正整数统称为自然数)。
(2)正分数和负分数统称为分数。
(3)正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
2、理解:只有能化成分数的数才是有理数。
(1)π是无限不循环小数,不能写成分数形式,不是有理数。
(2)②有限小数和无限循环小数都可化成分数,都是有理数。
浙教版数学七年级上知识点总结及相关考点习题

⎪⎪⎪⎩⎪⎪⎪⎨⎧有理数⎪⎩⎪⎨⎧)3,2,1:()3,2,1:( 如负整数如正整数整数)0(零⎪⎩⎪⎨⎧----)8.4,3.2,31,21:( 如负分数分数)8.3,3.5,31,21:( 如正分数七年级数学上册第一章 有理数及其概念1.整数:包含正整数和负整数,分数包含正分数和负分数.正整数和正分数通称为正数,负整数和负分数通称为负数.正整数和负整数通称为自然数2.正数:都比0大,负数比0小,0既不是正数也不是负数.正整数、0、负整数、正分数、负分数这样的数称为有理数. 数轴的三要素:原点、正方向、单位长度三者缺一不可.任何一个有理数,都可以用数轴上的一个点来表示.反过来,不能说数轴上所有的点都表示有理数3.相反数:只有符号不同的两个数互为相反数,a a 和-互为相反数,0的相反数是0.在任意的数前面添上“-”号,就表示原来的数的相反数.在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离相等.数轴上两点表示的数,右边的总比左边的大.正数在原点的右边,负数在原点的左边.4.绝对值:数轴上一个数所对应的点与原点的距离叫做该数的绝对值,用“| |”表示.正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.⎪⎩⎪⎨⎧<-=>)0()0(0)0(||a a a a a a 或 ⎩⎨⎧<-≥)0()0(||a a a a a即:当a 是正数时,a a =;当a 是负数时,a a =-;当a =0时,0a =5.绝对值的性质:除0外,绝对值为一正数的数有两个,它们互为相反数;0 ---1 2 3越来越互为相反数的两数除0外的绝对值相等;任何数的绝对值总是非负数,即|a|≥0①对任何有理数a,都有|a|≥0②若|a|=0,则|a|=0,反之亦然③若|a|=b,则a=±b④对任何有理数a,都有|a|=|-a|6.比较两个负数的大小,绝对值大的反而小.比较两个负数的大小的步骤如下:①先求出两个数负数的绝对值;②比较两个绝对值的大小;③根据“两个负数,绝对值大的反而小”做出正确的判断.7.两个负数比较大小,绝对值大的反而小.8.数轴上的两个点表示的数,右边的总比左边的大.第二章有理数的运算1.有理数加法法则:·同号两个数相加,取相同的符号,并把绝对值相加.·异号的两个数相加,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两数相加得0.·一个数同0相加仍得这个数2.灵活运用运算律,使用运算简化,通常有下列规律:①互为相反的两个数,可以先相加;②符号相同的数,可以先相加;③分母相同的数,可以先相加;④几个数相加能得到整数,可以先相加.3.加法交换律:a b b a+=+4.加法结合律:()()++=++a b c a b c5.有理数减法法则:减去一个数等于加上这个数的相反数.6.有理数乘法法则:两数相乘,同号得正,异号得负,绝对值相乘.任何数与0相乘积仍得0.7.有理数减法运算时注意两“变”:①改变运算符号;②改变减数的性质符号变为相反数8.有理数减法运算时注意一个“不变”:被减数与减数的位置不能变换,也就是说,减法没有交换律.有理数的加减法混合运算的步骤:①写成省略加号的代数和.在一个算式中,若有减法,应由有理数的减法法则转化为加法,然后再省略加号和括号;②利用加法则,加法交换律、结合律简化计算.注意:减去一个数等于加上这个数的相反数,当有减法统一成加法时,减数应变成它本身的相反数.9.倒数:如果两个数互为倒数,则它们的乘积为1.如:-2与21、 3553与…等 10.有理数乘法法则: ①两数相乘,同号得正,异号得负,绝对值相乘.②任何数与0相乘,积仍为0.11.乘法交换律:ab ba = 12.乘法结合律:()()ab c a bc = 13.乘法分配律:()a b c ac bc +⨯=+乘法的交换律、结合律、分配律在有理数运算中同样适用.14.有理数乘法运算步骤:①先确定积的符号;②求出各因数的绝对值的积.乘积为1的两个有理数互为倒数.注意:①零没有倒数②求分数的倒数,就是把分数的分子分母颠倒位置.一个带分数要先化成假分数.③正数的倒数是正数,负数的倒数是负数.15.有理数除法法则:·除以一个不等于0的数,等于乘这个数的倒数.·两个有理数相除,同号得正,异号得负,绝对值相除.0除以任何数都得0,且0不能作除数,否则无意义.16.有理数的乘方:求n 个相同因数a 的积的运算叫做乘方,乘方的结果叫做幂.在n a 中a 叫做底数,n 叫做指数,n a 读作a 的n 次幂或a 的n 次方. 注意:①一个数可以看作是本身的一次方,如5=51;②当底数是负数或分数时,要先用括号将底数括上,再在右上角写指数.17.乘方的运算性质:①正数的任何次幂都是正数;②负数的奇次幂是负数,负数的偶次幂是正数; ③任何数的偶数次幂都是非负数;④1的任何次幂都得1,0的任何次幂都得0; ⑤-1的偶次幂得1;-1的奇次幂得-1;⑥在运算过程中,首先要确定幂的符号,然后再计算幂的绝对值.18.有理数混合运算法则:①先算乘方,再算乘除,最后算加减.②如果有括号,先算括号里面的.19.混合运算顺序:· 先算乘方,再乘除,后加减; · 同级运算,从左到右进行;· 如有括号,先算括号内的运算,按小括号、中括号、大括号依次进行. 20.近似数和有效数字:=⨯⨯⨯⨯ an a a a a 个幂与实际接近的数,叫近似数21.有效数字:一般地,一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位这时,从左边第一个非零数 字起到精确到那一位数字止,所有的数字例题精讲1、 -33÷214×-232 – 4-23×- 232 2、 -32+-23 –2×-1033、 -314++-7124、-23--5+-64--125、如果()()0132122=-+-++c b a ,求333c a abc -+的值.考点二、运用运算律进行简便运算 1、-+ 2、-12+16-34+512×-123、117512918--×36-6×+×6 4、492425×-5考点三、与数轴相关的计算或判断1、已知有理数a,b,c 在数轴上的位置如图所示,下列错误的是A 、b+c<0B 、-a+b+c<02、a ,b 在数轴上的位置如图所示,则a ,b ,a +b ,a -b 中,负数的个数是 A .1个 B .2个 C .3个 D .4个3、若a .b .c 在数轴上位置如图所示,则必有a -2-1A .abc >0B .ab -ac >0C .a +b c >0D .a -cb >04、有理数a ,b 在数轴上的位置如图所示,则在a +b ,a -b ,ab ,3a ,23a b s 这五个数中,正数的个数是A .2B .3C .4D .55、有理数a 、b 在数轴上的对应的位置如图所示,则 A .a + b <0 B .a + b >0 C .a -b = 0 D .a -b >06、a 、b 在数轴上的位置如图,化简a = ,b a += ,1+a = .考点四、带绝对值的分类讨论1、若a b =,则a 和b 的关系是2、1___x x -==若,则;123______x x -==若,则.3、已知a 和b 互为相反数,c 和d 互为倒数,x 的绝对值是1,则2()x a b cd x cd -++-= .4、已知ab>0,试求abab b b a a ||||||++的值.考点五、求汽车来回运动最后停在何处的问题1、体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下单位:千米:+15,-4,+13,―10,―12,+3,―13,―17.-11ab1当最后一名教师到达目的地时,小王距离接送第一位教师的出发地什么方向,多少千米2若汽车耗油量为升1千米,这天下午汽车共耗油多少升考点六、科学计数法及近似数的综合1、近似数×109精确到位;近似数万精确到位;近似精确到位2、如果一个近似数是,则它的精确值x的取值范围是A <x<B ≤x<C <x≤D <x<3、我国2013年参加高考报名的总人数约为1230万人,则该人数可用科学记数法表示为人.4、×109是位整数;62100…00用科学计算数表示为考点七、基准量是否发生变化的应用题1、股民小王上星期五买进某股票1000股,每股25元,下表为本周内每日该股票收盘价比前一天的涨跌情况单位:元:+表示收盘价比前一天涨1星期四收盘时,每股是多少元2本周内最高价是每股多少元最低价是每股多少元3已知买进股票时需付‰的手续费,卖出时需付成交额的‰千分之的手续费和3‰的交易税.如果小王在星期五收盘前将全部股票卖出,他的收益情况如何收益=卖股票收入-买股票支出-卖股票手续费和交易税-买股票手续费4谈谈你对股市的看法:2、某摩托车厂本周计划每日生产250辆摩托车,由于工人实行轮休,每日上班的人数不一定相等,实际每日的生产量与计划量相比较的情况如下表.记超出的为正,不足的为负;单位:辆:1本周六生产了多少辆2产量最多的一天比产量最少的一天多生产了多少辆3用简便方法算出本周实际总产量第三章实数知识框图注意掌握以下公式:①⎧=⎨⎩② =将考点与相关习题联系起来考点一、“……说法正确的是……”的题型 1、下列说法正确的是A .有理数只是有限小数B .无理数是无限小数C .无限小数是无理数D .4π是分数2、有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④17的平方根.其中正确的有 A .0个 B .1个 C .2个 D .3个 3、下列结论中正确的是A .数轴上任一点都表示唯一的有理数B .数轴上任一点都表示唯一的无理数 C. 两个无理数之和一定是无理数 D. 数轴上任意两点之间还有无数个点 考点二、有关概念的识别1、下面几个数:.0.34,…π,227其中,无理数的个数有 A. 1 B. 2 C. 3 D. 4 2、下列说法中正确的是3 B. 1的立方根是±1 =±1 D. 5的平方根的相反数3、一个自然数的算术平方根为a,则与之相邻的前一个自然数是 考点三、计算类型题1则下列结论正确的是1322(39)(310)ππ--、4x-12=9考点四、数形结合1. 点A 在数轴上表示的数为35,点B 在数轴上表示的数为5-则A,B 两点的距离为______ 2、如图,数轴上表示2A,B,点B 点A 的对称点为C,则点C 表示的数是 A 2-1 B .12.22 D 2-2 考点五、实数绝对值的应用1、|32232+23-考点六、实数非负性的应用 123|49|07a b a a --=+,求实数a,b 的值.2.已知x-62+2(26)x y -求x-y 3-z 3的值.第四章代数式代数式分类的拓展将考点与相应习题联系起来考点一、代数式的书写是否正确的问题1、下列代数式书写规范的是A.512ab2 B.ab÷c C.a-cbD.m·32、下列代数式书写规范的是A.a÷3 B.8×a C.5a D.212a考点二、去括号的问题1、下列运算正确的是A.-3x-1=-3x-1 B.-3x-1=-3x+1 C.-3x-1=-3x-3 D.-3x-1=-3x+3 2、下列去括号中错误的是A.2x2-x-3y= 2x2-x+3y B.13x2+3y2-2xy=13x2-2xy +3y2C.a2-4-a+1= a2-4a-4 D.- b-2a--a2+b2= - b+2a+a2-b23、下列去括号,错误的有个① x2+2x-1= x2+2x-1,② a2-2a-1= a2-2a-1,③ m-2n-1=m-2n-2,④ a-2b-c=a-2b+cA. 0B. 1C. 2D. 34、去括号:--1-a-1-b=考点三、代数式中与概念有直接关系的题目1、单项式中-27πa2b的系数和次数分别是⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧)(被开方数含有字母无理式分式多项式单项式整式有理式代数式A .-27,4B .27,4C .-27π,3D .27π,3 2.下列代数式中,不是整式的是A. 13a 2+12a+1B. a 2+1bC. m+12D. 2006x+y 3.下列说法正确的是 A. x 2-3x 的项是x 2,3x B. 3a b 是单项式 C. 12,πa,a 2+1都是整式 D. 3a 2bc-2是二次二项式4、若m,n 为自然数,则多项式x m -y n -2m+n 的次数是 A. m B. n C. m+n D. m,n 中较大的数5、下列各项式子中,是同类项的有 组 ① -2xy 3与5y 3x,② -2abc 与5xyz,③ 0与136,④ x 2y 与xy 2,⑤ -2mn 2与mn 2,⑥ 3x 与-3x 2 A. 2 B. 3 C. 4 D. 56、若A 和B 都是三次多项式,则A+B 一定是A. 六次多项式B. 次数不高于三次的多项式或单项式C. 三次多项式D. 次数不低于三次的多项式或单项式0或27、已知-6a 9b 4和5a 4m b n 是同类项,则代数式12m+n-10的值为8、多项式2b-14ab 2-5ab-1中次数最高的项是 ,这个多项式是 次 项式 9、若2a 2m-5b 与mab 3n-2的和是单项式,则m 2n 2=考点四、代数式求值的问题,主要有先化简再直接代入、整体代入、稍作变形后再代入把整式的加减也归入这一类1、若代数式x 2+3x-3的值为9,则代数式3x 2+9x-2的值为 A 、0 B 、24 C 、34 D 、442、已知a-b=2,a-c=12,则代数式b-c 2+3b-c+94的值为A 、-32B 、32C 、0D 、973、若a+b=3,ab=-2,则4a-5b-3ab-3a-6b+ab=4、已知a2-ab=15,b2-ab=10,则代数式3a2-3b2的值为5、先化简,再求值-1 2a-32a-23a2 -632a+13a2 -1,其中a=-26、先化简,再求值13a2-5b2+12ab-5a2-b2-12ab+4a2,其中a=112,b= -1225x-y3-3x-y2+7x-y-5x-y3+x-72-5x-y,其中x-y=137、有这样一道题:计算2x3-3x2y-2xy2-x3-2xy2+y3+-x3+3x2y-y3的值,其中x=12,y=-1,小明把x=12错抄成x= -12,但他的计算结果也是正确的,请你帮他找出原因.8、已知一个多项式与5ab-3b2的和等于b2-2ab+7a2,求这个多项式考点五、用代数式表示实际生活中的问题1、洗衣机每台原价为a元,在第一次降价20%的基础上再降价15%,则洗衣机的现价是每台元2、用20元钱购买x本书,且每本书需另加邮寄费元,则购买这x本书共需要元3、买单价为c元的球拍m个,付出了200元,应找回元.4、为鼓励节约用电,某地对居民用电收费标准作如下规定:每户每月用电如果不超过100度,那么每度电价按a元收费;如果超过100度,那么超过部分每度电价按b元收费,某户居民在一个月内用电160度,该户居民这个月应缴纳电费是元用含a、b的代数式表示;5、某城市自来水费实行阶梯收费,收费标准如下表:1某用户十月份用水30吨,用含a的代数式表示该用户十月份所交的水费2若a=元时,求该用户十月份应交的水费6、某市电话拨号上网有两种收费方式,用户可以任选其一:A计时制:元每分钟;B包月制:60元每月限一部个人住宅电话上网;此外,每一种上网方式都得加收通信费元每分钟.1某用户某月上网的时间为x小时,请分别写出两种收费方式下该用户应该支付的费用;2若某用户估计一个月内上网的时间为25小时,你认为采用哪种方式较为合算7、我国出租车收费标准因地而异,A市为:行程不超过3千米收起步价10元,超过3千米后每千米增收元;B市为:行程不超过3千米收起步价8元,超过3千米后每千米增收元.1填空:某天在A市,张三乘坐出租车2千米,需车费 ____元;2分别计算在A、B两市乘坐出租车10千米的车费;3试求在A市与在B市乘坐出租车xx>3千米的车费相差多少元第五章 一元一次方程1.含有未知数的等式叫做方程,使方程左右两边的值都相等的未知数的值叫做方程的解.只含有一个未知数,未知数的次数是1,这样的方程叫做一元一次方程.运用方程解决问题:1设未知数.2找出相等的数量关系,3根据相等关系列方程,解决问题.2.等式的性质:1、等式两边加或减同一个数或式子,结果仍相等.c b c a b a ±=±=那么如果,2、等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.cb c a c b a bcac b a =≠===那么如果那么如果),0( ,3.移项:把等式一边的某项变号后移到另一边,叫做移项4.解方程步骤:解一元一次方程一般要去分母、去括号、移项、合并同类项、未知数的系5.数化为1等,最后得出a x =的形式.第六章 图形的初步认识1. 线段、射线、直线正确理解直线、射线、线段的概念以及它们的区别:经过两点有一条直线,并且只有一条直线.两点确定一条直线.AOB图12..比较线段的长短线段公理:两点间线段最短;两之间线段的长度叫做这两点之间的距离. 比较线段长短的两种方法: ①圆规截取比较法; ②刻度尺度量比较法.用刻度尺可以画出线段的中点,线段的和、差、倍、分; 用圆规可以画出线段的和、差、倍.两点之间的所有连线中,线段最短.两点间的线段长度,叫做这两点的距离 两点之间线段的长度,叫做这两点之间的距离......... 3角的度量与表示角:有公共端点的两条射线组成的图形叫做角; 这个公共端点叫做角的顶点; 这两条射线叫做角的边. 角的表示法:角的符号为“∠”①用三个字母表示,如图1所示∠AOB②用一个字母表示,如图2所示∠b ③用一个数字表示,如图3所示∠1 ④用希腊字母表示,如图4所示∠β4.角度数的换算:1°=60分,1′=60秒角也可以看成是由一条射线绕着它的端点旋转而成的.如图5一条射线绕它的端点旋转,当终边和始边成一条直线时,所成的角叫做平角...如图6所示:终边继续旋转,当它又和始边重合时,所成的角叫做周角...如图7所示: 5.从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分....b 图2图5平图6 1图3β 图4线.. 6.等角的补角相等,等角的余角相等7.经过直线外一点,有且只有一条直线与这条直线平行.8.如果两条直线都与第三条直线平行,那么这两条直线互相平行. 9.互相垂直的两条直线的交点叫做垂足... 10.平面内,过一点有且只有一条直线与已知直线垂直.11.如图8所示,过点C 作直线AB 的垂线,垂足为O 点,线段CO 的长度叫做点.C .到直线...AB ..的.距离... 周角图8。
初一数学上册必考知识点及重难点

初一数学上册必考知识点及重难点
第一章有理数
1.正数和负数
2.有理数
3.有理数的加减
4.有理数的乘除
5.有理数的乘方
重点:数轴、相反数、绝对值、有理数计算、科学计数法、有效数字
难点:绝对值
易错点:绝对值、有理数计算
中考必考:科学计数法、相反数(选择题)
第二章整式的加减
1.整式
2.整式的加减
重点:单项式与多项式的概念及系数和次数的确定、同类项、整式加减
难点:单项式与多项式的系数和次数的确定、合并同类项易错点:合并同类项、计算失误、整数次数的确定
中考必考:同类项、整数系数次数的确定、整式加减
第三章一元一次方程
1.从算式到方程
2.解一元一次方程----合并同类项与移项
3.解一元一次方程----去括号去分母
4.实际问题与一元一次方程
重点:一元一次方程(定义、解法、应用)
难点:一元一次方程的解法(步骤)
易错点:去分母时,不含有分母项易漏乘、解应用题时,不知道如何找等量关系
第四章图形认识实步
1.多姿多彩的图形
2.直线、射线、线段
3.角
4.课题实习----设计制作长方形形状的包装纸盒
重点:直线、射线、线段、角的认识、中点和角平分线的相关计算、余角和补角,方位角等
难点:中点和角平分线的相关计算、余角和补角的应用
易错点:等量关系不会转化、审题不清
[此文档可自行编辑修改,如有侵权请告知删除,感谢您的支持,我们会努力把内容做得更好]。
人教版七年级数学上册第1--4章知识点总结及对应章节经典练习

人教版七年级数学上册第1--4章知识点总结及对应章节经典练习第一章《有理数》一、正数与负数1.正数与负数表示具有相反意义的量。
问:收入+10元与支出-10元意义相反吗?2.有理数的概念与分类①整数和分数统称有理数,能写成两个整数之比的数就是有理数。
判断:有理数可分为正有理数和负有理数()②零既不是正数,也不是负数。
判断:0是最小的正整数(),正整数负整数统称整数(),正分数负分数统称分数()③有限小数和无限循环小数因都能化成分数,故都是有理数。
判断:0是最小的有理数()④无限不循环小数因为不能化成两个整数之比,固称为无理数,如π,π/2等。
判断:整数和小数统称有理数()二、数轴1.数轴三要素:原点、正方向、单位长度(另:数轴是一条有向直线)2.作用:1)描点:数形结合;2)比较大小:沿着数轴正方向数在逐渐变大;3)直观反映互为相反数的两个点的位置关系;4)绝对值的几何意义;5)有理数都在数轴上,但数轴上的数并非都是有理数。
3.数轴上点的移动规律:“正加负减”向数轴正方向(或负方向)则对应的数应加(或减)4.数轴上以数a 和数b 为端点的线段中点为a 与b 和的一半(如何用代数式表示?)三、相反数1. 定义:若a+b=0,则a 与b 互为相反数 特例:因为0+0=0,所以0的相反数是02.性质:①若a 与b 互为相反数,则a+b=②-a 不一定表示负数,但一定表示a 的相反数(仅仅相差一个负号)③若a 与b 互为相反数且都不为零,a b= ④除0以外,互为相反数的两个数总是成双成对的分布在原点两侧且到原点的距离相等。
⑤互为相反数的两个数绝对值相等,平方也相等。
即:a =a -,()22a a =-四、绝对值1.定义:在数轴上表示数a 点到原点的距离,称为a 的绝对值。
记作a2.法则:1)正数的绝对值等于它本身;2)0的绝对值是0;3)负数的绝对值是它的相反数。
即()()()000a a a a a a >⎧⎪==⎨⎪-<⎩ 0 ()()00a a a a a ≥⎧⎪=⎨-<⎪⎩ ()()00a a a a a >⎧⎪=⎨-≤⎪⎩ 3.一个数的绝对值越小,说明这个数越接近0(离原点越近)。
初一数学上册必考知识点及重难点

初一数学上册必考知识点及重难点
第一章有理数
1.正数和正数
2.有理数
3.有理数的加减
4.有理数的乘除
5.有理数的乘方
重点:数轴、相反数、相对值、有理数计算、迷信计数法、有效数字
难点:相对值
易错点:相对值、有理数计算
中考必考:迷信计数法、相反数(选择题)
第二章整式的加减
1.整式
2.整式的加减
重点:单项式与多项式的概念及系数和次数确实定、同类项、整式加减
难点:单项式与多项式的系数和次数确实定、兼并同类项
易错点:兼并同类项、计算失误、整数次数确实定
中考必考:同类项、整数系数次数确实定、整式加减
第三章一元一次方程
1.从算式到方程
2.解一元一次方程----兼并同类项与移项
3.解一元一次方程----去括号去分母
4.实践效果与一元一次方程
重点:一元一次方程(定义、解法、运用)
难点:一元一次方程的解法(步骤)
易错点:去分母时,不含有分母项易漏乘、解运用题时,不知道如何找等量关系
第四章图形看法实步
1.多姿多彩的图形
2.直线、射线、线段
3.角
4.课题实习----设计制造长方形外形的包装纸盒
重点:直线、射线、线段、角的看法、中点和角平分线的相关计算、余角和补角,方位角等
难点:中点和角平分线的相关计算、余角和补角的运用
易错点:等量关系不会转化、审题不清。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学上册第一章与第二章知识点与习题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一章:有理数一、有理数知识点1:负数⑴ 用正负数表示相反意义的量(增加,减少;零上,零下;向前,向后。
)⑵定义:在正数前面加“—”(读负)的数,(-5,-2.8,3 (4)-) ⑶a -不一定是负数,关键看a 是正数、负数还是0例题:例1:设向东行驶为正,则向东行驶30m 记做 ,向西行驶20m 记做 ,原地不动记做 ,—5m 表示向 行驶5m ,+16m 表示向 行驶16m.。
例2:收入—2000元,表示 。
知识点2有理数:整数和分数统称为有理数。
⑴ 定义:例题:1、76%,5,260,2001,0,120.1,100020,- ,31 -⋅--••,负数有 个,正数有 个,整数有 个,正分数有 个,非负整数有 个。
知识点3.数轴数轴的三要素:原点,正方向,单位长度,三者缺一不可1、写出数轴上A,B,C,D,E 各点表示的数,并用“>”号连接起来。
2、写出大于—4而不大于2的所有的整数,并在数轴上表示出来。
知识点4:相反数例题: a>0 -a <0a=0 -a=0a <0 -a>01、(1)0.1与a 互为相反数,那么a= 。
(2)a-1的相反数是 。
(3)若-x 的相反数是-7.5,则x= 。
(4)如果m 的相反数是最大的负整数,n 的相反数是-2,那么m+n= 。
知识点5:绝对值1、几何意义:在数轴上表示数a 的点离开原点的距离,叫做数a 的绝对值。
a a>02︱a ︱= 0 a=0-a a <0例题:1、实数a 、b 在数轴上位置如图所示,则|a|、|b|的大小关系是 .2、在数轴上表示a 、 b 、 c 三个数的点的位置如图所示,化简式子:|a - b |+|a - c |-| c - b |.c 0 a b知识点6:倒数 (1) 定义:乘积为1的两个数互为倒数,0没有倒数。
即:a,b 互为倒数⇔ab=1注:倒数等于本身的数是1,-1。
例题:1、若a 、b 互为相反数,c 、d 互为倒数,且c =–l ,求cb a cdc 2)(2||2+-+的值.2、下列说法正确的是 。
a o①只有1的倒数等于它的本身。
②-3.5的倒数是3.5。
③零没有倒数。
④0.1的倒数是10。
⑤任何一个有理数a 的倒数都等于a1。
⑥两个数的积等于1,这两个数互为倒数。
知识点7.有理数大小比较例题:1、实数a,b 在数轴上的位置如图所示,是比较a,-a,b,-b 的大小关系。
2、因为-32-,所以,31- 32- 3、若x<y<0,则 -x y, x -y , |x| |y|二、有理数的运算1、有理数的加法1、有理数加法的运算律加法交换律:a +b =b +a加法结合律:(a+b)+c=a+(b+c)重点:先确定符号,再计算例题:1、下列说法正确的是①若两个数的和为正数,则这两个数都是正数。
②两个有理数相加,和一定大于每一个加数。
③两个有理数的和可能为0。
④两个有理数的和可能等于其中一个加数。
⑤若a 与-2互为相反数,则a+(-2)=0。
2、如果|x|=2,|y|=3, 则①x,y 同号,x+y=②x,y异号,x+y=2.有理数的减法法则:减去一个数等于加上这个数的相反数。
字母表示为: a-b=a+(-b)例题:下列说法正确的是 。
①在有理数的减法中,被减数不一定比减数或差大。
②两个相反数相减得零。
③零减去一个数,仍得这个数。
④负数减去正数,差为负数。
⑤较小的数减去较大的数,所得的差一定为负。
3、有理数的加减混合运算(1)步骤:现将式子写成代数和的形式,再按加法法则进行计算,适当的应用加法运算律例题:1、某校购回面粉10袋,每袋50千克,入库时又重新称量,结果如下,(超过的千克数记为正数,不足的千克数记为负数)。
+0.8,-0.5,+1.1,0,-0.3,+0.4,-1.2,-0.7,+0.6。
问:①该校共买进面粉多少千克②平均每袋面粉重多少③平均每袋面粉比标准量多还是少4、有理数的乘法(1)有理数的乘法法则注:ab>0⇔a,b 同号。
ab<0⇔a,b 异号。
(2)乘法运算律乘法交换律: ab=ba 乘法结合律:(ab)c=a(bc)乘法对加法的分配律:a(b+c)=ab+ac例题:1、如果|a|=2,|b|=3,且ab<0,求3a+2b 的值。
2、下列说法正确的是 。
①一个数与1的积等于它本身。
②一个数与-1的积是它的相反数。
③如果ab=0,则一定有a=b=0。
④一个有理数和它相反数的积一定为负。
⑤积比每个因数都大。
3、如果三个数的积为负数,则这几个数中有 个负因数。
5.有理数的除法(1)法则①除以一个数等于乘以这个数的倒数。
【注】0不能做除数。
即:)0(1a ≠⋅=÷b ba b②两数相除,同号得正,异号得负,并把绝对值相除。
零除以任何一个不等于的数,都得零。
(2)乘除混合运算时,先变除为乘,再按照乘法计算例题:1、()=⎪⎭⎫ ⎝⎛-⨯-÷32327 121118362⎛⎫÷+-= ⎪⎝⎭6、有理数的乘方(1)定义:求几个相同因数积的运算,叫做乘方。
乘方的结果叫做幂,a 叫做底数,n 叫做指数。
=⋅⋅⋅⋅⋅⋅⋅a a a a n an 个特别的,当a=1时,有()()2211111n n --=-=- (n=1,2,3.....) 例题:1、3x 表示( )(A )3x (B )x x x ++ (C )x x x ⋅⋅ (D )3x +2、2010)1(-的值是( )A .1B .—1C .2010D .—20107、有理数的混合运算(1)先算乘方,再算乘除,最后算加减。
(2)同级运算,按照从左至右的顺序进行。
(3)如果有括号,就先算小括号里的,再算中括号里的,然后算大括号里的。
例题:1、有理数a 等于它的倒数,有理数b 等于它的相反数,求20092008a a +的值。
2、用3,-5,7,-13这四个数,进行加、减、成、除运算,每个数字用一次,使其结果为24。
3、322143655314⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-⨯-⎪⎭⎫ ⎝⎛-÷-8、科学记数法(1)定义:一个大于10的数记成na 10⨯的形式。
其中,101<≤a n 是正整数。
像这样的记数法叫做科学记数法。
(2)10的指数n 确定方法:①等于原数的整数位数减1;②等于小数点向右移动的位数。
(3)一般的,10的n 次幂,在1的后面有n 的0。
例题:1、用科学记数法表示下列各数:(1)1万= ; 1亿= ;(2)80000000= ; 76500000-= .2、下列用科学记数法写出的数,原来分别是什么数?8561005.7,102.3,101⨯-⨯⨯ 3、月球轨道呈椭圆形,近地点平均距离为363300千米,远地点平均距离为405500千米 , 用科学记数法表示 : 近地点平均距离为 ,远地点平均距离为__________.4、3)5(-×40000用科学记数法表示为( ) A.125×105 B.-125×105 C.-500×105 D.-5×1069、近似数和有效数字 (1)有效数字:一个近似数,从左边第一个不是0的数字起到精确到的位数止,所有的数字都叫做这个数的有效数字。
(2)近似数的精确度有两种形式:1)精确到哪一位,2)保留几个有效数字。
(3)对于较大的数取近似数时,结果一般要用科学记数法表示,不看幂,只看a1、(1)025.0有 个有效数字,它们分别是 ;(2)320.1有 个有效数字,它们分别是 ;(3)61050.3⨯有 个有效数字,它们分别是 .2、按照括号内的要求,用四舍五入法对下列各数取近似数:(1)0238.0(精确到001.0);(2)605.2(保留2个有效数字);(3)605.2(保留3个有效数字);(4)20543(保留3个有效数字).3、下列由四舍五入法得到的近似数,各精确到哪一位有几个有效数字;4.132)1( (2)0572.0; (3)31008.5第二章:整式加减单项式一、定义:数与字母乘积的代数式。
(单独的一个数或单独的一个字母也是单项式)重点提醒:单项式中不能含有加、减运算,只含有乘法、乘方运算和数字作为分母的除法运算,其中分母(除数)不能为0,分母不能为字母。
如: 是单项式, 不是单项式。
例:在代数式4,3x a ,y +2,-5m 中_____为单项式,_____为多项式.二、单项式的系数单项式包括数字因数和字母因数两个方面,其中数字因数叫单项式的系数。
重点提醒:(1)单项式的系数包括数字前面的符号。
如-5x2y 单项式的系数为-5(2)单项式的系数是带分数时,通常写成假分数。
三、单项式的次数单项式的次数:一个单项式中所有字母的指数和叫做这个单项式的次数。
重点提醒: ab 3 a+b 3 1 5+6 x y(1)单项式的次数仅仅与字母有关,单个字母的次数是1,单独一个非零数的次数是0比如,单项式b 次数为1;单项式-6次数为0;单项式7×102ab2c 次数为4,与102无关(2)在单项式中系数与数字因数有关,次数与字母因数有关。
(3)为什么单独一个非零数的次数是0〈1〉在单项式的次数表示所有字母的指数和,单独一个非零数所指的是一个常数项,常数项里面没有字母,所以常数项的次数是0。
〈2〉 “单独一个”指单项式,“非零数”指常数,“次数”是所有字母的指数和,“0“指所有字母的指数都是0比如单项式-6,也可以看成是-6×a0=-6×1=-6,所以单独一个非零数的次数是0例、-232y x 的系数是_____,次数是_____.多项式一、 定义:几个单项式的和叫多项式,多项式中,每个单项式叫多项式的项,其中不含字母的项叫常数项。
例:下列说法正确的是( ).A .整式就是多项式B .π是单项式C .x 4+2x 3是七次二项次D .315x -是单项式二、多项式的次数多项式的次数:在一个多项式中,次数最高的项的次数叫这个多项式的次数 重点提醒:(1)多项式中,每个单项式叫多项式的项,项包括它前面的符号。
如:多项式x3+x2y-xy-6,它的项包括x3、x2y 、-xy 、-6(2)多项式的次数不是所有项的次数之和,而是次数最高项的次数。
如:多项式x3+x2y-xy-6,它是三次四项式,最高次项是x3、x2y其中特别关注含x的最高次项是x3,含x的最高次项的系数是1(x3的系数)(3)多项式没有系数概念,但对多项式中的每一项来说都有系数。