数字信号处理米特拉第四版实验六答案
数字信号处理教程课后习题及答案

分析:已知边界条件,如果没有限定序列类型(例如因果序列、反因果序列等), 则递推求解必须向两个方向进行(n ≥ 0 及 n < 0)。
解 : (1) y1 (0) = 0 时, (a) 设 x1 (n) = δ (n) ,
按 y1 (n) = ay1 (n − 1) + x1 (n) i) 向 n > 0 处递推,
10
T [ax1(n)+ bx2 (n)] =
n
∑
[ax1
(n
)
+
bx2
(n
)]
m = −∞
T[ax1(n) + bx2(n)] = ay1(n) + by2(n)
∴ 系统是线性系统
解:(2) y(n) =
[x(n )] 2
y1(n)
= T [x1(n)] = [x1(n)] 2
y2 (n) = T [x2 (n)] = [x2 (n)] 2
β α
n +1
β α β =
n +1− N −n0
N−
N
α −β
y(n) = Nα n−n0 ,
(α = β )
, (α ≠ β )
如此题所示,因而要分段求解。
2 .已知线性移不变系统的输入为 x( n ) ,系统的单位抽样响应
为 h( n ) ,试求系统的输出 y( n ) ,并画图。
(1)x(n) = δ (n)
当n ≤ −1时 当n > −1时
∑ y(n) = n a −m = a −n
m=−∞
1− a
∑ y(n) =
−1
a−m =
数字信号处理实验答案

数字信号处理实验答案第十章上机实验数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理论的同时,做习题和上机实验。
上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。
本章在第二版的基础上编写了六个实验,前五个实验属基础理论实验,第六个属应用综合实验。
实验一系统响应及系统稳定性。
实验二时域采样与频域采样。
实验三用FFT对信号作频谱分析。
实验四IIR数字滤波器设计及软件实现。
实验五FIR数字滤波器设计与软件实现实验六应用实验——数字信号处理在双音多频拨号系统中的应用任课教师根据教学进度,安排学生上机进行实验。
建议自学的读者在学习完第一章后作实验一;在学习完第三、四章后作实验二和实验三;实验四IIR数字滤波器设计及软件实现在。
学习完第六章进行;实验五在学习完第七章后进行。
实验六综合实验在学习完第七章或者再后些进行;实验六为综合实验,在学习完本课程后再进行。
10.1 实验一: 系统响应及系统稳定性1.实验目的(1)掌握求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析、观察及检验系统的稳定性。
2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。
已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。
在计算机上适合用递推法求差分方程的解,最简单的方法是采用MA TLAB语言的工具箱函数filter函数。
也可以用MA TLAB语言的工具箱函数conv 函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。
系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。
重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。
系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。
或者系统的单位脉冲响应满足绝对可和的条件。
系统的稳定性由其差分方程的系数决定。
数字信号处理实验答案完整版

数字信号处理实验答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】实验一熟悉Matlab环境一、实验目的1.熟悉MATLAB的主要操作命令。
2.学会简单的矩阵输入和数据读写。
3.掌握简单的绘图命令。
4.用MATLAB编程并学会创建函数。
5.观察离散系统的频率响应。
二、实验内容认真阅读本章附录,在MATLAB环境下重新做一遍附录中的例子,体会各条命令的含义。
在熟悉了MATLAB基本命令的基础上,完成以下实验。
上机实验内容:(1)数组的加、减、乘、除和乘方运算。
输入A=[1 2 3 4],B=[3 4 5 6],求C=A+B,D=A-B,E=A.*B,F=A./B,G=A.^B并用stem语句画出A、B、C、D、E、F、G。
clear all;a=[1 2 3 4];b=[3 4 5 6];c=a+b;d=a-b;e=a.*b;f=a./b;g=a.^b;n=1:4;subplot(4,2,1);stem(n,a);xlabel('n');xlim([0 5]);ylabel('A');subplot(4,2,2);stem(n,b);xlabel('n');xlim([0 5]);ylabel('B');subplot(4,2,3);stem(n,c);xlabel('n');xlim([0 5]);ylabel('C');subplot(4,2,4);stem(n,d);xlabel('n');xlim([0 5]);ylabel('D');subplot(4,2,5);stem(n,e);xlabel('n');xlim([0 5]);ylabel('E');subplot(4,2,6);stem(n,f);xlabel('n');xlim([0 5]);ylabel('F');subplot(4,2,7);stem(n,g);xlabel('n');xlim([0 5]);ylabel('G');(2)用MATLAB实现下列序列:a) x(n)= 0≤n≤15b) x(n)=e+3j)n 0≤n≤15c) x(n)=3cosπn+π)+2sinπn+π) 0≤n≤15(n)=x(n+16),绘出四个周期。
数字信号处理教程第四版答案

z2 x (n ) [z ]z 0 8 1 (z )z 4
当n 0时,围线内部没有极点 ,故x(n) 0
1 x(n) 7 u(n 1) 8(n) 4
n
z2 部分分式法: X(z) 1 z 4 X(z) z2 A1 A2 故 1 1 z z (z )z z 4 4
数 字 信 号 处 理
第二章 z变换与离散时间傅里叶 变换(DTFT)
2.2 z变换的定义与收敛域
序列x(ห้องสมุดไป่ตู้)的z变换定义为:
n x ( n ) z
X ( z)
n
对任意给定序列x(n),使其z变换收敛的所有z值的集合 称为X(z)的收敛域,上式收敛的充分必要条件是满足绝 对可和
1 z2 A1 [(z ) ] 1 7 1 4 (z )z z 4 4 z2 A 2 [z ] 8 1 z 0 (z )z 4
n
7 1 X( z ) 8,| z | 1 1 4 1 z 4
1 x(n) 7 u(n 1) 8(n) 4
1 | z | 4
n 1
jIm[z]
1/4 o
Re[z]
当n 1时,分母中z的阶次比分子中 z的阶次高两阶 或两阶以上,可用围线 外部极点求解
1 (z 2)z n 1 1 n x (n ) [(z ) ] 1 7( ) z 1 4 4 4 z 4
z2 当n 0时,F(z) ,此时围线内部有一阶 极点z 0 1 (z )z 4
1 n x (n ) ( ) u (n ) 2
部分分式法: Z[a n u (n )]
1 , | z || a | 1 1 az
数字信号处理实验报告6 加思考题

实验报告实验名称______________________课程名称院系部: 专业班级:学生姓名:学号:同组人:实验台号:指导教师:成绩:实验日期:华北电力大学(北京)一:实验目的及要求应用离散傅里叶变换DFT 分析模拟信号x(t)的频谱,深刻理解利用DFT 分析模拟信号频谱的原理、分析过程中出现的现象及解决方法。
二:实验仪器三:实验原理连续周期信号相对于离散周期信号,连续非周期信号相对于离散非周期信号,都可以通过时域抽样定理建立相互关系。
因此,在离散信号的DFT 分析方法基础上,增加时域抽样的步骤,就可以实现连续信号的DFT 分析。
利用DFT 计算连续周期信号的频谱分析步骤为:(1) 确定周期信号的基本周期T0;(2) 计算一个周期内的抽样点数N 。
若周期信号的最高次谐频为p 次谐波pw0 ,则频谱中有2p+1根谱线;若周期信号的频谱无限宽,则认为集中信号90%以上(或根据工程允许而定)能量的前(p+1)次谐波为近似的频谱范围,其余谐波忽略不计。
取N>=2p+1; (3) 对连续周期信号以抽样间隔T= T0 /N 进行抽样,得到x[k] ; (4) 利用FFT 函数对x[k]作N 点FFT 运算,得到X[m]; (5) 最后求得连续周期信号的频谱为X(nw0)=X[m]/N 。
利用DFT 计算连续非周期信号x(t) 的频谱分析步骤为:(1)根据时域抽样定理,确定时域抽样间隔T ,得到离散序列x[k]; (2) 确定信号截短的长度M 及窗函数的类型,得到有限长M 点 离散序列xM[k]=x[k]w[k];(3) 确定频域抽样点数N ,要求N>=M ;(4) 利用FFT 函数进行N 点FFT 计算得到N 点的X[m]; (5由X[m]可得连续信号频谱X(jw)样点的近似值 。
)(~t x四:实验步骤第一:实验内容1. 利用FFT分析信号)t=的频谱。
ux t-e(2t()(1) 确定DFT计算的各参数(抽样间隔,截短长度,频谱分辨率等);(2) 比较理论值与计算值,分析误差原因,提出改善误差的措施。
数字信号处理课后习题答案(全)1-7章

第 1 章 时域离散信号和时域离散系统
(6) y(n)=x(n2)
令输入为
输出为
x(n-n0)
y′(n)=x((n-n0)2) y(n-n0)=x((n-n0)2)=y′(n) 故系统是非时变系统。 由于
T[ax1(n)+bx2(n)]=ax1(n2)+bx2(n2) =aT[x1(n)]+bT[x2(n)]
第 1 章 时域离散信号和时域离散系统
题4解图(一)
第 1 章 时域离散信号和时域离散系统
题4解图(二)
第 1 章 时域离散信号和时域离散系统
题4解图(三)
第 1 章 时域离散信号和时域离散系统
(4) 很容易证明: x(n)=x1(n)=xe(n)+xo(n)
上面等式说明实序列可以分解成偶对称序列和奇对称序列。 偶对称序列可 以用题中(2)的公式计算, 奇对称序列可以用题中(3)的公式计算。
(2) y(n)=x(n)+x(nN+1)k 0
(3) y(n)= x(k)
(4) y(n)=x(n-nn0)n0
(5) y(n)=ex(n)
k nn0
第 1 章 时域离散信号和时域离散系统
解:(1)只要N≥1, 该系统就是因果系统, 因为输出 只与n时刻的和n时刻以前的输入有关。
如果|x(n)|≤M, 则|y(n)|≤M, (2) 该系统是非因果系统, 因为n时间的输出还和n时间以 后((n+1)时间)的输入有关。如果|x(n)|≤M, 则 |y(n)|≤|x(n)|+|x(n+1)|≤2M,
=2x(n)+x(n-1)+ x(n-2)
将x(n)的表示式代入上式, 得到 1 y(n)=-2δ(n+2)-δ(n+1)-0.5δ(2n)+2δ(n-1)+δ(n-2)
数字信号处理课后习题答案(全)1-7章

第 1 章 时域离散信号和时域离散系统
(3) 这是一个延时器, 延时器是线性非时变系统, 下面证明。 令输入为
输出为
x(n-n1)
y′(n)=x(n-n1-n0) y(n-n1)=x(n-n1-n0)=y′(n) 故延时器是非时变系统。 由于
T[ax1(n)+bx2(n)]=ax1(n-n0)+bx2(n-n0) =aT[x1(n)]+bT[x2(n)]
(5)y(n)=x2(n)
(6)y(n)=x(n2)
(7)y(n)=
n
(8)y(n)=x(n)sin(ωxn(m) )
m0
解: (1) 令输入为
输出为
x(n-n0)
y′(n)=x(n-n0)+2x(n-n0-1)+3x(n-n0-2) y(n-n0)=x(n-n0)+2x(n—n0—1)+3(n-n0-2)
第 1 章 时域离散信号和时域离散系统
题8解图(一)
第 1 章 时域离散信号和时域离散系统
(5) 画x3(n)时, 先画x(-n)的波形(即将x(n)的波形以纵轴为中心翻转180°), 然后再右移2位, x3(n)波形如题2解图(四)所示。
第 1 章 时域离散信号和时域离散系统
题2解图(一)
第 1 章 时域离散信号和时域离散系统
题2解图(二)
第 1 章 时域离散信号和时域离散系统
题2解图(三)
分别求出输出y(n)。
(1) h(n)=R4(n), x(n)=R5(n) (2) h(n)=2R4(n), x(n)=δ(n)-δ(n-2) (3) h(n)=0.5nu(n), xn=R5(n)
解: (1) y(n)=x(n)*h(n)=
数字信号处理习题答案及matlab实验详解.pdf

阶跃响应为: y[n] x[n] h[n] x[m]h[n m] h(n m), n m, m 0
m
m0
即 y(0) 0, y(1) 0.25, y(2) 0.5, y(3) 0.75,其余y(n) 1, (n 3)
利用函数 h=impz(b,a,N)和 y=filter(b,a,x)分别绘出冲激和阶跃响应 b=[0,0.25,0.25,0.25,0.25]; a=1; x=ones(1,100); h=impz(b,a,100);y=filter(b,a,x) figure(1) subplot(2,1,1); stem(h,’.’); subplot(2,1,2); plot(y,’.’);
4
解:(1)系统的转移函数是是其单位抽样响应的 Z 变换,因此
H (z)
1 1 z1
1 1 0.3z1
1 1 0.6z1
(1
3 3.8z1 1.08z2 z1)(1 0.3z1)(1 0.6z1)
1
3 1.9
3.8z1 1.08z2 z1 1.08z2 0.18z
3
Z 1
系统的零极点图如下图所示: B=[3,-3.8,1.08]; A=[1,-1.9,1.08,-0.18]; [Z,P,K]=tf2zp(B,A); Zplane(B,A)
5
单位抽样响应:
h(n)
1 2
n1
u
(n
1)
(n)
1
y(n) x(n) * h(n)
2 m1
1 2
m1
e
j (n m)
e
jn
e
jn
e j
1 2 1
2
n
u(n1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
A copy of Program P6_2 is given below:
% Program P6_2 % Parallel Form Realizations of an IIR Transfer num = input('Numerator coefficient vector = '); den = input('Denominator coefficient vector = '); [r1,p1,k1] = residuez(num,den); [r2,p2,k2] = residue(num,den); disp('Parallel Form I') disp('Residues are');disp(r1); disp('Poles are at');disp(p1); disp('Constant value');disp(k1); disp('Parallel Form II') disp('Residues are');disp(r2); disp('Poles are at');disp(p2); disp('Constant value');disp(k2);
Answers:
Q6.1
By running Program P6_1 with num = [2 10 23 34 31 16 4] and den = [1] we arrive at the following second-order factors:
h[0] = 2 β11 = 3 β21 = 2 β12 = 1 β22 = 2 β13 = 1 β23 = 0.5 In other words, with regards to Eq. (6.3) on p. 92 of the Lab Manual, we have
H1
(
z)
=
−2
+
2(−0.4219) − 2 ⎡⎣(−0.4219)(−0.25)
1− 2(−0.25)z−1 + ⎡⎢⎣(−0.25)2
+ +
(0.6201)(0.6614)⎤⎦
(
0.6614
)2
⎤ ⎥⎦
z
−2
z
−1
+ 2(0.3438) − 2 ⎡⎣(0.3438)(−0.25) + (−2.5079)(0.4330)⎤⎦ z−1
For Parallel Form I, the program returns:
Parallel Form I Residues are
-0.4219 + 0.6201i -0.4219 - 0.6201i
0.3438 - 2.5079i 0.3438 + 2.5079i 2.3438 Poles are at -0.2500 + 0.6614i -0.2500 - 0.6614i -0.2500 + 0.4330i -0.2500 - 0.4330i -0.5000 Constant value
Q6.4
By running Program P6_1 with num = [2 10 23 34 31 16 4] and den = [36 78 87 59 26 7 1] we arrive at the following second-order factors:
The result of running the modified program P6_1 is the following: sos =
-2
Note that the complex poles occur in conjugate pairs with resides that are also conjugates. Thus, for a pair of conjugate poles at c + jd and c − jd with residues a + jb and a − jb, we get a pair of terms in the
bd ) z−1
+ d 2 z−2
.
5
For example, for the first pole pair returned for Parallel Form I above, we have a = −0.4219, b = 0.6201, c = −0.2500, and d = 0.6614. Thus, the partial fraction expansion in z−1 is given by (to within roundoff)
H1(z) is NOT a linear-phase transfer function, because the coefficients do not have the required symmetry.
Q6.2
By running Program P6_1 with num = [6 31 74 102 74 31 6] and den = [1] we arrive at the following second-order factors:
h[0] = 6
β11
=
15 6
β21 = 1
β12 = 2 β22 = 3
β13
=
2 3
β23
=
1 3
The block-diagram of the cascade realization obtained from these factors is given below:
H2(z) is a Type I linear-phase transfer function with odd length and even symmetry. 2
Project 6.3 Parallel Realization
Answers:
Q6.5
By running Program P6_2 with num = [3 8 12 7 2 –2] and den = [16 24 24 14 5 1] we arrive at the partial-fraction expansion of H1(z) in z–1 given by:
p0
=
1 18
β11 = 3 β21 = 2
α11
=
1 2
α 21
=
1 4
β12 = 1
β22 = 2
α12
=
2 3
α 22
=
1 3
β13 = 1
β23
=
1 2
α13 = 1
α 23
=
1 3
The block-diagram of the cascade realization obtained from these factors is given below:
( )( )( ) H1(z) = 2 1+ 3z−1 + 2z−2 1+ z−1 + 2z−2 1+ z−1 + 0.5z−2
1
The block-diagram of the cascade realization obtained from these factors is given below:
.
Comparing this partial fraction expansion to Eq. (6.10) on p. 96 of the Lab Manual, we have the following values for the Parallel Form I parameters:
1−
2(−0.25)z−1
+
⎡⎢⎣(
−0.25)2
+
(0.4330)2
⎤ ⎥⎦
z −2
+
1
2.3438 + 0.5z−1
=
−2
+
2.3438 1+ 0.5z−1
+
−0.8438 −1.0312z−1 1+ 0.5z−1 + 0.5z−2
+
0.6876 + 2.3437z−1 1+ 0.5z−1 + 0.25z−2
The block-diagram of the cascade realization of H2(z) with only 4 multipliers is shown below:
6.2 REALIZATION OF IIR TRANSFER FUNCTIONS
Project 6.2 Cascade Realization
Answers:
Q6.3
By running Program P6_1 with num = [3 8 12 7 2 –2] and den = [16 24 24 14 5 1] we arrive at the following second-order factors:
The result of running the modified program P6_1 is the following:
Partial Fraction Expansion given by (read the help for residuez if this isn’t clear to you)
( ) a +
1− (c +
jb
jd )
z −1+Βιβλιοθήκη a−1− (c −
jb
jd )