数学建模优秀作品

合集下载

数学建模大赛获奖作品

数学建模大赛获奖作品

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写):C题我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):山西省运城学院参赛队员(打印并签名) :1. 生命科学系:李磊2. 生命科学系:张敏3. 应用化学系:韩海龙指导教师或指导教师组负责人(打印并签名):日期: 2009 年 09 月 14 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号关于卫星或飞船如何合理设置测控点摘要:随着科学技术的发展,我们的航天事业也在蒸蒸日上。

许多的卫星被发射到太空,如气象卫星,地球资源卫星,通信卫星,侦查卫星等。

为了使这些卫星进行正常运作,我们要对它们进行监测和管理,这就要在地球上选择合适的监测点。

为解决这个问题我们需要建立相应的数学模型。

我们设监测站和卫星的运行轨道为,以O 为圆心的同心圆。

一个监测站监控到的范围为弧长BC ,运用正弦定理求出弧长BC 所对的角度α,运用n=απ2就解决了当所有测控站与都与卫星运行轨道共面得问题。

地球自转的同时,卫星的运行轨道也随着地球自转的方向转动,由于转动速度不一样,就有一个经度差量,我们设为S 。

我们若还按监测范围相切的那样分布,运行轨道的有些部分就监测不到,我们要求出在一定的经度差S 时,监测不到的部分d 。

数学建模经典案例

数学建模经典案例

运动 t=24 (每周跳舞8小时或自行车10小时), 14周即可.
2)第二阶段增Βιβλιοθήκη 运动的减肥计划增加运动相当于提高代谢消耗系数
( 0.025) t ( 0.028)
减肥所需时间从19周降至14周
提高12%
减少25%
• 这个模型的结果对代谢消耗系数很敏感. • 应用该模型时要仔细确定代谢消耗系数 (对不同的人; 对同一人在不同的环境).
w(k n) 0.975 [w(k ) 50] 50
n
• 第二阶段:每周c(k)保持Cm, w(k)减至75千克
w(k n) 0.975 [w(k ) 50] 50
n
已知 w(k ) 90, 要求 w(k n) 75, 求n
75 0.975 (90 50) 50
k 10
第一阶段10周, 每周减1千克,第10周末体重90千克 吸收热量为 c(k 1) 12000 200k , k 0,1,,9
1)不运动情况的两阶段减肥计划
• 第二阶段:每周c(k)保持Cm, w(k)减至75千克 基本模型 w(k 1) w(k ) c(k 1) w(k )
减肥计划
某甲体重100千克,目前每周吸收20000千卡热量, 体重维持不变。现欲减肥至75千克.
1)在不运动的情况下安排一个两阶段计划. 第一阶段:每周减肥1千克,每周吸收热量逐渐减少, 直至达到下限(10000千卡); 第二阶段:每周吸收热量保持下限,减肥达到目标. 2)若要加快进程,第二阶段增加运动,试安排计划. 3)给出达到目标后维持体重的方案.
n
lg(25 / 40) n 19 lg 0.975
第二阶段19周, 每周吸收热量保持10000千卡, 体重按

数学建模获奖作品范例

数学建模获奖作品范例

数学建模获奖作品范例近年来,数学建模竞赛在高中和大学生中越来越受欢迎。

数学建模是一种将实际问题转化为数学问题并求解的方法,通过建立数学模型,对问题进行分析和预测,得出有关结论和解决方案。

下面将介绍一些数学建模获奖作品的范例,以展示数学建模的应用和价值。

第一个范例是关于城市交通流量的建模。

城市交通流量是一个复杂的问题,涉及到车辆的流动、道路的拥堵、信号灯的控制等多个因素。

一支参赛团队利用数学建模的方法,通过收集城市交通数据和实地观察,建立了一个交通流量模型。

他们使用了微分方程和概率统计等数学工具,对车辆的速度、密度和流量进行了建模和预测。

通过模型的分析,他们提出了一些优化交通流量的方法,如调整信号灯的时长、增加道路的容量等。

他们的建模方法和解决方案得到了专家的肯定,并在数学建模竞赛中获得了一等奖。

第二个范例是关于物种扩散的建模。

物种扩散是生态学中的一个重要问题,研究物种的扩散过程对于了解生态系统的稳定性和保护生物多样性具有重要意义。

一支参赛团队通过数学建模的方法,结合实地调查和数据分析,建立了一个物种扩散模型。

他们使用了偏微分方程和随机过程等数学工具,对物种的扩散速度和扩散范围进行了建模和预测。

通过模型的分析,他们揭示了物种扩散的规律和影响因素,并提出了一些保护生物多样性的建议。

他们的建模方法和研究成果在数学建模竞赛中获得了特等奖。

第三个范例是关于金融风险管理的建模。

金融风险管理是一个重要的经济问题,涉及到金融市场的波动、投资组合的风险等多个因素。

一支参赛团队利用数学建模的方法,通过收集金融数据和分析市场趋势,建立了一个金融风险管理模型。

他们使用了时间序列分析、随机过程和蒙特卡洛模拟等数学工具,对金融资产的风险价值进行了建模和预测。

通过模型的分析,他们提出了一些风险管理的策略,如分散投资、对冲交易等。

他们的建模方法和风险管理方案在数学建模竞赛中获得了一等奖。

以上是关于数学建模获奖作品的三个范例。

这些范例展示了数学建模在不同领域中的应用和价值。

数学建模 全国一等奖 作品

数学建模 全国一等奖 作品

数学建模全国一等奖作品
全国大学生数学建模竞赛是由中国工业与应用数学学会(CSIAM)主办的全国性数学建模竞赛,目前已成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛。

获得全国一等奖的作品如下:
《基于热功率优化的定日镜场设计》:由王林君老师指导、朱锐等同学完
成的一等奖作品,在绿色能源背景下,针对定日镜场这一能源技术展开研究,确定定日镜合适的规模与布局。

《古代玻璃制品的成分分析与鉴别》:由温州商学院基础教学部潘建丹老
师指导的本科组参赛队伍顾依群、杨昕恬、林瑞博三位同学(信息工程学院)完成的参赛作品。

此外,获得全国一等奖的作品还有很多,建议通过官方渠道了解更多获奖作品。

第二期全国数学建模微课程(案例)教学竞赛获奖结果

第二期全国数学建模微课程(案例)教学竞赛获奖结果

第二届全国数学建模微课程(案例)教学竞赛获奖结果“第二届全国数学建模微课程(案例)教学竞赛”(以下简称建模微课竞赛)是由中国工业与应用数学学会数学模型专业委员会和全国大学生数学建模竞赛组委会联合主办,高等教育出版社协办。

自2017年12月通知发出之后,得到了全国高校相关教师们的积极响应和参与。

本次建模微课竞赛分两个阶段,第一阶段为初赛,对所有参赛作品的文稿、PPT课件和教学视频等材料由同行专家进行了认真的评审,在众多的参赛作品中评选出26项有代表性的作品进入第二阶段的现场授课决赛。

第二阶段的决赛于2018年7月在哈尔滨举行的“2018年全国数学建模培训与应用研究研讨会”期间进行,采用现场授课的方式,每个参赛教师就参赛作品进行时长不超过30分钟的现场授课,要求从案例的背景、问题提法、模型的建立与求解过程和结果的分析等内容进行授课。

决赛的现场授课分为两个场地同时进行,邀请了16名国内的同行专家评委现场对所有作品的授课效果进行评判打分,并有来自全国各高校的400余名同行教师聆听了决赛授课。

决赛主要依据案例的原创性、新颖性和应用价值、授课内容的组织设计和授课效果等方面进行评价。

经过一整天紧张激烈的竞赛,最后汇总专家评委的评分和参赛教师的相互评分,评选确定出一等奖4项,二等奖8项,三等奖14项(获奖作品名单见附件)。

本次建模微课竞赛是第二次举办这类活动,获得了很好的效果,并受到了广大数学建模教师的欢迎。

参赛作品所涉及的案例多数取材于实际科研和现实生活的原创性案例,也包括一些经典案例的推广与应用,为提高各高校的数学建模和数学实验课程的教学起到了促进作用,也为后续数学建模案例的进一步开发利用提供了优秀素材。

本次竞赛活动得到了高等教育出版社的大力支持和资助,为竞赛活动的顺利进行和成功举办提供了有力保障。

对于获奖作品的进一步开发和推广使用,我们将会同高等教育出版社有关部门和参赛者进行协商,将优秀的作品尽快与广大教师见面。

【全国大学生数学建模竞赛获奖优秀论文作品学习借鉴】2015年全国数学建模竞赛C题全国一等奖论文2

【全国大学生数学建模竞赛获奖优秀论文作品学习借鉴】2015年全国数学建模竞赛C题全国一等奖论文2
2
6. 赤经:从春分点沿着天赤道向东到天体时圈与天赤道的交点所夹的角度,成为该天体 的赤经.赤经与时角不同,时角是由天子午圈向西量,而赤经是由春分点向东量,两者方 向相反; 7. 赤纬:从天赤道沿着天体的时圈至天体的角度称为该天体的赤纬.以天赤道为赤纬 0°,向北为正,向南为负,分别从 0°到 90°.
T INT (1461 Y 1900) INT (153 M 2) D TG 36557.5
4
3
24
注:Y 为公元年份,M 为月份数,D 为日期, TG 为观测时的世界时,以时为单位,
INT(Integrate)为取整。
第二步:以日为单位的积日换算为以世纪为单位的积日:
TD2000
T 36525
算公式如下:
jt
365(N
1900)
N
1901 0.5 4
( N 为计算时刻所在的年份)
首先令太阳角度 18 ,然后通过 matlab 编程(程序见附件 1)分别计算出 2005
至 2015 这 11 年元宵夜太阳角度降至 18 所对应的时间。见表 1。
表 1 2005 年—2015 年元宵夜太阳角度由 0 至 18 对应的时间
2 问题的分析
针对问题一,题目要求分别定义“月上柳梢头”时月亮在空中的角度和“黄昏后” 的时间日期与时间。由于诗句“月上柳梢头,人约黄昏后” 的背景是元宵夜,也就是 说在元宵夜“月上柳梢头”和“人约黄昏后”这两个情景会同时出现,此刻的时间、角 度就是问题需要的定义。因此本文首先建立“昏影终”模型确定元宵夜“黄昏后”所对 应的时间段,然后建立“月梢头”模型确定该时间段对应的月亮在空中的角度,最后借 助这两个模型计算出 2015 年“月上柳梢头”和 “人约黄昏后”分别出现的日期与时间。

数学建模竞赛获奖作品

数学建模竞赛获奖作品

新余学院2011年大学生数学建模竞赛承诺书我们仔细阅读了新余学院大学生数学建模竞赛的竞赛规则。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B中选择一项填写): B我们的参赛报名号为(如果设置报名号的话):24参赛队员(打印并签名) :1. 刘水根2. 游凯3. 王娟日期: 2011 年 05 月 15 日评阅编号:新余学院第二届数学建模竞赛评阅专用页最佳旅游路线设计摘要本文主要研究最佳旅游路线的设计问题。

在满足相关约束条件的条件下,实现小张的旅游愿望。

基于对此的研究,建立数学模型,设计出最佳的旅游路线和途径。

第一问没有时间的约束,要求设计合适的旅游路线。

该问题是典型的货郎担(TSP)问题。

我们建立了一个最优规划模型,在将八个旅游景点全部游完的前提下花最少的钱为目的。

从而推出交通费用、住宿餐饮费用和景点花费的函数表达式,给出相应的约束条件,使用lingo编程对模型求解。

推荐方案:新余→福建武夷山→温州梅雨潭→河南嵩山少林寺→四川九寨沟→云南丽江古城→贵州黄果树→广西桂林大漓江→宜春明月山→新余。

预计总费用为约2658.5元人名币。

第二问放松费用的约束,要求游完所有景点。

同样使用第一问的模型,改变时间约束,使用lingo编程得到最佳旅游路线为:新余→宜春明月山→福建武夷山→浙江温州梅雨潭→河南嵩山少林寺→四川九寨沟→云南丽江古城→贵州黄果树→新余。

第三问在一、二问的基础上,增加了时间和费用的先限制,要求设计合适的旅游线路,使在约束条件下,所游景点最多。

数学建模初赛一等奖获奖作品

数学建模初赛一等奖获奖作品
其次,对于高考志愿填报过程中的决策成本进行分析。决策成本的概念包括各个院 校以往的报录比、最低录取分数差等,以最小决策风险为目标。文中通过模糊隶属度和 对策论来分析实际决策成本,评价决策风险。在设置了超出控制线 160、60、30 分的 三个不同分数段的学生以及他们所选取所要报考的目标学校中进行决策成本的评估,最 终给出相应的决策成本度量。学生 1 的决策成本较低,易被所报考的学校录取,学生 2 的决策成本较高,录取的难度较大;学生 2 在决策成本较高的情况下,选择填报中国地 质大学(北京)更易被录取。
图 1. 准则评分曲线图
图 1 中蓝线表示决策的结果最好时的规划建议。红线表示风险最小时的规划建议。 只通过蓝线判断决策时,即在决策结果最好的情况下尽量不考虑决策成本印象,设 置决策结果为最大值,在这样约束条件下,我们可以得到一种牺牲决策成本换取决策结 果的决策建议,这样看来最好结果时学生所承担的风险为接近于 2.7,在整个决策成本 中,该值表示所需学生承担的风险最大。但是改为不考虑结果,仅将成本作为影响决策 的依据时,学生最终的录取志愿可能不理想,如图中,在红线达到最小值时,决策结果 评分只有 0.5,这是一种非常不理想的情况。 折中与平衡两个指标。如果愿意承担一定风险,又希望得到一个可以接受的高校, 那么按照规则取约束条件下的结果最大化,成本最小化。虽然决策结果或者决策成本不 是局部最优的选择,但是我们是在牺牲一部分可以接受范围内的因素得到我们愿意得到 的最好的结果。这是一种全局最优的平衡方法。在实际生活中,考虑众多因素的影响,
5
这是最为实际的决策方案。 模型结果说明两种极端的决策准则是可以有一个这种平衡点的,平衡这两种标准具
有较大的可行性。在本小问中构建的目标规划模型,我们可以将这个结论作为后续工作 的一个大体的约束与支持,讨论如何平衡两大准则。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。

如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):01034所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。

以上内容请仔细核对,提交后将不再允许做任何修改。

如填写错误,论文可能被取消评奖资格。

)日期:2013 年 9 月16 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):车道被占用对城市道路通行能力的影响摘要车道被占用是研究城市交通的一个重要领域。

本题要求建立合理数学模型,成功解决某个道路被堵后交通情况变化的整个过程,为相关部门解决实际问题提供理论依据。

针对问题一,描述事故发生过程中实际交通能力的变化过程。

我们根据视频的分析得出此段路为二级公路。

按照二级路段的通行能力计算公式,在视频1中采集所需的数据,通过Excel 计算并绘制出图5-2。

实际通行能力呈周期性变化,且随着阻塞车辆的增加而降低,但达到一定程度后递减效果不再明显。

针对问题二,分析所占不同道对该横断面交通能力影响差异。

通过对附件3的分析,首先我们考虑的是不同道承担交通任务不同,进而导致需要换道的车辆数不同,换道会降低通行能力。

通过流体力学理论验证了我们的设想。

因此我们采用拟合的方式确定换道次数与实际交通能力的关系,利用Matlab 拟合结果为:23031025.776.66-+⋅⨯-=x N 仅一道和仅三道换道次数比为,所以仅三道比通行比仅一道通行实际交通能力强,由图5-6也可验证此结论。

针对问题三,确定排队长度与横断面实际交通能力、事故持续时间、路段上游车流量的关系。

我们考虑到车流属于交通波,则有T y ω=,综合路口和交通带来的车流以60s 为一周期规律性变化,由此我们建立的交通波模型为:()()()()()()[]()()11211111t t k h t t t t k h k h t y B s ----+-=其中),()(N q f k h =,用0/=dt dy 便可求出极值点,得到了()()[]()()()1112114/k h t t k h k h y B s s -+-=,即车辆排队距离的表达式。

并利用视频1中的数据进行检验,检验结果相对误差为%,在误差允许范围内,基本符合实际情况,可以推广使用。

针对问题四,事故发生在距离上游路口140m 处,上游车流量为1500h pcu / 来确定经过多久车辆长度达到140m 。

我们利用问题三的结论,把堵车距离作为已知量,堵车达到140m 的时间作为未知量。

综合路口状况和交通灯。

我们建立的模型为()()[]()()[]12112114/t k h t t k h k h t B s s +-+-=。

通过分析视频1,求出所需数据,得出车辆排队距离为140m 的时间为5分51秒。

本题综合了车辆变道的影响、路口状况的影响、交通灯变化规律的影响以及本段路的实况信息,建立了数学模型。

考虑较为全面,可以给交通管理部门正确引导车辆行驶、审批占道施工、设计道路渠化方案、设置路边停车位和设置非港湾式公交车站等提供理论依据。

关键词:换道行为;流体力学;Matlab 拟合;交通波一问题重述车道被占用是指因交通事故、路边停车、占道施工等因素,导致车道或道路横断面通行能力在单位时间内降低的现象。

由于城市道路具有交通流密度大、连续性强等特点,一条车道被占用,也可能降低路段所有车道的通行能力,即使时间短,也可能引起车辆排队,出现交通阻塞。

如处理不当,甚至出现区域性拥堵。

车道被占用的情况种类繁多、复杂,正确估算车道被占用对城市道路通行能力的影响程度,将为交通管理部门正确引导车辆行驶、审批占道施工、设计道路渠化方案、设置路边停车位和设置非港湾式公交车站等提供理论依据。

视频1(附件1)和视频2(附件2)中的两个交通事故处于同一路段的同一横断面,且完全占用两条车道。

请研究以下问题:(1)根据视频1(附件1),描述视频中交通事故发生至撤离期间,事故所处横断面实际通行能力的变化过程。

(2)根据问题1所得结论,结合视频2(附件2),分析说明同一横断面交通事故所占车道不同对该横断面实际通行能力影响的差异。

(3)构建数学模型,分析视频1(附件1)中交通事故所影响的路段车辆排队长度与事故横断面实际通行能力、事故持续时间、路段上游车流量间的关系。

(4)假如视频1(附件1)中的交通事故所处横断面距离上游路口变为140米,路段下游方向需求不变,路段上游车流量为1500pcu/h,事故发生时车辆初始排队长度为零,且事故持续不撤离。

请估算,从事故发生开始,经过多长时间,车辆排队长度将到达上游路口。

二基本假设模型假设(1)附件1、附近2中视频所取时间具有代表性,能反映客观事实;(2)事故发生具有偶然性,车流阻塞过程不存在人为干预;(3)只考虑四轮及以上的机动车、电瓶车的交通流量;(4)事故发生只会占用两个相邻车道;三符号说明四问题的分析本题从道路发生交通事故占用车道入手,要求建立模型解决占用后对通行能力的影响,占用不同车道对通行能力的影响,以及估算事故发生后车辆排队长度与相关参数的关系,并能准确计算车辆排队长度达到最大的时间针对问题一,描述事故发生过程中,实际交通能力的变化过程。

我们根据视频里的路面状况,首先确定公路的级别,进而确定所用的求解实际交通能力公式。

求出任意时间段的交通能力,再建立实际交通能力与时间的关系,得到实际交通能力变化过程。

针对问题二,分析所占不同道对该横断面交通能力影响差异。

通过对附件3的分析,首先我们考虑的是不同道承担交通任务不同,进而导致同一横断面不同车道发生事故对该横断面实际通行能力存在差异,因为需要换道的车辆数不同,换道会降低交通能力。

通过对实际交通能力对换道次数作图,得到仅一道和仅三道通行的差异。

针对问题三,确定排队长度与横断面实际交通能力、事故持续时间、路段上油车流量的关系。

我们考虑到车流属于交通波,应符合交通波模型,再综合路口和交通灯带来的车流规律性变化,求出了堵车距离的表达式。

针对问题四,事故发生在距离上游路口140m处,上游车流量为1500pcu/h 来确定经过多久车辆长度达到140m。

我们利用问题三的结论,把堵车距离作为已知量,堵车达到140m的时间作为未知量。

综合路口状况和交通灯,我们建立的模型为交通波模型。

通过分析附件一的视频,求出所需数据,从而得出结果。

五 模型的建立与求解问题一本题要求通过对附件一的认真观察及分析事故所处横断面实际通行能力的变化。

分析其作用是为了确定新建道路的等级,性质,主要技术指标和线形几何要求,确定现有道路系统或某一路段所存在的问题,针对问题提出改进方案和措施,为道路的改建和改善提供依据,作为交通枢纽的规划,设计及交通设施配置的依据,为制定交通组织,交通疏导,交通引导,交通量均衡,交通数量控制盒综合治理等交通系统管理方案提供依据,为制定交通管理,交通控制方案以及交通渠化,信号配时优化方案设计及选择等提供依据。

5.1.1 通行能力的计算首先,我们要知道什么是道路的实际通行能力,道路的通行能力是指在一定的时间段内和在通常的道路,交通,管制条件下,能合理的期望人和车辆通过道路某一断面或地点的最大交通数量。

通行能力一共分为三类,基本通行能力,实际通行能力和设计通行能力。

1.基本通行能力是指道路与交通处于理想情况下,每一条车道(或每一条道路) 在单位时间内能够通过的最大交通量。

作为理想的道路条件,主要是车道宽度应不小于3.65 m , 路旁的侧向余宽不小于1.75 m , 纵坡平缓并有开阔的视野、良好的平面线形和路面状况。

作为交通的理想条件, 主要是车辆组成单一的标准车型汽车, 在一条车道上以相同的速度,连续不断的行驶,各车辆之间保持与车速相适应的最小车头间隔, 且无任何方向的干扰。

在这样的情况下建立的车流计算模式所得出的最大交通量,即基本通行能力。

基本通行能力与行驶车辆之间的最小安全间距公式如下:)/(10006.3/36003600N 00h l VV l h t 辆最大===)(辆车安车安制反h l l V t V l l l l l /2546.320++Φ+=+++=安l 一般取用2m ,t 可取1s ,附着系数Φ与轮胎花纹,路面粗糙度,平整度,表面适度,行车速度等因素有关,如表5-1所示:表5-1 纵向附着系数与车速的关系表对应表中的数据,对小车的安全长度进行计算,小汽车车辆长度一般采用6m 。

本题就把0l 取6m 。

2.计算可能通行能力N 是以基本通行能力为基础考虑到实际的道路和交通状况,确定其修正系数,再以此修正系数乘以前述的基本通行能力,即得实际道路、交通与一定环境条件下的可能通行能力[1]。

影响通行能力不同因素的修正系数为:1)道路条件影响通行能力的因素很多, 一般考虑影响大的因素, 其修正系数有: ①车道宽度修正系数1f ;②侧向净空的修正系数2f ;③纵坡度修正系数3f ;④视距不足修正系数5f ;⑤沿途条件修正系数6f 。

2)交通条件的修正主要是指车辆的组成, 特别是混合交通情况下, 车辆类型众多, 大小不一, 占用道路面积不同,性能不同, 速度不同, 相互干扰大, 严重地影响了道路的通行能力。

一般记交通条件修正系数为6f 。

于是,道路路段的可能通行能力为:)(辆最大h f f f N N /621⋅⋅⋅⋅= 交通条件:是不同类型的车辆换算为同一车型。

对于不同等级的公路又有不同的公式进行具体的计算,根据视频与下图进行匹配,可明显看出此题研究的公路应为二级公路,如图5-1所示。

相关文档
最新文档