excel多元函数线性回归步骤

合集下载

Excel关于求解一元及多元线性回归方程 图解详细

Excel关于求解一元及多元线性回归方程  图解详细

Excel求解一元线性回归方程步骤(图解详细)1.开始-程序-Microsoft Excel,启动Excel程序。

2.Excel程序启动后,屏幕显示一个空白工作簿。

3.选定单元格,在单元格内输入计算数据。

4.选中输入数据,点击“图表向导”按钮。

5.弹出图表向导对话窗,点击XY散点图,选择平滑线散点图,点击下一步。

6.选择系列产生在:列,点击下一步。

7.在图表标题中输入“硝基苯标准曲线”,数值(X)轴输入“硝基苯浓度”,数值(Y)轴输入“HPLC峰面积”。

此外还可以点击“坐标轴”,“网格线”,“图例”,“数据标志”下拉菜单,对其中选项进行选择。

8.点击完成后,即可得到硝基苯的标准曲线图。

9.将鼠标移至图表工作曲线上,单击鼠标右键,选择“添加趋势线”。

10.在“类型”选项中选择“线性”,“选项”中选择“显示公式”,“显示R平方值”,单击确定。

11.单击确定后即可得到附有回归方程的一元线性回归曲线。

12.至此,利用“图表向导”制作回归方程的操作步骤完毕。

利用Excel中“图表向导”制作标准曲线,使用者仅需按照向导说明填入相关信息即可完成图表的制作。

方法简单,适合对Excel了解不多的人员,如果你对Excel函数有一定的了解,那么你可以利Excel函数编制程序完成回归方程的计算。

4.4.2.2通过编制Excel程序计算一元线性回归方程1.打开一个新工作簿,以“一元线性回归方程”为文件名存盘。

2.单击插入,选择名称-定义。

3.在弹出的“定义名称”对话窗中“名称”栏输入“a”,“引用位置”栏输入“=$E$4”,然后按“添加”按钮;再在“名称”栏输入“b”,“引用位置”栏输入“=$E$3”,按“添加”按钮,依次输入下列内容,最后单击确定。

“名称”栏输入内容“引用位置”栏输入内容a =$E$4b =$E$3f =$G$4n =$G$3rf =$G$6rxy =$E$5x =$A$3:$A$888y =$B$3:$B$888aa=$G$2yi1 =$E$12yi2 =$E$134.完成命名后,在相关单元格内输入下列程序内容。

用EXCEL做线性回归分析

用EXCEL做线性回归分析

用EXCEL做线性回归分析线性回归分析是一种常用的统计方法,用于研究两个变量之间的线性关系。

它可以帮助我们理解和预测两个变量之间的关系,并且可通过趋势线进行展示。

在Excel中,线性回归分析可以通过使用内置的回归工具函数来实现。

本文将介绍如何使用Excel进行线性回归分析。

首先,我们需要准备好要进行分析的数据。

在Excel中,我们可以将这些数据输入到一个工作表中的列中,每个变量占一列。

例如,我们有一组x变量和一组y变量的数据,可以将x变量输入到A列,y变量输入到B列。

确保每个数据点都位于一个单独的行。

接下来,我们将使用Excel的数据分析工具进行线性回归分析。

要启用数据分析工具,我们需要先打开Excel的选项菜单。

在选项菜单中,选择工具选项卡,然后点击加载项。

在加载项窗口中勾选"分析工具箱",点击确定以启用该功能。

现在,我们可以使用数据分析工具进行线性回归分析了。

在Excel的数据选项卡上,点击数据分析按钮。

在弹出的对话框中,选择回归,然后点击确定。

Excel将生成回归分析的结果,并将其输出到一个新的工作表中。

在该工作表中,我们可以看到回归方程的系数、截距和相关系数等信息。

此外,Excel还会生成一个散点图,并绘制出回归线。

通过解读回归分析结果,我们可以得到一些关键的信息。

首先,回归方程的系数表示变量之间的关系。

系数越大,表明变量之间的关系越强。

此外,截距表示当自变量为0时,因变量的取值。

相关系数表示两个变量之间的相关性,相关系数值越接近于1或-1,相关性越强。

除了回归分析结果,我们还可以通过散点图来可视化数据。

在这个散点图中,我们可以看到每个数据点的位置以及回归线的趋势。

通过观察散点图,我们可以更好地理解变量之间的关系。

在实际应用中,线性回归分析可以帮助我们预测未来值,控制其他因素的影响,并评估因素对因变量的影响程度。

例如,我们可以利用线性回归分析来研究广告投入与销售业绩之间的关系,以了解广告对销售额的影响。

Excel数据分析工具进行多元回归分析

Excel数据分析工具进行多元回归分析

使用Excel数据分析工具进行多元回归分析使用Excel数据分析工具进行多元回归分析与简单的回归估算分析方法基本相同。

但是由于有些电脑在安装办公软件时并未加载数据分析工具,所以从加载开始说起(以Excel2010版为例,其余版本都可以在相应界面找到)。

点击“文件”,如下图:在弹出的菜单中选择“选项”,如下图所示:在弹出的“选项”菜单中选择“加载项”,在“加载项”多行文本框中使用滚动条找到并选中“分析工具库”,然后点击最下方的“转到”,如下图所示:在弹出的“加载宏”菜单中选择“分析工具库”,然后点击“确定”,如下图所示:加载完毕,在“数据”工具栏中就出现“数据分析”工具库,如下图所示:给出原始数据,自变量的值在A2:I21单元格区间中,因变量的值在J2:J21中,如下图所示:假设回归估算表达式为:试使用Excel数据分析工具库中的回归分析工具对其回归系数进行估算并进行回归分析:点击“数据”工具栏中中的“数据分析”工具库,如下图所示:在弹出的“数据分析”-“分析工具”多行文本框中选择“回归”,然后点击“确定”,如下图所示:弹出“回归”对话框并作如下图的选择:上述选择的具体方法是:在“Y值输入区域”,点击右侧折叠按钮,选取函数Y数据所在单元格区域J2:J21,选完后再单击折叠按钮返回;这过程也可以直接在“Y值输入区域”文本框中输入J2:J21;在“X值输入区域”,点击右侧折叠按钮,选取自变量数据所在单元格区域A2:I21,选完后再单击折叠按钮返回;这过程也可以直接在“X值输入区域”文本框中输入A2:I21;置信度可选默认的95%。

在“输出区域”如选“新工作表”,就将统计分析结果输出到在新表内。

为了比较对照,我选本表内的空白区域,左上角起始单元格为K10.点击确定后,输出结果如下:第一张表是“回归统计表”(K12:L17):其中:Multiple R:(复相关系数R)R2的平方根,又称相关系数,用来衡量自变量x与y之间的相关程度的大小。

利用Excel进行线性回归分析(2)

利用Excel进行线性回归分析(2)

1 利用Excel2000进行一元线性回归分析第一步,录入数据以连续10年最大积雪深度和灌溉面积关系数据为例予以说明。

录入结果见下图(图1)。

图1第二步,作散点图如图2所示,选中数据(包括自变量和因变量),点击“图表向导”图标;或者在“插入”菜单中打开“图表(H)”。

图表向导的图标为。

选中数据后,数据变为蓝色(图2)。

图2点击“图表向导”以后,弹出如下对话框(图3):图3在左边一栏中选中“XY散点图”,点击“完成”按钮,立即出现散点图的原始形式(图4):图4第三步,回归观察散点图,判断点列分布是否具有线性趋势。

只有当数据具有线性分布特征时,才能采用线性回归分析方法。

从图中可以看出,本例数据具有线性分布趋势,可以进行线性回归。

回归的步骤如下:⑴首先,打开“工具”下拉菜单,可见数据分析选项(见图5):图5用鼠标双击“数据分析”选项,弹出“数据分析”对话框(图6):图6⑵然后,选择“回归”,确定,弹出如下选项表(图7):图7进行如下选择:X、Y值的输入区域(B1:B11,C1:C11),标志,置信度(95%),新工作表组,残差,线性拟合图(图8-1)。

或者:X、Y值的输入区域(B2:B11,C2:C11),置信度(95%),新工作表组,残差,线性拟合图(图8-2)。

注意:选中数据“标志”和不选“标志”,X、Y值的输入区域是不一样的:前者包括数据标志:最大积雪深度x(米)灌溉面积y(千亩)后者不包括。

这一点务请注意(图8)。

图8-1 包括数据“标志”图8-2 不包括数据“标志”⑶再后,确定,取得回归结果(图9)。

图9 线性回归结果⑷最后,读取回归结果如下:截距:356.2=a ;斜率:813.1=b ;相关系数:989.0=R ;测定系数:979.02=R ;F 值:945.371=F ;t 值:286.19=t ;标准离差(标准误差):419.1=s ;回归平方和:854.748SSr =;剩余平方和:107.16SSe =;y 的误差平方和即总平方和:961.764SSt =。

利用Excel进行线性回归分析

利用Excel进行线性回归分析

利用Excel进行线性回归分析————————————————————————————————作者: ————————————————————————————————日期:ﻩ文档内容1.利用Excel进行一元线性回归分析2. 利用Excel进行多元线性回归分析1.利用Excel进行一元线性回归分析第一步,录入数据以连续10年最大积雪深度和灌溉面积关系数据为例予以说明。

录入结果见下图(图1)。

图1第二步,作散点图如图2所示,选中数据(包括自变量和因变量),点击“图表向导”图标;或者在“插入”菜单中打开“图表(H)”。

图表向导的图标为。

选中数据后,数据变为蓝色(图2)。

图2点击“图表向导”以后,弹出如下对话框(图3):图3在左边一栏中选中“XY散点图”,点击“完成”按钮,立即出现散点图的原始形式(图4):灌溉面积y(千亩)01020304050600102030灌溉面积y(千亩)图4第三步,回归观察散点图,判断点列分布是否具有线性趋势。

只有当数据具有线性分布特征时,才能采用线性回归分析方法。

从图中可以看出,本例数据具有线性分布趋势,可以进行线性回归。

回归的步骤如下:1. 首先,打开“工具”下拉菜单,可见数据分析选项(见图5):图5用鼠标双击“数据分析”选项,弹出“数据分析”对话框(图6):图62.然后,选择“回归”,确定,弹出如下选项表(图7):图7进行如下选择:X 、Y 值的输入区域(B1:B11,C1:C11),标志,置信度(95%),新工作表组,残差,线性拟合图(图8-1)。

或者:X 、Y 值的输入区域(B2:B11,C2:C11),置信度(95%),新工作表组,残差,线性拟合图(图8-2)。

注意:选中数据“标志”和不选“标志”,X 、Y 值的输入区域是不一样的:前者包括数据标志:最大积雪深度x (米) 灌溉面积y (千亩)后者不包括。

这一点务请注意(图8)。

图8-1包括数据“标志”图8-2不包括数据“标志”3.再后,确定,取得回归结果(图9)。

用Excel进行回归线分析操作

用Excel进行回归线分析操作


第4步:当对话框出现时

在“Y值输入区域”方框内键入Y的数据区域B3:B15 ,在“X值输入区域”方框内键入X的数据区域C3: C15。如果是多元线性回归,则X值的输入区就是除Y 变量以外的全部解释变量。 在“置信度”选项中给出所需的数值(这里我们使用 隐含值95%)。 在“输出选项”中选择输出区域(这里我们选择新工 作表组)。 在“残差”分析选项中选择所需的选项(这里我们暂 时未选)。 结果如下图所示。
下面给出利用Excel求线性回归方程的操作过程


首先,省94-2005年国内生产总值和固定资产 投资完成额资料到Excel工作表中的B3:C15单 元格。然后按下列步骤进行操作。 第1步:选择“工具”下拉菜单。 第2步:选择“数据分析”选项。
第3步:在分析工具中选择“回归”,然后选择“确定。
Excel输出的回归 分析结果回括以下几个部分


第一部分是“回归统计”,这部分主要是回归 分析中的一些常用统计量,包括相关系数( Multiple R)、判定系数(R Square)、调整 判定系数(Adjusted R Square)、估计标准误 差、观测值个数等。 第二部分是参数估计的内容。包括回归方程的 截距(Intercept)斜率(X Variabl)、截距和 斜率的标准误差、用于检验回归系数的统计量 (t Stat)和P-值(P-valu)以及截距和斜率的 置信区间(Lower 95%和Upper 95%)等。

Excel数据管理与图表分析 多元线性回归分析

Excel数据管理与图表分析  多元线性回归分析

Excel数据管理与图表分析多元线性回归分析如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。

其中,线性关系是指两个变量之间存在一次函数关系,就称它们之间存在线性关系。

例如,某公司实现利润Y与销售额X1和营业成本X2的关系,如图13-21所示。

设置选择创建图13-21 创建表格图13-22 设置回归参数在打开的【数据分析】对话框中,选择【回归】选项,并在【回归】对话框中,设置【Y 值输入区域】为“$B$2:$B$6”;【X 值输入区域】为“$C$2:$D$6”;并启用【标志】和【置信度】复选框。

然后,分别启用【残差】栏中的【残差】、【标准残差】和【残差图】复选框,如图13-22所示。

单击【回归】对话框中的【确定】按钮,即可得到如图13-23和13-24所示的效果。

回归分析结果残差图图13-23 回归分析结果图13-24 回归分析残差图从图13-23所示的图中,给出了Multiple R(相关系数)、R Square(判定系数)和排除第三因素的Adjusted R Square(净判定期系数)都小于1;在几十万元的销售量中,估计标准误差仅10万元;以回归平方和与总平方和相比,其比值为71.57%(288.256/402.75=71.57%),相应的残差平方和与总平方和的比值为28.43%(114.494/402.75=28.43%),这些说明了建立的多元线性回归方程拟合程度较准确。

从本节讲述的内容可以看出,使用回归分析工具进行分析数据,可以简便迅速地为经济决策提供可靠的依据。

回归分析工具是利用统计函数运算的,有关回归分析的统计函数,不仅可以应用于直线回归,而且可以应用于曲线回归;不仅能建立回归方程,而且可以进行预测。

excel求回归方程

excel求回归方程

excel求回归方程
如果你正在使用Excel进行数据分析,那么你可能需要求回归方程。

回归方程是一种用来预测未来结果的数学模型,它可以帮助你预测未来数据趋势或者回归分析结果。

首先,打开Excel并打开包含数据的工作簿。

然后,在工作簿中选择一个单元格,键入=线性回归(数组1,数组2)。

在这个公式中,数组1是自变量的数据范围,数组2是因变量的数据范围。

按下回车键后,Excel会自动生成回归方程。

如果你需要更多的回归方程,可以使用多元线性回归(数组1,数组2,数组3)公式。

在这种情况下,数组3是第二个自变量的数据范围。

如果你想更改回归方程的类型,可以在公式中使用不同的回归函数,例如:=指数回归(数组1,数组2)或=对数回归(数组1,数组2)。

在Excel中求回归方程非常简单,只需要几个步骤就可以轻松完成。

无论你是初学者还是专家,使用Excel进行数据分析都是一个很好的选择。

- 1 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多元函数线性回归步骤
1.加载数据分析
第一步:打开2007excel,点击左上角的按钮,如图所示。

第二步:点击右下角的,如图所示。

第三步:点击左侧的加载项,如图所示。

第四步:点击最下面的“转到”,如图所示,然后选中“分析数据库”,点击“确定”。

2.数据的整理
已知 和 , 和 , 和 ,将其整理为
ln
C
ij B ij
P P ,C B
ij ij t t -和
C
B ij ij c c -,见下表。

整理后的数据为:
3.数据分析
第一步:点击excel2007中工具栏的“数据”,然后点击“数据分析”,弹出数据分析的对话框,如图所示。

第二步:选中“回归”,点击确定,弹出对话框,如图所示。

第三步:“Y值输入区域”选择第一列,“X值输入区域”选择后两列,选择“置信度”,“新工作表组”,“残差”和“标准残差”。

如图所示,点击确定。

4.结果分析
结果如图所示。

只需找到如下表所示的内容,
Coefficients(系数)
Intercept(截距)0.38980452(对应γ)
X Variable 1 -0.079587874(对应α)
X Variable 2 -0.003868252(对应β)
出师表
两汉:诸葛亮
先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。

然侍卫之臣不懈于内,忠志之士忘身于外者,盖追先帝之殊遇,欲报之于陛下也。

诚宜开张圣听,以光先帝遗德,恢弘志士之气,不宜妄自菲薄,引喻失义,以塞忠谏之路也。

宫中府中,俱为一体;陟罚臧否,不宜异同。

若有作奸犯科及为忠善者,宜付有司论其刑赏,以昭陛下平明之理;不宜偏私,使内外异法也。

侍中、侍郎郭攸之、费祎、董允等,此皆良实,志虑忠纯,是以先帝简拔以遗陛下:愚以为宫中之事,事无大小,悉以咨之,然后施行,必能裨补阙漏,有所广益。

将军向宠,性行淑均,晓畅军事,试用于昔日,先帝称之曰“能”,是以众议举宠为督:愚以为营中之事,悉以咨之,必能使行阵和睦,优劣得所。

亲贤臣,远小人,此先汉所以兴隆也;亲小人,远贤臣,此后汉所以倾颓也。

先帝在时,每与臣论此事,未尝不叹息痛恨于桓、灵也。

侍中、尚书、长史、参军,此悉贞良死节之臣,愿陛下亲之、信之,则汉室之隆,可计日而待也。

臣本布衣,躬耕于南阳,苟全性命于乱世,不求闻达于诸侯。

先帝不以臣卑鄙,猥自枉屈,三顾臣于草庐之中,咨臣以当世之事,由是感激,遂许先帝以驱驰。

后值倾覆,受任于败军之际,奉命于危难之间,尔来二十有一年矣。

先帝知臣谨慎,故临崩寄臣以大事也。

受命以来,夙夜忧叹,恐托付不效,以伤先帝之明;故五月渡泸,深入不毛。

今南方已定,兵甲已足,当奖率三军,北定中原,庶竭驽钝,攘除奸凶,兴复汉室,还于旧都。

此臣所以报先帝而忠陛下之职分也。

至于斟酌损益,进尽忠言,则攸之、祎、允之任也。

愿陛下托臣以讨贼兴复之效,不效,则治臣之罪,以告先帝之灵。

若无兴德之言,则责攸之、祎、允等之慢,以彰其咎;陛下亦宜自谋,以咨诹善道,察纳雅言,深追先帝遗诏。

臣不胜受恩感激。

今当远离,临表涕零,不知所言。

相关文档
最新文档