EXCEL在多元线性回归分析中的应用

合集下载

基于Excel的地理数据分析多元线性回归分析

基于Excel的地理数据分析多元线性回归分析

基于Excel 的地理数据分析多元线性回归分析多元线性回归分析是一元线性回归分析的推广,或者说一元线性回归分析是多元线性回归分析的特例。

掌握了一元线性回归分析,就不能学习多元线性回归分析方法了。

利用Excel进行多元线性回归与一元线性回归的过程大体相似,操作上有些细节方面的微妙差别。

不过,对于多元线性回归,统计检验的内容相对复杂。

下面以一个简单的实例予以说明。

【例】某省工业产值、农业产值、固定资产投资对运输业产值的影响分析。

通过产值的回归模型,探索影响交通运输业的主要因素。

我们想要搞清楚的是,在工业、农业和固定资产投资等方面,究竟是哪些因素直接影响运输业的发展。

数据来源于李一智主编的《经济预测技术》。

原始数据来源不详。

§2.1 多元回归过程2.1.1 常规分析在Excel 中,多元线性回归大体上可以分为如下几个步骤实现。

第一步,录入数据。

结果如下图所示(图2-1-1)。

第二步,计算过程。

比较简单,分为如下若干个步骤。

(1)打开回归对话框。

沿着主菜单的“工具(T)”→“数据分析(D)…”路径打开(2)“数据分析”对话框,选择“回归”,然后“确定”,弹出“回归”分析选项框,选项框的各(3)选项与一元线性回归基本相同(图2-1-2)。

具体说明如下。

(4)(2)输入选项。

首先,将光标置于“Y值输入区域(Y)”中。

从图2-1-1所示的F1单元(5)格起,至F19止,选中用作因变量全部数据连同标志,这时“Y值输入区域(Y)”的数据区域(6)中立即出现“$F$1:$F$19”。

然后,将光标置于“X值输入区域(X)”中。

从图2-1-1所示的C1单元格起,至E19止,选中用作自变量全部数据连同标志,这时“X值输入区域(X)”中立即出现“$C$1:$E$19”——当然,也可以直接在“X值输入区域(X)”中手动输入地址为“$C$1:$E$19”的单元格范围。

注意,与一元线性回归的设置一样,这里数据范围包括数据标志“工业产值x1”、“农业产值x2”、“固定资产投资x3”和“运输业产值y”。

Excel关于求解一元及多元线性回归方程 图解详细

Excel关于求解一元及多元线性回归方程  图解详细

Excel求解一元线性回归方程步骤(图解详细)1.开始-程序-Microsoft Excel,启动Excel程序。

2.Excel程序启动后,屏幕显示一个空白工作簿。

3.选定单元格,在单元格内输入计算数据。

4.选中输入数据,点击“图表向导”按钮。

5.弹出图表向导对话窗,点击XY散点图,选择平滑线散点图,点击下一步。

6.选择系列产生在:列,点击下一步。

7.在图表标题中输入“硝基苯标准曲线”,数值(X)轴输入“硝基苯浓度”,数值(Y)轴输入“HPLC峰面积”。

此外还可以点击“坐标轴”,“网格线”,“图例”,“数据标志”下拉菜单,对其中选项进行选择。

8.点击完成后,即可得到硝基苯的标准曲线图。

9.将鼠标移至图表工作曲线上,单击鼠标右键,选择“添加趋势线”。

10.在“类型”选项中选择“线性”,“选项”中选择“显示公式”,“显示R平方值”,单击确定。

11.单击确定后即可得到附有回归方程的一元线性回归曲线。

12.至此,利用“图表向导”制作回归方程的操作步骤完毕。

利用Excel中“图表向导”制作标准曲线,使用者仅需按照向导说明填入相关信息即可完成图表的制作。

方法简单,适合对Excel了解不多的人员,如果你对Excel函数有一定的了解,那么你可以利Excel函数编制程序完成回归方程的计算。

4.4.2.2通过编制Excel程序计算一元线性回归方程1.打开一个新工作簿,以“一元线性回归方程”为文件名存盘。

2.单击插入,选择名称-定义。

3.在弹出的“定义名称”对话窗中“名称”栏输入“a”,“引用位置”栏输入“=$E$4”,然后按“添加”按钮;再在“名称”栏输入“b”,“引用位置”栏输入“=$E$3”,按“添加”按钮,依次输入下列内容,最后单击确定。

“名称”栏输入内容“引用位置”栏输入内容a =$E$4b =$E$3f =$G$4n =$G$3rf =$G$6rxy =$E$5x =$A$3:$A$888y =$B$3:$B$888aa=$G$2yi1 =$E$12yi2 =$E$134.完成命名后,在相关单元格内输入下列程序内容。

如何用EXCEL做数据线性拟合和回归分析

如何用EXCEL做数据线性拟合和回归分析

如何用EXCEL做数据线性拟合和回归分析使用Excel进行数据线性拟合和回归分析的过程如下:一、数据准备:1. 打开Excel,并将数据输入到一个工作簿中的其中一列或行中。

2.确保数据已经按照自变量(X)和因变量(Y)的顺序排列。

二、线性拟合:1. 在Excel中选择一个空白单元格,键入“=LINEST(Y数据范围,X数据范围,TRUE,TRUE)”。

-Y数据范围是因变量的数据范围。

-X数据范围是自变量的数据范围。

-最后两个参数设置为TRUE表示计算截距和斜率。

2. 按下“Ctrl +Shift + Enter”键以在该单元格中输入数组公式。

3. Excel将返回一列值,其中包括线性回归方程的系数和其他有关回归模型的统计信息。

-第一个值为截距项。

-第二个值为斜率项。

三、回归分析:1. 在Excel中选择一个空白单元格,键入“=LINEST(Y数据范围,X数据范围,TRUE,TRUE)”。

2. 按下“Ctrl + Shift + Enter”键以在该单元格中输入数组公式。

3. Excel将返回一列值,其中包括线性回归方程的系数和其他有关回归模型的统计信息。

-第一个值为截距项。

-第二个值为斜率项。

-第三个值为相关系数(R^2)。

-第四个值为标准误差。

四、数据可视化:1.选中自变量(X)和因变量(Y)的数据范围。

2.点击“插入”选项卡中的“散点图”图表类型。

3.选择一个散点图类型并插入到工作表中。

4.可以添加趋势线和方程式以可视化线性拟合结果。

-右键单击散点图上的一个数据点,选择“添加趋势线”。

-在弹出的对话框中选择线性趋势线类型。

-勾选“显示方程式”和“显示R^2值”选项以显示线性回归方程和相关系数。

五、解读结果:1.截距项表示在自变量为0时,因变量的预测值。

2.斜率项表示因变量随着自变量变化而变化的速率。

3.相关系数(R^2)表示自变量对因变量的解释力,范围从0到1,越接近1表示拟合的越好。

4.标准误差表示拟合线与实际数据之间的平均误差。

如何使用Excel进行多元统计分析和回归模型

如何使用Excel进行多元统计分析和回归模型

如何使用Excel进行多元统计分析和回归模型随着数据分析和统计学在各个领域的应用越发广泛,Excel作为一种常用的办公软件,也能提供一些强大的数据分析功能。

在本文中,我们将介绍如何使用Excel进行多元统计分析和回归模型。

一、多元统计分析多元统计分析是研究多个自变量对因变量的影响以及它们之间的关系的一种方法。

Excel提供了一些内置函数和工具,可以帮助我们进行多元统计分析。

1. 描述性统计分析描述性统计分析是将数据呈现为有意义的统计数字,包括平均值、中位数、方差等。

在Excel中,可以使用SUM、AVERAGE、MEDIAN等函数来计算这些统计数字。

2. 相关性分析相关性分析用于衡量两个或多个变量之间的关系强度。

Excel提供了CORREL函数,可以计算两个变量之间的相关系数。

相关系数的取值范围为-1到1,接近1表示正相关,接近-1表示负相关,接近0表示无相关。

3. 回归分析回归分析用于建立自变量与因变量之间的数学关系模型。

在Excel 中,可以使用内置的回归工具进行回归分析。

首先,选择需要分析的自变量和因变量的数据,然后打开“数据”选项卡,选择“数据分析”并选择“回归”。

填写相应的参数,并点击“确定”即可生成回归结果报告。

二、回归模型回归模型用于预测因变量在给定自变量的情况下的数值。

Excel提供了多种回归模型,包括线性回归、多项式回归、指数回归等。

1. 线性回归模型线性回归是最常用的回归模型,适用于自变量与因变量呈线性关系的情况。

在Excel中,可以使用内置的线性回归工具进行线性回归分析。

选择自变量和因变量的数据,打开“数据”选项卡,选择“数据分析”并选择“回归”。

在参数设置中选择线性回归,并点击“确定”生成回归结果报告。

2. 多项式回归模型多项式回归适用于自变量与因变量呈多项式关系的情况。

在Excel 中,可以使用数据分析工具中的“回归”选项进行多项式回归分析。

选择自变量和因变量的数据,打开“数据”选项卡,选择“数据分析”并选择“回归”。

利用Excel进行线性回归分析

利用Excel进行线性回归分析

利用Excel进行线性回归分析————————————————————————————————作者: ————————————————————————————————日期:ﻩ文档内容1.利用Excel进行一元线性回归分析2. 利用Excel进行多元线性回归分析1.利用Excel进行一元线性回归分析第一步,录入数据以连续10年最大积雪深度和灌溉面积关系数据为例予以说明。

录入结果见下图(图1)。

图1第二步,作散点图如图2所示,选中数据(包括自变量和因变量),点击“图表向导”图标;或者在“插入”菜单中打开“图表(H)”。

图表向导的图标为。

选中数据后,数据变为蓝色(图2)。

图2点击“图表向导”以后,弹出如下对话框(图3):图3在左边一栏中选中“XY散点图”,点击“完成”按钮,立即出现散点图的原始形式(图4):灌溉面积y(千亩)01020304050600102030灌溉面积y(千亩)图4第三步,回归观察散点图,判断点列分布是否具有线性趋势。

只有当数据具有线性分布特征时,才能采用线性回归分析方法。

从图中可以看出,本例数据具有线性分布趋势,可以进行线性回归。

回归的步骤如下:1. 首先,打开“工具”下拉菜单,可见数据分析选项(见图5):图5用鼠标双击“数据分析”选项,弹出“数据分析”对话框(图6):图62.然后,选择“回归”,确定,弹出如下选项表(图7):图7进行如下选择:X 、Y 值的输入区域(B1:B11,C1:C11),标志,置信度(95%),新工作表组,残差,线性拟合图(图8-1)。

或者:X 、Y 值的输入区域(B2:B11,C2:C11),置信度(95%),新工作表组,残差,线性拟合图(图8-2)。

注意:选中数据“标志”和不选“标志”,X 、Y 值的输入区域是不一样的:前者包括数据标志:最大积雪深度x (米) 灌溉面积y (千亩)后者不包括。

这一点务请注意(图8)。

图8-1包括数据“标志”图8-2不包括数据“标志”3.再后,确定,取得回归结果(图9)。

用EXCEL进行生产函数的多元线性回归分析

用EXCEL进行生产函数的多元线性回归分析

用EXCEL进行生产函数的多元线性回归分析一、相关函数EXCEL电子制表系统中函数的语法分为函数名和参数两部分,参数用圆括号括起来,之间以逗号隔开。

参数可以为单元格区域、数组、函数、常数(逻辑型、数值型等)。

进行回归分析时,主要采用线性回归函数LINEST,辅以使用索引取值INDEX与四舍五入ROUND函数。

1、线性回归函数LINEST。

使用最小二乘法对已知数据进行最佳直线拟合,并返回描述此直线的数组。

因为此函数返回数值数组,所以必须以数组公式的形式输入。

该函数的功能为:运算结果返回一线性回归方程的参数,即当已知一组混合成本为Y 因变量序列值、N组Xi有关自变量因素的数量序列值时,函数返回回归方程的系数bi(i=1,2…n单位变动成本)和常数a(固定成本或费用)。

多元回归方程模型则为:y=b1x1+b2X2……+bnXn+a语法LINEST(known_y's,known_x's,const,stats)Known_y's 是关系表达式 y = mx + b 中已知的 y 值集合。

∙如果数组 known_y's 在单独一列中,则 known_x's 的每一列被视为一个独立的变量。

∙如果数组 known-y's 在单独一行中,则 known-x's 的每一行被视为一个独立的变量。

Known_x's 是关系表达式 y = mx + b 中已知的可选 x 值集合。

∙数组 known_x's 可以包含一组或多组变量。

如果只用到一个变量,只要 known_y's 和 known_x's 维数相同,它们可以是任何形状的区域。

如果用到多个变量,则known_y's 必须为向量(即必须为一行或一列)。

∙如果省略 known_x's,则假设该数组为 {1,2,3,...},其大小与 known_y's 相同。

如何在Excel中使用LINEST函数进行线性回归分析

如何在Excel中使用LINEST函数进行线性回归分析

如何在Excel中使用LINEST函数进行线性回归分析Excel是一款广泛应用于数据分析和处理的电子表格软件,其中的LINEST函数能够进行线性回归分析。

LINEST函数的使用不仅能够帮助我们建立回归模型,还能对数据进行预测和评估。

下面将详细介绍如何在Excel中使用LINEST函数进行线性回归分析。

首先,在Excel中打开一个空白工作簿,在一个或多个列中输入你要进行线性回归分析的数据。

假设我们有两个变量x和y,x的数据在A列中,y的数据在B列中。

其次,选中一个空的单元格,该单元格将用于计算LINEST函数,然后输入以下公式:“=LINEST(B2:B11,A2:A11,TRUE,TRUE)”。

这个公式中的B2:B11代表y的数据列,A2:A11代表x的数据列,TRUE代表将输出附加的统计信息,TRUE代表将输出回归系数。

然后,按下回车键,Excel会自动计算出回归系数和统计信息。

回归系数中,第一个值为截距,后续的值为各个自变量的系数。

统计信息中,包括相关系数R^2、标准误差、F统计量等。

接着,我们可以进一步利用LINEST函数的结果进行数据预测和评估。

比如,我们可以输入新的自变量值,通过回归模型预测因变量的值。

假设我们要预测的自变量值为10,在一个空的单元格中输入公式:“=BETA(1)+BETA(2)*10”,其中BETA(1)和BETA(2)分别代表回归系数中的截距和自变量系数。

最后,按下回车键,Excel会根据线性回归模型计算出预测值。

通过这种方式,我们可以利用LINEST函数对未知数据进行预测。

综上所述,使用Excel中的LINEST函数进行线性回归分析的步骤如下:1. 输入数据,并将自变量和因变量分别放置在不同的列中。

2. 选中一个空的单元格,输入LINEST函数的公式:“=LINEST(因变量数据,自变量数据,TRUE,TRUE)”。

3. 按下回车键,获取回归系数和统计信息。

4. 利用回归系数进行数据预测和评估。

EXCEL和SPSS在回归分析、正交试验设计和判别分析中的应用

EXCEL和SPSS在回归分析、正交试验设计和判别分析中的应用

2) 将分组变量和自变量放入格子的列表里,如图所示,上面的是分组变量,选 择”分类”,下面的是自变量,我们看到这里有个自变量: 舒张压和胆固醇。
3) 点击分组变量文本框, 然后点击定义范围按钮, 由于我们的数据是两分类的, 分别为 1 和 2,设置如下图:
4) 点击统计量按钮,将 Box’s M 和 fisher 项打勾。如下图,点击继续回到判别分 析主界面。点击确定,即可出现分析结果。
能力评分(1-100) ;X2:病人年龄;X3:由诊断到进入研究时间(月) ;X4:肿 瘤类型 (“0”表示鳞癌、 “1”表示小型细胞癌、 “2”表示腺癌、 “3”表示大型细胞癌) ; X5: 两种化疗方法 (“1”表示常规、 “0”表示实验新法) ; Y: 病人的生存时间 (“0”: 表示生存时间短,即生存时间小于 200 天;“1”:表示生存时间长,即生存时间 大于或等于 200 天。 )根据上述分析流程对数据进行分析。
W1=8.294X1+8.055X2-72.740 W2=6.930X1+6.287X2-49.231 若有个样本的舒张压和胆固醇分别为:13.33(X1)和 5.96(X2),带入上述两个判别 式可知 W1=85.82682,W2=80.61642,W1>W2 属于分类 1。
习题:1991 年全国各省市区城镇平均消费情况如 data.xls 的 Sheet7 所示,是判 别以下上海和西藏的归属类,数据见 sheet8。
系的。图 c 中的 Coefficients 为回归方程的系数,因此,回归结果为 y= — 285.0094+1.5598x1+03145x2, 在使用面积不变的情况下, 地产估价每增加 1 万元, 房产销售的平均价格就会提高 1.5598 万元;在房地产估价不变的条件下,使用 面积每增加 1 平方米, 房产销售的平均价格就会提高 0.3145 元; 图 a 中 Adjusted R Square 为调整复测定系数,本例中约为 0.71,它表示两个变量 x1,x2 对导致结 果 y 的贡献,也就是说还有导致结果 y 的原因中有 29%是由除了 x1,x2 以外的因 素造成的。 习题:在黄芪提取工艺的研究中,选择了前煮时间、煎煮次数和加水量进行考 察,实验数据见 data.xls 的 Sheet3,试对实验数据进行多元线性回归,对结果进 行讨论。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

EXCEL 在多元线性回归分析中的应用
高 平/文
在一元线性回归分析中,重点放在了用模
型中的一个自变量X 来估计因变量Y 。

实际
上,由于客观事物的联系错综复杂,一个因变
量的变化往往受到两个或多个自变量的影响。

为了全面揭示这种复杂的依存关系,准确地
测定它们的数量变动,提高预测和控制的精确
度,就要考虑更多的自变量,建立多元回归模
型。

多元回归分析的原理和方法同一元线性回归分析基本相同,但有两个不同点:1.不能用散点图来表示变量之间的关系。

2.多元回归的计算难度要远大于简单线性回归,且变量越多,计算越复杂。

但应用EXCEL 来完成计算将变得简单和轻松。

以下图中的数据为例: 多元线性回归的EXCEL 数据分析操作
方法首先单击工具栏,在弹出的菜单中选择
数据分析 ,在数据分析工具的选项框中选中 回归 ,然后在输入、输出选项以及有关的选项框中进行适当的选择,必须注意在进行自变量X 的输入时要按照已经确定的各个自变量的顺序把所有自变量的单元格引用范围一起
放在X 值的输入区域内。

见下图
:!27!
点击 确定按钮,即可得到线性回归分析的结果。

见下图:
!
!
28
根据上图中的显示结果,可直接写出二元线性回归方程:
Y i=b0+b1X1i+b2X2i=-51.3127+1. 4053x1i+6.3823x2i
b1表示在促销费用固定时,商店的规模大小每增加1平方米,年销售额平均增加1.4053万元;b2表示在商店的规模大小固定时,促销费用每增加1万元,年销售额平均增加6.3823万元。

这里b1即商店的规模大小的回归系数比一元线性回归方程中的回归系数b= 1.6246小,是因为一元线性回归方程只考虑了商店的规模大小对年销售额的影响,忽略了促销费用这一很重要的因素,在商店的规模大小的影响中渗入了促销费用的影响。

这里的截距b0=-51.3127万元,与一元线性回归方程中的截距+99.01万元有很大的不同,因为X1=0和X2 =0都不在X1、X2的样本取值范围之内,因而对截距项的解释要非常谨慎。

判定系数等于85.14%,表明在年销售额的变动中,有85.14%可由商店规模大小和促销费用多少这两个因素的变动来解释,只有14.86%的因素属于随机误差。

引进了第二个自变量之后,回归方程的判定系数85.14%,比一元线性回归方程的判定系数77.68%提高了7.46个百分点。

但需注意,在一般情况下,增加自变量,即使这个自变量在统计上并不显著,也会使判定系数的值增大。

年平均销售额的估计标准误差为112. 1015万元,引进了第二个自变量促销费用之后,回归方程的估计标准误差比一元线性回归方程的估计标准误差131.99万元有了下降,说明多元线性回归方程的代表性高于一元线性回归方程。

设显著性水平 =0.05,b1的检验统计量t=6.2817;b2的检验统计量t=2.4538,查t 表知t0.05/2(15-3)= 2.1788。

因为6. 2817> 2.1788, 2.4538>2.1788。

因此拒绝H0:1=0、H0:2=0的假设,认为这两个回归系数在统计上都是显著的。

需注意的是,若此例的显著性水平=0.01,不是0.05,则t0. 01/2(15-3)= 3.0545。

虽然6.2817> 3. 0545,但是2.4538< 3.0545,因此仍要拒绝H0: 1=0的假设,但无法拒绝、H0: 2=0的假设,所以第二个回归系数在统计上不是非常显著。

设计显著性水平 =0.05,查得F0.05(2, 12)=3.89。

F=34.38>F0.05(2,12)= 3.8,所以拒绝原假设,表明样本的r2是显著的,由此推论已建立的二元线性回归模型有效。

所谓复相关,是指一个因变量同多个自变量之间的相关关系。

所有自变量共同变动时,因变量随之变动,其相关程度就可用复相关系数来测定。

该例中商店规模大小、促销费用和年销售额三个变量的复相关系数为0.9227。

计算结果表明,商店规模大小、促销费用作为一个整体影响因素同年销售额存在高度相关,其相关程度比一元回归中商店规模大小单个自变量同年销售额的相关系数更高。

但需要强调是当我们研究的客观事物本质上属于多因素影响的变量时,用多元回归、复相关和偏相关分析,比一元回归和单相关分析更为真实和准确。

(作者单位:省统计局)
(下接第37页)
3、加强普查队伍的建设与培训。

农业普查不仅工作量大,而且专业性强,数据质量要求高。

能否建立一支业务过硬、作风严谨、责任心强的高素质普查队伍,关系到普查的成败。

因此,各级、各部门特别是县区政府一定要按照普查办法的要求,把好人员选聘和培训关,选调业务过硬、作风严谨、责任心强的人员充实到各级普查机构。

与此同时,要认真做好普查培训和切实搞好普查试点工作,使所有普查人员明确普查指标的内容含义、要求及普查指标间的逻辑关系,准确把握普查的难点内容和问题,尤其要学会如何利用被调查对象的总体情况,现场分析评估被调查对象申报的数据,当场修改不实数据,确保各类普查数据的真实性。

4、加强依法普查,确保普查质量。

各级、各有关部门要以这次普查为契机,加大统计普法力度,使各级普查机构严格按照∀中华人民共和国统计法#的有关规定和普查的具体要求,克服困难,依法实事求是认真调查和填报,不弄虚作假,使各被调查单位和农户如实填报普查表,不虚报、瞒报。

总之,要确保此次普查情况不失真,调查数字不含水,统计数据不掺假,经得起实践的检验、群众的检验和历史的检验,为更好地推进新农村建设,获取真实的 三农数据。

做到这一要求,只要有好的方案,通过法制手段、宣传手段、培训手段和市场经济手段等多种措施,解决了人的问题,包括各级领导、各级普查人员、各被调查对象的认识问题、思想问题,普查的难点会迎刃而解。

否则,别无他法。

(作者单位:山东省沂南统计局 文登统计局)
!
29
!。

相关文档
最新文档