最新中考专题复习——方程与不等式(最全面的考点)

合集下载

初中数学方程与不等式知识点总结

初中数学方程与不等式知识点总结

初中数学方程与不等式知识点总结方程和不等式是初中数学中的重要内容,它们在解决实际问题和数学运算中都有着广泛的应用。

接下来,让我们一起系统地梳理一下这部分的知识点。

一、方程(一)一元一次方程1、定义:只含有一个未知数,并且未知数的最高次数是 1 的整式方程叫做一元一次方程。

一般形式为:$ax + b = 0$($a \neq 0$,$a$,$b$为常数)。

2、解法:(1)移项:把含未知数的项移到方程的一边,常数项移到方程的另一边。

(2)合并同类项:将同类项进行合并,化简方程。

(3)系数化为 1:方程两边同时除以未知数的系数,得到方程的解。

例如:解方程$3x + 5 = 14$移项得:$3x = 14 5$合并同类项得:$3x = 9$系数化为 1 得:$x = 3$(二)二元一次方程组1、定义:由两个含有两个未知数,且未知数的次数都是 1 的整式方程组成的方程组叫做二元一次方程组。

2、解法:(1)代入消元法:将一个方程中的某个未知数用含有另一个未知数的代数式表示出来,然后代入另一个方程,消去一个未知数,得到一个一元一次方程,解这个一元一次方程,求得一个未知数的值,再将其代入原方程组中的一个方程,求得另一个未知数的值。

例如:解方程组$\begin{cases}x + y = 5 \\ x y = 1\end{cases}$由第一个方程得:$x = 5 y$,将其代入第二个方程得:$5 y y = 1$$5 2y = 1$$-2y =-4$$y = 2$将$y = 2$代入$x = 5 y$得:$x = 3$所以方程组的解为$\begin{cases}x = 3 \\ y = 2\end{cases}$(2)加减消元法:当两个方程中同一未知数的系数相等或互为相反数时,将两个方程的两边分别相加或相减,消去这个未知数,得到一个一元一次方程,解这个一元一次方程,求得一个未知数的值,再将其代入原方程组中的一个方程,求得另一个未知数的值。

方程与不等式的解法例题和知识点总结

方程与不等式的解法例题和知识点总结

方程与不等式的解法例题和知识点总结在数学的学习中,方程与不等式是非常重要的内容,它们在解决实际问题中有着广泛的应用。

下面我们将通过一些具体的例题来深入理解方程与不等式的解法,并对相关知识点进行总结。

一、方程的解法方程是含有未知数的等式,求解方程的目的就是找出未知数的值,使得等式成立。

1、一元一次方程形如 ax + b = 0(a ≠ 0)的方程叫做一元一次方程。

例:解方程 3x + 5 = 14解:首先,将常数项移到等号右边:3x = 14 5,即 3x = 9然后,将系数化为 1:x = 9 ÷ 3,解得 x = 3知识点总结:解一元一次方程的一般步骤为:去分母(若有)、去括号、移项、合并同类项、系数化为 1。

2、二元一次方程组由两个一次方程组成,并且含有两个未知数的方程组叫做二元一次方程组。

例:解方程组x + y = 5 ①2x y = 1 ②解:①+②得:3x = 6,解得 x = 2将 x = 2 代入①得:2 + y = 5,解得 y = 3所以方程组的解为 x = 2,y = 3知识点总结:解二元一次方程组的基本思想是消元,常用方法有代入消元法和加减消元法。

3、一元二次方程形如 ax²+ bx + c = 0(a ≠ 0)的方程叫做一元二次方程。

例:解方程 x² 4x + 3 = 0解:因式分解得:(x 1)(x 3) = 0所以 x 1 = 0 或 x 3 = 0解得 x₁= 1,x₂= 3知识点总结:一元二次方程的解法有直接开平方法、配方法、公式法和因式分解法。

求根公式为 x =b ± √(b² 4ac) /(2a)。

二、不等式的解法不等式是用不等号表示两个数或表达式之间关系的式子。

1、一元一次不等式形如 ax + b > 0 或 ax + b < 0(a ≠ 0)的不等式叫做一元一次不等式。

例:解不等式 2x 1 < 5解:移项得:2x < 5 + 1,即 2x < 6系数化为 1 得:x < 3知识点总结:解一元一次不等式的步骤与解一元一次方程类似,但要注意不等式两边乘或除以同一个负数时,不等号的方向要改变。

中考数学专题复习:方程与不等式

中考数学专题复习:方程与不等式

中考数学专题复习:方程与不等式一、方程有关概念1、方程:含有未知数的等式叫做方程。

2、方程的解:使方程左右两边的值相等的未知数的值叫方程的解,含有一个未知数的方程的解也叫做方程的根。

3、解方程:求方程的解或方判断方程无解的过程叫做解方程。

4、方程的增根:在方程变形时,产生的不适合原方程的根叫做原方程的增根。

二、一元一次方程1、一元一次方程的标准形式:ax+b=0(其中x 是未知数,a 、b 是已知数,a ≠0)2、一元一次方程的最简形式:ax=b (其中x 是未知数,a 、b 是已知数,a ≠0)3、解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1。

4、一元一次方程有唯一的一个解。

三、一元二次方程1、一元二次方程的一般形式:02=++c bx ax (其中x 是未知数,a 、b 、c 是已知数,a ≠0)2、一元二次方程的解法: 直接开平方法、配方法、公式法、因式分解法3、一元二次方程解法的选择顺序是:先特殊后一般,如没有要求,一般不用配方法。

(4)一元二次方程的根的判别式:ac b 42-=∆当Δ>0时⇔方程有两个不相等的实数根; 当Δ=0时⇔方程有两个相等的实数根; 当Δ< 0时⇔方程没有实数根,无解;当Δ≥0时⇔方程有两个实数根 5、一元二次方程根与系数的关系:若21,x x 是一元二次方程02=++c bx ax 的两个根,那么:a b x x -=+21,ac x x =⋅21 6、以两个数21,x x 为根的一元二次方程(二次项系数为1)是:0)(21212=++-x x x x x x 三、分式方程1、定义:分母中含有未知数的方程叫做分式方程。

2、分式方程的解法: 一般解法:去分母法,方程两边都乘以最简公分母。

特殊方法:换元法。

3、检验方法:一般把求得的未知数的值代入最简公分母,使最简公分母不为0的就是原方程的根;使得最简公分母为0的就是原方程的增根,增根必须舍去,也可以把求得的未知数的值代入原方程检验。

中考数学第一轮复习方程与不等式知识总结

中考数学第一轮复习方程与不等式知识总结

中考数学第一轮复习方程与不等式知识总结一、方程基础概念方程是数学中用于描述两个数学表达式之间相等关系的一种形式。

它通常由未知数、已知数和运算符号组成。

在中考数学中,方程是解决问题的重要工具之一。

理解方程的定义、解的概念以及方程解的性质是后续学习的基础。

二、一元一次方程解法一元一次方程是只含有一个未知数,且未知数的次数为1的方程。

其一般形式为`ax + b = 0`(其中`a ≠0`)。

解一元一次方程的基本步骤包括:去分母、去括号、移项、合并同类项、系数化为1。

掌握这些步骤,能够高效地求解一元一次方程。

三、二元一次方程组二元一次方程组是由两个或两个以上含有两个未知数的一次方程组成的方程组。

解二元一次方程组的基本思想是通过消元法(代入消元法或加减消元法)将二元一次方程组转化为一元一次方程来求解。

掌握二元一次方程组的解法,对于解决实际问题具有重要意义。

四、一元二次方程公式法一元二次方程是只含有一个未知数,且未知数的最高次数为2的整式方程。

其一般形式为`ax^2 + bx + c = 0`(其中`a ≠0`)。

对于一元二次方程的求解,当判别式`Δ= b^2 - 4ac`大于或等于0时,可以使用公式法求解。

公式法求解一元二次方程的公式为`x = [-b ±√(Δ)] / (2a)`。

掌握公式法,能够准确地求解一元二次方程的根。

五、不等式与解集不等式是表示两个数学表达式之间不等关系的一种形式。

它通常用“<”、“>”、“≤”、“≥”等符号表示。

不等式的解集是指满足不等式的所有未知数的值的集合。

理解不等式的性质,掌握不等式解集的表示方法,是求解不等式的基础。

六、一元一次不等式解法一元一次不等式是只含有一个未知数,且未知数的次数为1的不等式。

解一元一次不等式的基本步骤与解一元一次方程类似,包括去分母、去括号、移项、合并同类项等。

但需要注意的是,在解不等式时,当两边同时乘以或除以一个负数时,不等号的方向会发生变化。

方程与不等式知识点

方程与不等式知识点

方程与不等式知识点一、方程的概念与性质方程是将含有未知数的等式称为方程。

一般形式为:P(x)=0,其中P(x)为多项式函数,x为未知数。

方程的次数是多项式中各项次数的最大值。

方程的性质有以下几个方面:1.方程的根:方程P(x)=0的解称为方程的根。

方程的根可以是实数也可以是复数。

2.方程的根与系数的关系:设方程P(x)=0的根为a,则P(a)=0,反之,如果P(a)=0,那么a就是方程P(x)=0的根。

3.方程的解的性质:若a是方程P(x)=0的根,则(x-a)是P(x)的一个因式。

4.方程的根的个数:n次方程P(x)=0的解的个数至多为n个。

二、方程的解法1.一次方程的解法:设方程a1x+a0=0,其中a1≠0,则方程的解为x=-a0/a12.二次方程的解法:设方程ax^2 + bx + c = 0,其中a ≠ 0,则方程的解公式为x = (-b ± √(b^2 - 4ac))/(2a)。

3.高次方程的解法:对于高次方程,一般采用因式分解、配方法、卡尔丹法等方法求解。

三、不等式的概念与性质不等式是使用不等号连接的数学关系,在不等式中,未知数的取值满足特定的条件。

常见的不等式有大于等于(≥)、小于等于(≤)、大于(>)、小于(<)等。

不等式的性质有以下几个方面:1.不等式的解集:满足不等式所有条件的数值的集合称为不等式的解集。

2.在不等关系中,可以在两边同加或者同减一个数,可以在两边同乘或者同除正数,但是如果两边同乘或者同除负数的话,应该将不等号翻转。

3.对于不等式组的解集,满足所有不等式的解的交集称为不等式组的解集。

四、不等式的解法1.一次不等式的解法:将不等式变形,找到未知数的取值范围,得到的范围即是不等式的解。

2.二次不等式的解法:将二次不等式化为零,找到对应的方程,并求出方程的解,然后根据二次不等式表示的形式将解的范围确定下来。

3.绝对值不等式的解法:对于绝对值不等式,根据绝对值的性质,将不等式分成正负两种情况进行求解。

九年级数学中考复习专题——方程与不等式(附答案)

九年级数学中考复习专题——方程与不等式(附答案)

知识点一 一元一次方程及其解法1.一元一次方程:只含有一个未知数,并且未知数的次数为1,这样的整式方程叫做一元一次方程.它的一般形式为0(0)ax b a +=≠.注意:x 前面的系数不为0.2.一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解. 3.一元一次方程0(0)ax b a +=≠的求解步骤知识点二 二元一次方程(组)及解法1.二元一次方程:含有2个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程. 2.二元一次方程的解:使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解. 3.二元一次方程组由两个二元一次方程组成的方程组叫二元一次方程组.方程组中同一个字母代表同一个量,其一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩.4.二元一次方程组的解法(1)代入消元法:将方程中的一个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,消去一个未知数,化二元一次方程组为一元一次方程.(2)加减消元法:将方程组中两个方程通过适当变形后相加(或相减)消去其中一个未知数,化二元一次方程组为一元一次方程.知识点三分式方程及其解法1.分式方程:分母中含有的方程叫做分式方程;2.分式方程的解法:(1)解分式方程的基本思路是把分式方程转化为整式方程。

(2)解分式方程的一般步骤:第一步:,将分式方程转化为整式方程;第二步:解整式方程;第三步:.(3)增根:在进行分式方程去分母的变形时,有时可能产生使原方程分母为的根,称为方程的增根。

因此,解分式方程时必须验根,验根的方法是代入最简公分母,使最简公分母为的根是增根应舍去。

(4)产生增根的原因:将分式方程化为整式方程时,在方程两边同乘以使最简公分母为的因式。

知识点四一元二次方程及其解法1.一元二次方程:只含有个未知数(一元),并且未知数最高次数是2(二次)的方程,叫做一元二次方程。

知识必备02 方程与不等式(公式、定理、结论图表)-2023年中考数学知识梳理+思维导图

知识必备02 方程与不等式(公式、定理、结论图表)-2023年中考数学知识梳理+思维导图

知识必备02方程与不等式(公式、定理、结论图表)考点一、一元一次方程1.方程含有未知数的等式叫做方程.2.方程的解能使方程两边相等的未知数的值叫做方程的解.3.等式的性质(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.(2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式.4.一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程叫做一元一次方程的标准形式,a是未知数x的系数,b是常数项.5.一元一次方程解法的一般步骤整理方程 —— 去分母—— 去括号—— 移项—— 合并同类项——系数化为1——(检验方程的解).6.列一元一次方程解应用题(1)读题分析法:多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套”,利用这些关键字列出文字等式,并且根据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法:多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看作已知量),填入有关的代数式是获得方程的基础.列方程解应用题的常用公式:(1)行程问题:距离=速度×时间;(2)工程问题:工作量=工效×工时;(3)比率问题:部分=全体×比率;(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题:售价=定价·折·,利润=售价-成本,;(6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab, C正方形=4a,S正方形=a2,S环形=π(R2-r2),V长方体=abh ,V正方体=a3,V圆柱=πR2h ,V圆锥=πR2h.考点二、一元二次方程1.一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程.2.一元二次方程的一般形式,它的特征是:等式左边是一个关于未知数x的二次多项式,等式右边是零,其中叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项.3.一元二次方程的解法(1)直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法.直接开平方法适用于解形如的一元二次方程.根据平方根的定义可知,是b的平方根,当时,,,当b<0时,方程没有实数根.(2)配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用.配方法的理论根据是完全平方公式,把公式中的a看做未知数x,并用x代替,则有.(3)公式法公式法是用求根公式求一元二次方程的解的方法,它是解一元二次方程的一般方法.一元二次方程的求根公式:(4)因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法.4.一元二次方程根的判别式一元二次方程中,叫做一元二次方程的根的判别式,通常用“”来表示,即.5.一元二次方程根与系数的关系如果方程的两个实数根是,那么,.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.要点诠释:一元二次方程的解法中直接开平方法和因式分解法是特殊方法,比较简单,但不是所有的一元二次方程都能用这两种方法去解,配方法和公式法是普通方法,一元二次方程都可以用这两种方法去解.(1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,注意一元二次方程一般形式中.(2)用公式法和因式分解的方法解方程时要先化成一般形式.(3)用配方法时二次项系数要化1.(4)用直接开平方的方法时要记得取正、负.典例1:已知关于的一元二次方程.(1)求证:不论取何值时,方程总有两个不相等的实数根.(2)若直线与函数的图象的一个交点的横坐标为2,求关于的一元二次方程的解.【答案】(1)证明:∵不论取何值时,∴,即∴不论取何值时,方程总有两个不相等的实数根..(2)将代入方程,得再将代入,原方程化为,解得.考点三、分式方程1.分式方程分母里含有未知数的方程叫做分式方程.2.解分式方程的一般方法解分式方程的思想是将“分式方程”转化为“整式方程”.它的一般解法是:①去分母,方程两边都乘以最简公分母;②解所得的整式方程;③验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根.口诀:“一化二解三检验”.3.分式方程的特殊解法换元法:换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法.要点诠释:解分式方程时,有可能产生增根,增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零,因此必须验根.增根的产生的原因: 对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件.当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根.典例2:近年来,由于受国际石油市场的影响,汽油价格不断上涨.请你根据下面的信息,帮小明计算今年5月份汽油的价格.如图所示.【思路点拨】根据“用150元给汽车加油今年比去年少18.75升”列方程.【答案与解析】解:设今年5月份汽油价格为x元/升,则去年5月份的汽油价格为(x-1.8)元/升.根据题意,得,整理,得.解这个方程,得x1=4.8,x2=-3.经检验两根都为原方程的根,但x2=-3不符合实际意义,故舍去.【总结升华】解题的关键是从对话中挖掘出有效的数学信息,构造数学模型,从而解决问题,让同学们更进一步地体会到数学就在我们身边.考点四、二元一次方程(组)1.二元一次方程含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程,它的一般形式是ax+by=c(a ≠0,b≠0).2.二元一次方程的解使二元一次方程左右两边的值相等的一对未知数的值,叫做二元一次方程的一个解.3.二元一次方程组两个(或两个以上)二元一次方程合在一起,就组成了一个二元一次方程组.4.二元一次方程组的解使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.5.二元一次方程组的解法①代入消元法;②加减消元法.6.三元一次方程(组)(1)三元一次方程把含有三个未知数,并且含有未知数的项的次数都是1的整式方程叫三元一次方程.(2)三元一次方程组由三个(或三个以上)一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组.要点诠释:二元一次方程组的解法:消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想.(1)代入消元法:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.(2)加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法.(3)二元一次方程组的解有三种情况,即有唯一解、无解、无限多解.教材中主要是研究有唯一解的情况对于其他情况,可根据学生的接受能力给予渗透.典例3:如图所示,是在同一坐标系内作出的一次函数y1、y2的图象、,设,,则方程组的解是( )A. B. C. D.【思路点拨】图象、的交点的坐标就是方程组的解.【答案】B;【解析】由图可知图象、的交点的坐标为(-2,3),所以方程组的解为【总结升华】方程组与函数图象结合体现了数形结合的数学思想,这也是中考所考知识点的综合与相互渗透.考点五、不等式(组)1.不等式的概念(1)不等式用不等号表示不等关系的式子,叫做不等式.(2)不等式的解集对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解.对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集.求不等式的解集的过程,叫做解不等式.2.不等式基本性质(1)不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;(2)不等式两边都乘以(或除以)同一个正数,不等号的方向不变;(3)不等式两边都乘以(或除以)同一个负数,不等号的方向改变.3.一元一次不等式(1)一元一次不等式的概念一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式.(2)一元一次不等式的解法解一元一次不等式的一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤将x 项的系数化为1.4.一元一次不等式组(1)一元一次不等式组的概念几个一元一次不等式合在一起,就组成了一个一元一次不等式组.几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集.求不等式组的解集的过程,叫做解不等式组.当任何数x 都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集.(2)一元一次不等式组的解法①分别求出不等式组中各个不等式的解集;②利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集.由两个一元一次不等式组成的一元一次不等式组的解集的四种情况如下表.注:不等式有等号的在数轴上用实心圆点表示.要点诠释:用符号“<”“>”“≤ ”“≥”“≠”表示不等关系的式子,叫做不等式.不等式组(其中a >b )图示解集口诀(同大取大)(同小取小)(大小取中间)无解(空集) (大大、小小找不到)(1)不等式的其他性质:①若a>b,则b<a;②若a>b,b>c,则a>c;③若a≥b,且b≥a, 则a=b;④若a2≤0,则a=0;⑤若ab>0或,则a、b同号;⑥若ab<0或,则a、b异号.(2)任意两个实数a、b的大小关系:①a-b>O a>b;②a-b=O a=b;③a-b<O a<b.不等号具有方向性,其左右两边不能随意交换:但a<b可转换为b>a,c≥d可转换为d≤c.典例4:解不等式组并将解集在数轴上表示出来.【思路点拨】此题考查一元一次不等式组的解法,解出不等式组中的每个不等式,根据不等式组解的四种情况,看看属于哪种情况.【答案与解析】解不等式①得:.解不等式②得:x≥-1.所以不等式组的解集为-1≤x<.其解在数轴上表示为如图所示:【总结升华】注意解不等式组的解题步骤.典例5:为了美化家园,创建文明城市,园林部门决定利用现有的3600盆甲种花卉和2900盆乙种花卉搭配A、B两种园艺造型共50个,摆放在迎宾大道两侧,搭配每个造型所需花卉的情况如下表所示;造型甲乙A90盆30盆B40盆100盆综合上述信息,解答下列问题:(1)符合题意的搭配方案有哪儿种?(2)若搭配一个A种造型的成本为1000元,搭配一个B种选型的成本为1200元,试说明选用(1)中哪种方案成本最低?【思路点拨】本题首先需要从文字和表格中获取信息,建立不等式(组),然后求出其解集,根据实际问题的意义,再求出正整数解,从而确定搭配方案.【答案与解析】解:(1)设搭配x个A种造型,则需要搭配(50-x)个B种造型,由题意,得解得30≤x≤32.所以x的正整数解为30,31,32.所以符合题意的方案有3种,分别为:A种造型30个,B种造型20个;A种造型31个,B种造型19个;A种造型32个,B种造型18个.(2)由题意易知,三种方案的成本分别为:第一种方案:30×1000+20×1200=54000;第二种办案:31×1000+19×1200=53800;第三种方案:32×1000+18×1200=53600.所以第三种方案成本最低.【总结升华】实际问题的“最值问题”一般是指“成本最低”、“利润最高”、“支出最少”等问题.。

中考专题复习--方程与不等式

中考专题复习--方程与不等式

8、 ★ ★ ★ 某兴趣小组决定去市场 购买A,B,C三种仪器,其单价分 别为3元、5元、7元,购买这批仪器 需花62元,经过讨价还价,最后以 每种价各下降1元成交,结果只花50 元就买下了这批仪器,那么A种仪器 最多可买___________件。
解:设A,B,C三种仪器,分别买了x, y, z,件(x,y,z 均为正整数) 3x+5y+7z=62 …………① 2x+4y+6z=50 …………② 由①﹣②得: x+y+z=12 …………③ 将③代入①得:y+2z=13 …………④ 由于x+y+z=12 当z=1时,y=11,x=0 (A没有买,不合题意) 当z=2时,y=9,x=1 当z=3时,y=7,x=2 当z=4时,y=5,x=3 当z=5时,y=3,x=4 当z=6时,y=1,x=5 当z=7时,y=-1,x=6 (B买-1件,不合题意) 由上述分析可以知道,A最多为5件
)=(x+ )=(x)=(x+
2 );
(2) x2-8x+( (3)
3 2 x+ 2
)2; )2
x+(
(3)判别式△=b² -4ac的三种情况与根的
关系 当△>0时 有两个不相等的实数根
当△=0时
当△<0时
有两个相等的实数根
没有实数根
当△≥0时
有两个实数根
例题: ① (无锡市)若关于x的方程 x2+2x+k=0有两个相等的实数根,则k满 足 ( ) A.k>1 B.k≥1 C.k=1 D.k<1 ②(常州市)关于x的一元二次方程 x2+(2k+1)x+k-1=0根的情况是( ) (A)有两个不相等实数根 (B)有两个相等实数根 (C)没有实数根 (D)根的情况无法判定
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年中考一轮专题复习——方程与不等式专题一、一元一次方程 一、知识点:1、一元一次方程概念、解和根的概念2、一元一次方程解的三种情况利用等式的基本性质解一元一次方程就是利用等式的性质把方程的ax=b ( 0)进行变形,最后化为x=ab的形式。

一元一次方程ax=b 的解的情况讨论: (1)当a ≠0时,方程有唯一解,即 x=ab ;(2)当a=0,b=0时,方程无数解 (3)当a=0,b ≠0时,方程无解 二、题型汇总1(★☆☆☆☆)、已知(k -1)2x +(k-1)x+3是关于x 的一元一次方程,则k= 。

2(★☆☆☆☆)、若x =2是关于x 的方程2x +3m -1=0的解,则m 的值为( )A .-1B .0C .1D .133(★★☆☆☆)、若关于x 的方程m nx n mx ==,有相同的解,则x= 。

4(★★☆☆☆)、使方程11-=+m x m )(有解的m 的值是 ; 5(★★★☆☆)、已知关于x 的方程1439+=-kx x 的解为整数,那么满足条件的所有整数k= 。

6(★★★☆☆)、若关于x 的方程a x x =-++11有解,那么a 的取值范围是 。

7(★★★☆☆)、已知关于x 的方程()2132a x x -=-无解,则a 的值为 。

8(★★★☆☆)、对于任何a 值,关于x ,y 的方程()11ax a y a +-=+有一个与a 无关的解,这个解是 。

9(★★★☆☆)、若关于x 的方程()42a x b bx a -+=-+-有无穷多个解, 则()4ab 等于 。

10(★★★☆☆)若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解,则m 、n 、k 的大小关系是( )A.m >n >kB.n >k >mC.k >m >nD.m >k >n11(★★★★☆)、某商品如果成本降低8%,而零售价不变。

那么利润将由目前的m%增加到)%10(+m ,则m 的值为 ;专题二、二元一次方程组 一、知识点1、 二元一次方程及方程组的概念2、 二元一次方程组的解法:(1)加减消元法;(2)代入消元法3、 解方程组⎩⎨⎧=+=+222111c y b x a c y b x a 时1)当2121b b a a ≠时,有唯一一组解; 2)当212121c c b b a a ≠=时,无解; 3)当212121c c b b a a ==时,有无数组解 二、题型汇总1(★☆☆☆☆)、若2014334=+-nmyx是关于x 、y 的二元一次方程,且0<mn ,30≤+<n m ,则n m -的值是 .2、若方程组⎩⎨⎧=-=+-+-43)3(32b a y x xy c x 是关于x 、y 的二元一次方程组,则代数式c b a ++的值是 .2(★★☆☆☆)、为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地抽查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x ,不吸烟者患肺癌的人数为y ,根据题意,下面列出的方程组正确的是( )A 、⎩⎨⎧=∙+∙=-10000%5.0%5.222y x y xB 、⎪⎩⎪⎨⎧=+=-10000%5.0%5.222y xy x C 、⎩⎨⎧=∙-∙=+22%5.0%5.210000y x y x D 、⎪⎩⎪⎨⎧=-=+22%5.0%5.210000y xy x 3(★★★☆☆)、已知⎩⎨⎧-=+=1332t b t a ,则用含a 的代数式表示b ,那么b= 。

4(★★☆☆☆)、二元一次方程4032=+y x 的所有整数解有 组。

5(★★★☆☆)、m 为正整数,已知二元一次方程组⎩⎨⎧=-=+023102y x y mx 有整数解,2m = .6(★★★☆☆)已知关于y x 、的方程组⎩⎨⎧=--=+ay x a y x 343,给出下列结论:①⎩⎨⎧-==15y x 是方程组的一个解;②当2-=a 时,y x 、的值互为相反数;③当1=a 时,方程组的解也是a y x -=+4的解;④y x 、间的数量关系式32=-y x ,其中正确的是( )A 、②③B 、①②③C 、②③④D 、①②③④7(★★★☆☆)已知方程组⎩⎨⎧+=-=+114332k y x ky x 的解x 、y 满足方程35=-y x ,则k = .8(★★★☆☆)、二元一次方程组⎩⎨⎧=++-=+3)32(222y n x m y x )(,若有无数组解,则n m 、分别为( ) A 、43,5==n m B 、43,5-=-=n m C 、43,5-==n m D 、不能确定 9(★★★★☆)、若关于x 和y的方程组⎪⎪⎩⎪⎪⎨⎧-=++=---=+-=+9)210(5108)8(965543n m x y x m n y x y x 有解,则22n m +的值为 。

专题三、一元一次不等式(组) 一、 知识点1、 一元一次不等式(组)的概念2、 求不等式(组的解集),并能在数轴上表示解集3、 根据条件列不等式,了解常见的不等号表示的意义 “≥”:不小于、不低于 “≤”不大于、不超过 “>”:大于、高于、超过 “小于”:小于、低于、不足4、 不等式组与一次函数的关系 二、题型汇总1(★)若a >b ,则下列不等式不一定成立的是( ) A .a+m >b+m B .a (m 2+1)>b (m 2+1) C .D .a 2>b2 2(★☆☆☆☆)下列说法中,错误的是( )A .不等式x <2的正整数解有一个B .﹣2是不等式2x ﹣1<0的一个解C .不等式﹣3x >9的解集是x >﹣3D .不等式x <10的整数解有无数个3(★☆☆☆☆)不等式组431x x +>⎧⎨⎩≤的解集在数轴上可表示为( )4(★☆☆☆☆)若关于的二元一次方程组的解满足x+y <2,则a 的取值范围a+b= _________ . 6(★★☆☆☆)已知非负数a ,b ,c 满足条件a+b=7,c ﹣a=5,设S=a+b+c 的最大值为m ,最小值为n ,则m ﹣n 的值为 _________ . 7(★★☆☆☆)已知关于x 的不等式组0521x a x -⎧⎨->⎩≥,只有四个整数解,则实数a 的取值范围是 .8(★★☆☆☆)关于x 的不等式3x ﹣a≤0,只有两个正整数解,则a 的取值范围是 _________ .9(★★☆☆☆)已知方程组的解为负数,k 的取值范围是 .10(★★★☆☆)若A=,10,11,112011201020102009≠>++=++a a a a B a a ,且则A B(填 ≠<>或、)。

11(★★★☆☆2013成都)、若关于t 的不等式组0214t a t -≥⎧⎨+≤⎩,恰有三个整数解,则关于x 的一次函数14y x a =-的图像与反比例函数32a y x +=的图像的公共点的个数为_________.专题四、分式方程一、知识点1、分式方程的解(增根)2、含参分式方程的处理3、解方程时一定要验根 二、题型汇总1(★☆☆☆☆)方程1112-=-x x x 的根是 ;2(★★☆☆☆)方程y x x =++13的整数解有组 ⎩⎨⎧-=-+=+172652y x k y xA 、B 、C 、D 、3(★★☆☆☆)、若分式方程52)1()(2-=--x a a x 的解为3=x ,则a = .4(★★☆☆☆)、当=m 时,方程551-=--x mx x 无实数根; 5(★★☆☆☆)、当=k 时,方程33-=+-x kx x x 会产生增根; 6(★★☆☆☆)若关于x 的方程2221+-=--x mx x 无解, 则m 的值为 .7(★★☆☆☆)、当p = 时, 关于x 的分式方程)1(7142-+=-+x x px x x 有根? 8(★★★☆☆)、要使关于x 的方程21212-+=--++x x ax x x x 的解释正数,则a 满足的条件是 。

9(★★★☆☆2014成都)、已知关于x 的分式方程111=--++x kx k x 的解为负数,则k 的取值范围是 .10(★★☆☆☆)、某服装厂准备加工400套运动装,在加工完160套后,采用新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套? 在这个问题中,设原计划每天加工x 套,则根据题意可以列方程为( )A 、18%)201(400160=++x x B 、18%)201(160400160=+-+Xx C 、18%20160400160=-+xx D 、18%)201(160400400=+-+x x 专题五、一元二次方程一、知识点1、 一元二次方程概念2、 解一元二次方程:配方法、公式法、分解因式法求根公式:()042422≥--±-=ac b aac b b x 3、 根系关系:当0>∆时,方程有两个不相等的实数根 , 当0=∆时,方程有两个相等的实数根 , 当0<∆时,方程没有实数根。

当0≥∆时,有解 4、 韦达定理若21,x x 是方程)0(02≠=++a c bx ax 的二根则:acx x a b x x =+-=+2121,5、 特殊解与系数(1)方程有两个正数根的条件:⎪⎪⎪⎩⎪⎪⎪⎨⎧>>-≥∆000a c a b(2)方程有两负数根的条件是:⎪⎪⎪⎩⎪⎪⎪⎨⎧><-≥∆000a c a b(3)方程有一正根一负根的条件是:0<ac(4)方程两根都为有理根的条件是:Δ为完全平方式。

题型汇总1(★★☆☆☆)、若n m ,是方程0120042=-+x x 的两个实数根,则mn mn n m -+22的值是 ;2(★★☆☆☆)若关于x 的方程0)21()2(2=+-+-a x a x a 有实根,则 ( )A 41-≤aB 41-≥aC 41-≥a 且2≠a D 2>a 3(★★☆☆☆)若a x x ++3142为完全平方式,则a 的值为( )A 61B 121C 361D 14414(★★☆☆☆)设21,x x 是方程05822=+-x x 的两个根,则)1)(1(1221x x x x ++的值是 ( ) A1049B529 C 311- D 以上都不对5(★★★☆☆)、已知x 1、x 2为方程x 2+3x +1=0的两实根,则x 12+8x 2+20=__________. 6(★★★☆☆)、已知实数,x y 满足2245,x x y --=,求2x y -的取值范值是 。

相关文档
最新文档