物质代谢的相互联系

合集下载

生物化学讲义第十章物质代谢的联系和调节

生物化学讲义第十章物质代谢的联系和调节

生物化学讲义第十章物质代谢的联系和调节 【目的与要求】1.熟悉三大营养物质氧化供能的通常规律与相互关系。

2.熟悉糖、脂、蛋白质、核酸代谢之间的相互联系。

3.熟悉代谢调节的三种方式。

掌握代谢途径、关键酶(调节酶)的概念;掌握关键酶(调节酶)所催化反应的特点。

熟悉细胞内酶隔离分布的意义。

熟悉酶活性调节的方式。

4.掌握变构调节、变构酶、变构效应剂、调节亚基、催化亚基的概念;5.掌握酶的化学修饰调节的概念及要紧方式。

6.熟悉激素种类及其调节物质代谢的特点。

7.熟悉饥饿与应激状态下的代谢改变。

【本章重难点】1.物质代谢的相互联系2.物质代谢的调节方式及意义3.酶的变构调节、化学修饰、阻遏与诱导4.作用于细胞膜受体与细胞内受体的激素学习内容第一节物质代谢的联系第二节物质代谢的调节第一节物质代谢的联系一、营养物质代谢的共同规律物质代谢:机体与环境之间不断进行的物质交换,即物质代谢。

物质代谢是生命的本质特征,是生命活动的物质基础。

二、三大营养物质代谢的相互联系糖、脂与蛋白质是人体内的要紧供能物质。

它们的分解代谢有共同的代谢通路—三羧酸循环。

三羧酸循环是联系糖、脂与氨基酸代谢的纽带。

通过一些枢纽性中间产物,能够联系及沟通几条不一致的代谢通路。

对糖、脂与蛋白质三大营养物质之间相互转变的关系作简要说明:㈠糖可转变生成甘油三酯等脂类物质(除必需脂肪酸外),甘油三酯分解生成脂肪酸,脂肪酸经β-氧化生成乙酰CoA,乙酰CoA或者进入三羧酸循环或者生成酮体,因此甘油三酯的脂肪酸成分不易生糖,但甘油部分能够转变为磷酸丙糖而生糖,但是甘油只有三个碳原子,只占甘油三酯的很小部分。

㈡多数氨基酸是生糖或者生糖兼生酮氨基酸。

因此氨基酸转变成糖较为容易。

糖代谢的中间产物只能转变成非必需氨基酸,不能转变成必需氨基酸。

㈢少数氨基酸能够生酮,生糖氨基酸生糖后,也可转变为脂肪酸(除必需脂肪酸外),因此氨基酸转变成脂类较为容易。

脂肪酸经β-氧化生成乙酰CoA进入三羧酸循环后,即以CO2形式被分解。

第十二章物质代谢的相互联系与调控

第十二章物质代谢的相互联系与调控

第十四章 物质代谢的相互联系与调控教学目标:1. 熟悉物质代谢的特点和相互间的联系,掌握交叉点。

2. 了解代谢调节的方式和水平。

3. 熟悉酶水平调节的方式、原理(酶活性、酶量、酶的区域化分布)4. 了解激素和神经水平调节的特点。

第一节 物质代谢的相互联系一、物质代谢的特点1. 整体性 各类物质的代谢在相互联系、相互制约下进行,形成一个完整统一的过程(网络) 在能量供应上,糖、脂、蛋白质可以相互替代,相互制约。

一般情况下,糖是主要供能物质 (50%~70%),脂主要是储能(供能只占 10%~40%),蛋白质几乎不是供能形式;饥饿或某些 病理状态时,糖供能减少,脂和蛋白质分解供能增加。

物质代谢在个体和种属之间都具互补性,这是生态平衡的基础。

2. 代谢调节 正常情况下,机体各种物质代谢能适应内外环境变化,有序地进行。

这是由于机体存 在精细的调节机制, 不断调节各种物质代谢的强度、 方向和速度以适应内外环境变化。

调节普遍存在于生物界,是生物的重要特征。

3. 生命物质的降解和合成有共同点 生命物质的降解是一个分子由大到小, 生成其单体的过程。

降解的方式有水解、 焦磷酸解、 硫解。

降解后的单体进入中间代谢进一步分解。

分解的作用一是获得能量,获得重要的中间物。

ATP 是生物体能量利用的共同形式,是机体最主要的能量载体和各种生 命活动能量的直接供体。

分解的最终产物是CO2 H2O NH3 H3PO4 S02等无机物,因种属 差异,各类物质分解的最终产物有所不同。

生命物质的合成是一个由小到大, 由简单到复杂的过程。

分为半合成和从头合成。

蛋白 质 核酸 多糖和脂类的聚合是一种半合成。

自养生物可直接将无机物转化为有机物, 氨基 酸、核苷酸、单糖、脂肪酸和胆固醇的合成是从无到有,即从头合成。

NAD PH 是合成代谢所需的还原当量。

物质代谢具共同的代谢池,处于动态平衡中。

4. 各组织、器官物质代谢各具特色 动物、植物和微生物的物质代谢以及动物各组织、器官的物质代谢途径有所不同,各 具特色。

物质代谢的相互联系

物质代谢的相互联系

(一)葡萄糖可转变为脂肪酸
1. 摄入的糖量超过能量消耗时:
合成糖原储存(肝、肌肉)


乙酰CoA
2. 脂肪的甘油部分能在体内转变为糖
甘油
甘油激酶
肝、肾、肠
磷酸-甘油
葡 萄



脂酸
乙酰CoA
葡萄糖
3. 脂肪的分解代谢受糖代谢的影响 饥饿、糖供应不足或糖代谢障碍时:
脂肪大量动员
酮体生成增加
糖不足
草酰乙酸 相对不足
高酮血症
氧化受阻
(二)葡萄糖与大部分氨基酸可以相互转变
1. 大部分氨基酸脱氨基后,生成相应的α-酮酸, 可转变为糖 例如: 丙氨酸 脱氨基 丙酮酸 糖异生 葡萄糖
2. 糖代谢的中间产物可氨基化生成某些非必需
氨基酸
丙氨酸
天冬氨酸

丙酮酸
乙酰CoA 草酰乙酸
α-酮戊二酸 谷氨酸
饥饿时: 1~2天
肝糖原分解 ,肌糖原分解 肝糖异生,蛋白质分解
3~4周
以脂酸、酮体分解供能为主 蛋白质分解明显降低
任一供能物质的代谢占优势,常能抑制 和节约其他物质的降解。
例如:
脂肪分解增强
ATP 增多 ATP/ADP 比值增高
糖分解被抑制
磷酸果糖激酶-1被抑制 (糖分解代谢关键酶之一)
甘油及乳酸
糖分解增强
脂酸合成增加, 分解抑制
ATP↑
抑制异柠檬酸脱氢酶
(三羧酸循环关键酶)
柠檬酸堆积, 出现线粒体
激活乙酰CoA羧化酶
(脂酸合成关键酶)
二、糖、脂和蛋白质代谢通过中间 代谢物而相互联系
糖、脂、蛋白质和核酸通过共同的中间代 谢物、柠檬酸循环、生物氧化等彼此联系且相 互转变。一种物质代谢障碍可引起其他物质代 谢的紊乱。

第十一章物质代谢的相互联系及其调节

第十一章物质代谢的相互联系及其调节

CTP
血红素合成 ALA合成酶
血红素
(2)变构酶的特点及作用机制
变构酶常由多个亚基构成; 变构效应剂可通过非共价键与调节亚基结合,引起酶构
象改变(T态和R态)或亚基的聚合、分离从而影响酶 的活性; 变构酶的酶促反应动力学不符合米曼氏方程式; 变构效应剂常常是酶的底物、产物或其他小分子中间代 谢物。 变构调节过程不需要能量。
(CH2)4CO HS Co
OH
AO
CH
3
CO
P
丙酮酸脱氢 酶
O CH HC TT
S
二氢硫辛酸 转乙酰酶
C C S Co
H3
A
H SH
(CH2)4CO OH
2 3
HP
S
(CH2)4CO OH
S
S
FAD H2
二氢硫辛酸
脱氢酶 FA D
丙酮酸氧化脱羧
NFAA
D+
NADH +H+
乙酰 丙二酸单 β-酮脂酰转移酶 酰转移酶 合成酶
第一节
物质代谢的相互联系
一、物质代谢的特点
物质代谢的整体性 物质代谢的可调节性 组织器官代谢的特色性 不同来源代谢物代谢的共同性 能量储存的特殊性 NADPH为合成代谢提供还原当量
二、物质代谢的相互联系
(一)能量代谢上的相互联系
物质代谢过程中所伴随的能量的贮存、释放、转移和利 用等称为能量代谢。
现出激素的生物学效应。 根据激素作用受体部位不同,激素可分为:细胞膜受
体激素和细胞内受体激素。
三、整体水平的代谢调节
1.应激状态下的代谢调节
应激是机体在一些特殊的情况下,如严重创伤、感染、中 毒、剧烈的情绪变化等所作出的应答性反应。

物质代谢联系与调节

物质代谢联系与调节

01
02
03
某些物质可以诱导细胞内产生诱导酶,这种作用叫做酶的诱导生成作用。
一些分解代谢的酶类只在有关底物or底物类似物存在时才能诱导合成;
一些合成代谢的酶类在产物或产物类似物足够存在时,其合成被阻遏。
1.酶的诱导和阻遏
1
诱导酶:是指当细胞中加入特定诱导物后诱导产生的酶,它的含量在诱导物存在下显著增高,这种诱导物往往是酶底物的类似物或底物本身。
脂肪转变为糖是有限的。脂类分子的甘油部分经糖异生可以生成糖,而FA部分分解产生的乙酰­CoA进入TCA后全部氧化为CO2和H2O。因此,在动物中,脂肪转变为糖是有限的,而在植物和微生物中存在乙醛酸循环,乙酰-CoA可产生OA,可异生为糖,因此,在植物和微生物中,脂肪可以转变为糖。
糖代谢与脂代谢的相互联系
细胞代谢的调节,主要是通过控制酶的作用而实现的。这种酶水平的调节,是最基本的调节方式。激素和神经调节是随着生物进化、发展而完善起来的调节机制,但是它们仍然是通过“酶水平”的调节而发挥其作用。所有这些调节又受生物遗传因素的控制。
DNA的复制、转录在细胞核里进行。转录出的mRNA、tRNA、rRNA从核孔穿出进入细胞质,在粗面内质网上进行蛋白质的生物合成。
当诱导物存在时,诱导物和阻遏蛋白结合时,改变阻遏蛋白的构象,不能与操纵基因结合,于是RNA聚合酶起作用,使底物基因进行转录和翻译,生成酶蛋白。
酶生成的阻遏作用(repression) 在没有代谢产物时,阻遏蛋白不能与操纵基因结合,因而结构基因就转录翻译,生成酶蛋白。
当代谢产物存在时,代谢终产物和阻遏蛋白结合,使阻遏蛋白构象发生变化,可与操纵基因结合,从而使结构基因不能进行转录,酶的生成受到阻遏。
核酸代谢与糖、脂及蛋白质代

代谢的相互关系及调控

代谢的相互关系及调控

第十一章代谢的相互关系及调节控制I 主要内容本章重点讲了两个方面问题,一是生物体内不同物质代谢的相互联系,二是生物体内物质代谢的调控。

一、物质代谢的相互联系糖代谢、脂代谢、蛋白质代谢和核酸代谢是广泛存在于各种生物体内的四大物质代谢途径,不同途径之间的相互关系集中体现为各有所重,相互转化,又相互制约的关系。

二、代谢调节的一般原理代谢的调节控制方式有分子水平调节、细胞水平调节、激素水平调节和神经水平调节四种,其中神经水平调节是高等动物所特有的,细胞水平是所有生物体共有的,各种类型的调节都是由细胞水平来实现的。

细胞水平调控是一切调控的最重要基础,细胞水平调节主要分为酶的区域化分布调节、底物的可利用性、辅因子的可利用性调节、酶活性的调节、酶量调节五种形式。

(一)酶的区域化分布调节(二)底物的可利用性(三)辅助因子的可利用性(四)酶活性调节酶活性调节是通过对现有酶催化能力的调节,最基本的方式是酶的反馈调节,亦即通过代谢物浓度对自身代谢速度的调节作用,反馈调节作用根据其效应的不同分为正反馈调节和负反馈调节。

反馈是结果对行为本身的调节或输出对输入的调节,在物质代谢调节中引用反馈是指产物的积累对本身代谢速度的调节。

反馈抵制调节包括顺序反馈调节、积累反馈调节、协同反馈调节和同功酶调节四种。

(五) 酶量的调节细胞内的酶可以根据其是否随外界环境条件的改变而改变分为组成酶和诱导酶。

组成酶是催化细胞内各种代谢反应的酶,如糖酵解、三羧酸循环等。

诱导酶则是其含量可以随外界条件发生变化的一些酶类。

它的产生或消失可以使细胞获得或失去代谢某一种物质的能力。

1.原核生物基因表达调控操纵子学说是F. Jacob 和 J. Monod 于1961年首先提出来用于解释原核生物基因表达调控的一个理论。

该理论认为一个转录调控单位包括:结构基因、调节基因、启动子和操纵基因四个部分,其中操纵基因加上它所控制的一个或几个结构基因构成的转录调控功能单位称为操纵子。

三大物质代谢及相互联系(小结)

三大物质代谢及相互联系(小结)

尿素的形成
氨基酸脱下的氨基在肝脏中与 CO2和H2O结合生成尿素,通过 肾脏排出体外。
蛋白质的合成代谢
氨基酸的合成
通过转氨基、脱羧基等反应,将氨基酸合成多肽链,进而形成蛋 白质。
核糖体与多肽链合成
核糖体是蛋白质合成的场所,多肽链合成过程中需要mRNA作 为模板。
蛋白质的折叠与加工
新合成的多肽链经过一系列的折叠和加工,形成具有特定空间结 构和功能的蛋白质。
三大物质代谢与能量转换的关系
糖代谢是生物体内主要的供能物质
糖类通过氧化分解产生ATP,为生物体的各种生理活动提供能量。
脂肪是生物体内重要的储能物质
当糖类供应不足时,脂肪通过氧化分解产生ATP,同时释放出大量能量。
蛋白质是生物体内重要的结构物质
蛋白质在体内通过脱氨基作用生成氨基酸,同时释放出能量供生物体使用。
糖的合成代谢
糖原合成
葡萄糖在肝脏和肌肉中合成糖原 。
蔗糖和淀粉的合成
植物通过光合作用将二氧化碳和 水合成为蔗糖,再进一步合成淀 粉。
糖代谢的调节
激素调节
胰岛素、胰高血糖素、肾上腺素等激素对糖 代谢有重要调节作用。
神经调节
通过神经反射机制对血糖进行快速调节。
营养物质调节
脂肪、蛋白质等营养物质对糖代谢有调节作 用。
蛋白质代谢的调节
激素调节
胰岛素、胰高血糖素、生长激素等激素通过调节氨基酸的吸收、转 运和利用来调节蛋白质代谢。
营养状况调节
食物中蛋白质的摄入量、氨基酸的比例等营养状况因素对蛋白质代 谢有重要影响。
神经调节
神经递质通过影响氨基酸的吸收和转运来调节蛋白质代谢。
04
三大物质代谢的相互联 系
糖、脂、蛋白质之间的相互转化

大学生物化学课件物质代谢的联系和调节

大学生物化学课件物质代谢的联系和调节
肝内脂酸β-氧化极为活跃 肝是酮体生成的主要器官。 (3)肝是合成脂蛋白的主要场所 合成VLDL, 脂肪肝 (肝、小肠和脂肪组织是TG合成的主要场所) (4)肝是胆固醇代谢的主要器官, 胆固醇的生成,转变为胆汁酸 (p164, 166) (5)肝是血浆磷脂的主要来源
(3)肝在蛋白质代谢中的作用
1. 合成多种血浆蛋白质
(四)共同代谢池
体外摄入的营养物或体内各组织细胞的代谢物, 只要是同一化学结构的物质,在进行中间代谢 时,不分彼此,参加到共同的代谢池中参与代 谢,机会均等。 葡萄糖、 氨基酸
(五)ATP是机体能量利用的共同形式 (六) NADPH是合成代谢所需还原当量
第二节 物质代谢的相互联系
一、在能量代谢上的相互联系
全部清蛋白、凝血酶原、纤维蛋白原、Apo A、B、C、 E,部分a1, a2, β球蛋白。
2. AA合成与分解的主要器官。
3. 生成尿素的器官。 肝昏迷氨中毒
(4)肝参与多种维生素和辅酶的代谢 (略)
1. 肝在脂溶性维生素吸收和血液运输中的作用 胆汁酸参与维生素A,D,E,K的吸收。 血液中的运输:视黄醇结合蛋白 维生素D结合蛋白
(二)糖代谢与AA代谢的联系
1. 糖
NEAA (12种)
2. AA 糖 (18种,糖异生,除Leu, Lys)
必需AA 生糖AA 生酮AA 生糖兼生酮AA
(三)脂类代谢与AA代谢的相互联系
1. AA CH3CO-ScoA
FA、胆固醇
2. AA 是合成PL的原料 丝AA、乙醇胺、甲硫AA、胆碱(p160) 肉碱(β-氧化,p156)
饥饿:脂肪动员,脂肪组织分解TG为甘油和FA,释放入血。
6 . 肾:
糖异生、糖酵解、酮体生成 肾髓质,无线粒体,只能酵解供能 肾皮质,主要利用FA、酮体供能
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、各种能量物质的代谢相互联系相互制约
三大营养素可在体内氧化供能。
三大营养素各自代谢 途径
共同中间 产物

脂肪
乙酰CoA
蛋白质
共同代谢
从能量供应的角度看,三大营养素可以互相代 替,并互相制约。
一般情况下,机体优先利用燃料的次序是糖原 (50-70%)、脂肪(10-40%)和蛋白质。供能以糖 及脂为主,并尽量节约蛋白质的消耗。
酮体生成增加
糖不足
草酰乙酸 相对不足
高酮血症
氧化受阻
(二)葡萄糖与大部分氨基酸可以相互转变
1. 大部分氨基酸脱氨基后,生成相应的α-酮酸, 可转变为糖 例如: 丙氨酸 脱氨基 丙酮酸 糖异生 葡萄糖
2. 糖代谢的中间产物可氨基化生成某些非必需
氨基酸
丙氨酸
天冬氨酸

丙酮酸
乙酰CoA 草酰乙酸
α-酮戊二酸 谷氨酸
柠檬酸
(三)氨基酸可转变为多种脂质但脂质几乎不
能转变为氨基酸
1. 蛋白质可以转变为脂肪
氨基酸
乙酰CoA
脂肪
2. 氨基酸可作为合成磷脂的原料
丝氨酸
磷脂酰丝氨酸
胆胺
脑磷脂
胆碱
卵磷脂
3. 脂肪的甘油部分可转变为非必需氨基酸
脂肪
甘油
某些非必需氨基酸
磷酸甘油醛
糖酵解途径
丙酮酸
其他α-酮酸
—— 但不能说,脂类可转变为氨基酸。
糖分解增强
脂酸合成增加, 分解抑制
ATP↑
抑制异柠檬酸脱氢酶
(三羧酸循环关键酶)
柠檬酸堆积, 出现线粒体
激活乙酰CoA羧化酶
(脂酸合成关键酶)
二、糖、脂和蛋白质代谢通过中间 代谢物而相互联系
糖、脂、蛋白质和核酸通过共同的中间代 谢物、柠檬酸循环、生物氧化等彼此联系且相 互转变。一种物质代谢障碍可引起其他物质代 谢的紊乱。
饥饿时: 1~2天
肝糖原分解 ,肌糖原分解 肝糖异生,蛋白质分解
3~4周
以脂酸、酮体分解供能为主 蛋白质分解明显降低
任一供能物质的代谢占优势,常能抑制 和节约其他物质的降解。
例如:
脂肪分解增强
ATP 增多 ATP/ADP 比值增高
糖分解被抑制
磷酸果糖激酶-1被抑制 (糖分解代谢关键酶之一)
甘油及乳酸
(四)一些氨基酸、磷酸戊糖是合成核苷酸的 原料
1. 氨基酸是体内合成核酸的重要原料
天冬氨酸 甘氨酸
谷氨酰胺
一碳单位
合成嘌呤
合成嘧啶
2. 磷酸核糖由磷酸戊糖途径提供
机体内乙酰CoA主要来源和代谢去路?
葡萄糖 有氧氧化
脂肪酸 β-氧化乙酰CoA
酮体
TAC彻底氧化 酮体 脂肪酸 胆固醇
氨基酸
乙酰胆碱
(一)葡萄糖可转变为脂肪酸
1. 摄入的糖量超过能量消耗时:
合成糖原储存(肝、肌肉)


乙酰CoA
合成脂肪

(脂肪组织)
2. 脂肪的甘油部分能在体内转变为糖
甘油
甘油激酶
肝、肾、肠
磷酸-甘油
葡 萄



脂酸
乙酰CoA
葡萄糖
3. 脂肪的分解代谢受糖代谢的影响 饥饿、糖供应不足或糖代谢障碍时:
脂肪大量动员
相关文档
最新文档