离心式制冷压缩机性能分析

合集下载

离心机-螺杆机-比较.

离心机-螺杆机-比较.

离心机与螺杆机比较离心式制冷压缩机作为一种速度型压缩机,具有以下优点:1.在相同冷量的情况下,特别在大容量时,与螺杆压缩机组相比,省去了庞大的油分装置,机组的重量及尺寸较小,占地面积小;2.离心式压缩机结构简单紧凑,运动件少,工作可靠,经久耐用,运行费用低;3.容易实现多级压缩和多种蒸发温度,容易实现中间冷却,使得耗功较低;4.离心机组中混入的润滑油极少,对换热器的传热效果影响较小,机组具有较高的效率. 具有以下缺点:1.转子转速较高,为了保证叶轮一定的宽度,必须用于大中流量场合,不适合于小流量场合;2.单级压比低,为了得到较高压比须采用多级叶轮,一般还要用增速齿轮;3.喘振是离心式压缩机固有的缺点,机组须添加防喘振系统;4.同一台机组工况不能有大的变动,适用的范围较窄.喘振:喘振是透平式压缩机(也叫叶片式压缩机)在流量减少到一定程度时所发生的一种非正常工况下的振动。

当气体流量小于某极限值时,气体进入叶轮的方向不再和叶片进口角一致,在叶道中产生分离和旋涡,气流受阻后向相邻叶道转移,并随着流量减小使分离现象沿着与旋转相反方向扩展到整个叶轮,这就是“旋转失速”现象。

当整个流道出现分离,压缩机出口压力突然下降,级后管网中的气体发生倒流,直至管网中的压力降到等于压缩机出口压力为止,又重复出现“旋转失速”现象,从而在压缩机管网系统中产生周期的低频高振幅压力脉动,并会引起噪音和振动,此现象叫作“喘振”。

喘振严重时会使叶片疲劳断裂,轴承烧坏,机器无法运行。

离心式压缩机是透平式压缩机的一种形式,喘振对于离心式压缩机有着很严重的危害。

离心式压缩机发生喘振时,典型现象有:1)压缩机的出口压力最初先升高,继而急剧下降,并呈周期性大幅波动;2)压缩机的流量急剧下降,并大幅波动,严重时甚至出现空气倒灌至吸气管道;3)拖动压缩机的电机的电流和功率表指示出现不稳定,大幅波动;4)机器产生强烈的振动,同时发出异常的气流噪声。

但是制冷机的选择,不能只简单的考虑冷量效率。

离心式制冷压缩机结构

离心式制冷压缩机结构

离心式制冷压缩机结构首先,离心式制冷压缩机的进气口是从外部吸入制冷剂的通道。

制冷剂经过进气口进入离心轮。

离心轮是离心式制冷压缩机的关键组成部分。

它由一个或多个叶片组成,固定在驱动轴上。

当驱动轴旋转时,离心轮叶片受到离心力的作用,从而产生高速旋转。

制冷剂被离心力推到离心轮外缘。

接下来,制冷剂通过扩压器进入压缩室。

扩压器的作用是将制冷剂的压力降低,从而使其状态发生变化。

在压缩室内,制冷剂被进一步压缩,温度也随之升高。

然后,压缩后的高温高压制冷剂通过出气口排出。

出气口通向冷凝器,将制冷剂释放出来,并在此过程中散热。

散热器是一个类似于散热片的装置,通过自然对流或强制对流实现散热。

散热后的制冷剂再次进入进气口循环。

最后,离心式制冷压缩机由电机驱动。

电机通过驱动轴带动离心轮的旋转,从而使制冷剂被压缩。

离心式制冷压缩机的工作原理是靠离心力将制冷剂压缩。

当制冷剂进入离心轮后,受到离心力的作用而产生高速旋转。

离心轮旋转时会改变制冷剂的动能和压力。

制冷剂经过扩压器进入压缩室,受到进一步压缩。

压缩后的高温高压制冷剂通过出气口排出,再经过冷凝器散热后再次进入进气口循环。

总之,离心式制冷压缩机是一种结构简单、运行稳定的制冷压缩机。

它具有高效率、低噪音等优点,在各种制冷设备中得到广泛应用。

离心式制冷压缩机的结构包括进气口、离心轮、扩压器、压缩室、出气口、散热器和电机。

通过离心力将制冷剂压缩,实现制冷效果。

对三大制冷商制冷机组节能分析

对三大制冷商制冷机组节能分析

对三大供应商制冷设备的节能分析制冷设备是数据中心最大的耗能设备之一,机房的空调系统全年耗电平均占IDC总耗电量的40%左右。

制冷设备的节能技术的先进性和今后设备运营能否最优管理,对机房降低能耗有着重要意义。

为此我们邀请了全球三大制冷设备供应商(TRANE特灵、Carrier开利、YORK约克)进行了座谈,通过座谈咨询,初步了解其制冷设备的性能、特性、特点,现对其制冷设备离心式冷水机组进行节能分析。

1、 特灵(TRANE)、开利(Carrier)、约克(YORK)各自离心式冷水机组在节能方面的性能、特点(一)特灵(TRANE):1、制冷机组部分参数见下表:机组型号 机 组制冷量 输入功率kW Tons kW电机功率满负荷性能、额定电流、星型堵转电流kW/Ton A A重 量吊装重量 R123充注量Kg kgCVHE/G=G 420(最小)1406 400 2440.611 436 1063 7515 870 CVHE/G=G 1100(最大)4747 1350 823 0.610 1478 2087 15723 26972、技术上的节能措施(1) 结构上采用三级压缩,可以在广阔的容量范围内保持机组高效运行,消除常见的热气旁通结构造成的能量浪费。

可最大程度避免低负荷状态下的离心式压缩机喘振问题。

三级压缩间的两极经济器,利用节流过程中的闪蒸气体冷却压缩机的级间气体,大大提高机组的效率。

(2)全封闭直接驱动离心式压缩机,避免齿轮传动的能量损失。

可将机组效率提高7%。

(3)专利的换热器技术,换热效率高。

(4) 高效的制冷剂R123,也是特灵的致命弱点,因(冷剂)R123使用有年限限制,北京奥运会场馆建设中,其制冷设备不准许进北京。

3、运营控制与管理(1)三级离心式冷水机组配备了先进的Adaptivew TW摇背控制器,可以方便、有效的实现空调系统设计工程师所提的系统节能方案,还可以让冷水机组达到前所没有的节能效果。

制冷压缩机(往复式、螺杆式、离心式)

制冷压缩机(往复式、螺杆式、离心式)

在制冷系统中,三种常见的制冷压缩机(往复式、螺杆式、离心式)的作用都是将低温物体的热量不断地转移到常温环境介质中,从而到达制冷目的,并且它还提供与蒸发温度与冷凝温度相对应的低压与高压的条件。

根据他们的工作原理的不同,制冷压缩机一般可以分为容积型与速度型。

容积型制冷压缩机包括往复式与螺杆式。

速度型制冷压缩机为离心式。

容积性制冷压缩机的工作原理是用机械的方法使密闭容器的容积变小,使气体压缩而增加气体的压力。

速度性制冷压缩机的工作原理是用机械的方法使流动的获得很高的流速,然后在扩张的通道内使气流的速度减小,使气体的动能转化为压力能,从而到达提高气体压力的目的。

在制冷系统中,因为容积型制冷压缩机与速度型制冷压缩机在工作原理的不同,所以它们在制冷性能上受到的影响也是不同的。

对于容积型制冷压缩机来说,它的制冷性能受到密闭容器的容积的利用率的影响。

因此,如果想提它的制冷性能,就必须充分利用密闭容器的容积的利用率。

对于速度性压缩机来说,它的制冷性能受到气流的速度的影响。

因此,如果想提它的制冷性能,就必须充分提高气流的速度。

在制冷系统中,因为三种常见的制冷压缩机(往复式、螺杆式、离心式)在主要用途上的不同,所以它们的适用温度也是不同的。

往复式制冷压缩机主要适用于家用冰箱,商用冰箱,空调,商用冷藏,办公用冷藏,汽车空调食品工业及其它工业冷冻空调,石油,化工用冷却设备。

它的适用温度为-120度以上,包括单级、双级、复叠。

螺杆式制冷压缩机主要适用于食品及其它工业冷冻空调。

它的适用温度为-80度以上。

离心式制冷压缩机主要适用于石化,纺织等工艺冷却、大型空调。

它的适用温度为-160度以上。

在制冷系统中,因为三种常见的制冷压缩机(往复式、螺杆式、离心式)在适用温度范围的不同,所以它们的单机制冷量也是不同。

在三种常见的制冷压缩机(往复式、螺杆式、离心式)中,单机制冷量最大是离心式制冷压缩机,它的单机制冷量为160至30000千瓦。

制冷系统中的性能测试与分析

制冷系统中的性能测试与分析

制冷系统中的性能测试与分析制冷系统是现代生活中非常重要的元素之一。

它们经常出现在家庭、商业和工业环境中,实质上它们是为了保持温度下降,以保持人员和设备的舒适和正常工作。

制冷系统的性能测试和分析是制冷行业的重要组成部分,因为这些测试可以让制冷系统运行得更好,避免停机和减少能源浪费。

测试压缩机的性能压缩机是制冷系统中最重要的部件之一。

它的主要作用是将制冷剂吸入,并将其压缩成高压气体,以使其在冷凝器中冷却。

测试压缩机的性能非常重要,因为它影响制冷系统的整个工作效果。

在测试压缩机之前,必须首先确定工作压力和温度,以便通过比较真正的性能和标准数据来确定其性能如何。

在测试时,必须关注多个方面。

例如,测试压缩机的能力,吸入温度,环境温度等。

测量制冷剂的性能制冷系统中的制冷剂有多种类型。

测试制冷剂的性能非常重要,因为它们的性能影响整个制冷系统的效率。

在测试过程中,必须考虑制冷剂的性质,例如密度和压缩比。

它们的性能取决于它们在制冷循环中的位置,例如制冷剂在蒸发器,冷凝器和节流装置中的表现。

测量制冷系统的能效制冷系统的能效非常重要。

制冷系统的能效越高,越能节省能源和成本。

在确定制冷系统的能效时,必须测量制冷系统的输入和输出数据。

例如,输入数据包含制冷系统使用的电力量,而输出数据则包括从制冷系统中获得的冷量。

如果输入和输出数据比例不合理,则可能意味着制冷系统的能效不佳。

检测制冷系统的泄漏制冷系统中存在泄漏的风险,这可能会导致制冷系统性能下降,损失制冷剂和造成更大的环境影响。

为了检测制冷系统中是否存在泄漏,必须使用专用工具检测制冷系统中的制冷剂流量等。

如果检测到制冷系统中存在泄漏,则必须对其进行修理,以防止进一步的浪费和严重的环境污染。

结论制冷系统的性能测试和分析是制冷行业不可缺少的一部分。

保持制冷系统的性能和效率是非常重要的,以便确保其正常运行。

通过对压缩机、制冷剂、系统能效和泄漏的测试,在整个制冷系统中可以发现问题并进行修复。

简述离心式压缩机结构原理及常见故障分析

简述离心式压缩机结构原理及常见故障分析

简述离心式压缩机结构原理及常见故障分析【摘要】离心式压缩机是一种常见的空调压缩机,其结构原理和工作原理有着独特的特点。

正文部分将详细介绍离心式压缩机的结构原理,包括离心式压缩机的主要组成部分和工作原理。

文章还将分析离心式压缩机常见的故障原因,如过载、润滑不足等。

通过分析这些故障,可以更好地了解离心式压缩机的运行情况,并采取相应的维修措施。

在将总结离心式压缩机的特点和维修要点,以帮助读者更好地理解和维护离心式压缩机。

通过该文章的介绍,读者可对离心式压缩机有更深入的了解,提高维修和维护水平。

【关键词】关键词:离心式压缩机、结构原理、常见故障分析、特点、维修要点1. 引言1.1 简述离心式压缩机结构原理及常见故障分析离心式压缩机是一种常用的压缩机类型,其结构原理和常见故障分析对于压缩机的维护和使用至关重要。

离心式压缩机的结构原理主要包括转子、固定导向器、涡旋室、离心轮等部件。

转子是离心式压缩机的核心部件,通过高速旋转产生离心力,将气体压缩。

固定导向器用于引导气流,涡旋室用于分离气体,离心轮则用于将气体压缩并排出。

在离心式压缩机使用过程中,常见的故障包括轴承损坏、密封件老化、润滑系统故障等。

轴承损坏会导致转子不稳定,影响压缩效果;密封件老化会导致气体泄漏,影响压缩机的工作效率;润滑系统故障会导致部件摩擦增加,损坏压缩机的机械结构。

为了保证离心式压缩机的正常运行,需要定期对其进行检查和维护,及时处理各种故障。

离心式压缩机具有结构简单、效率高、维护方便等特点,但在使用过程中也需要注意故障分析及维修要点,以确保其长期稳定运行。

2. 正文2.1 离心式压缩机的结构原理离心式压缩机是一种常见的空气压缩机,主要由以下几个部分组成:转子、转子壳体、驱动装置和冷却系统。

转子是离心式压缩机的核心部件,通过高速旋转产生离心力,将气体压缩并排出。

通常离心式压缩机有单级和多级两种结构,多级结构可以提高压缩效率。

转子壳体是容纳转子的外壳,通常由钢铁或合金材料制成,具有较高的强度和耐磨性。

离心压缩机性能研究

离心压缩机性能研究

第41卷第6期2020年12月化工装备技术59离心压缩机性能研究罗楠张世星2郑天一3(1.浙江恒逸工程管理有限公司2.埃理奥特机械设备维修服务(天津)有限责任公司3.中国石油大庆炼化公司)摘要介绍了离心压缩机性能曲线基本概念,论述了离心压缩机喘振、阻塞(Choke)机理、危害及判断方法,并对离心压缩机喘振影响因素(气体密度、转速、温度、压力、流量等参 数)进行了分析,为离心压缩机安全运行提供技术支持。

关键词离心压缩机性能曲线喘振阻塞影响因素中图分类号 TH 452 D O I:10.16759/ki.issn.1007-7251.2020.12.016Research on Performance of Centrifugal CompressorLUO Nan ZHANG Shixing ZHENG TianyiA bstract: The basic concept of centrifugal compressor performance curve was introduced, and the mechanism,hazards and judgment methods of centrifugal compressor surge and choke were discussed. In addition, the factors affecting the surge of the centrifugal compressor (gas density, speed, temperature, pressure, flow and other parameters) were analyzed to provide technical support for the safe operation of the centrifugal compressor.Key words: Centrifugal compressor; Performance curve; Surge; Block; Influencing factor0引言离心压缩机是速度型压缩机的一种,具有排量 大、效率高、结构简单、易损件少、连续运转周期长 等特点,广泛应用于石油化工行业。

制冷压缩机性能测试实验

制冷压缩机性能测试实验

制冷压缩机性能测试实验试验台简介本试验台采用图1所示系统,通过阀门的转换,可进行制冷压缩机性能测试实验、冷水机组性能实验、水-水换热器性能实验和水泵性能实验。

制冷压缩机性能实验系统由压缩机、冷凝器、蒸发器、电子膨胀阀、恒温器电参数仪等设备组成。

压缩机吸气压力、吸气温度、排气压力分别控制在国家标准规定的状态下。

吸气温度由恒温器2调节蒸发器冷媒水进口温度T9控制,吸气压力由电子膨胀阀控制,排气压力由恒温器1调节冷凝器冷却水进口温度T7控制。

压缩机的实际制冷量由通过蒸发器的冷媒水进出口温度和流量测出,冷凝换热量由通过冷凝器的冷却水进出口温度及流量测得。

由此得到压缩机的主辅测质量流量,进而计算出标准工况下的主辅侧制冷量。

压缩机的输入功率由电参数仪测得。

在制冷系统内部安装多个压力和温度测点,可以方便地确定系统内部的状态。

冷水机组性能实验系统,由压缩机、冷凝器、蒸发器、热力膨胀阀、恒温器等设备组成。

实验时,可以设置不同的冷媒水和冷却水温度。

冷水机组冷媒水进口温度通过调节恒温器2中的电加热器控制,冷却水进口温度通过调节恒温器1中的电加热器控制,而出口温度则通过阀门调节。

冷水机组的输入功率通过电参数仪表测得。

冷水机组的制冷量由通过蒸发器的冷媒水进出口温度和流量测出,冷凝换热量由通过冷凝器的冷却水进出口温度及流量测得。

同时在系统中加入了相应的温度和压力测点,可以使学生能更加深入地了解冷水机组的工作特性。

水-水换热器性能实验系统,由冷水机组、恒温器、流量计、水泵等设备组成。

冷热侧流体分别通过冷水机组和恒温器1获得。

换热器冷侧和热侧流体进口温度分别通过恒温器2和恒温器1控制。

通过测量换热器两侧流体进出口温度和两侧的流量,可以求出换热量,在已知换热面积的前提下,可以求出换热器的换热系数K。

水泵性能实验系统,由水泵、流量计、电参数仪等设备组成。

水泵的流量通过流量计测得,水泵的扬程通过水泵进出口压力变送器测得。

在水泵的出口处设立调节阀,通过改变阀门的开度来改变水泵进口处的参数,获得水泵变工况运行特性曲线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离心式制冷压缩机性能分析
离心式制冷压缩机,其构造和工作原理与离心式鼓风机相似,依靠动能的变化来提高汽体压力。

具有带叶片的工作轮,当工作轮转动时,不断地将制冷剂蒸汽吸入,又不断地沿半径方向被甩出去,使汽体运动或者使汽体得到动能,然后使部分动能转化为压力能从而提高汽体的压力。

单级离心式压缩机只有一个工作轮,反之成为多级离心式压缩机。

离心式制冷压缩机的优点:
(1)离心式压缩机的气量大,结构简单紧凑,重量轻,机组尺寸小,占地面积小,相对于活塞式压缩机,在制冷量相同时,重量较活塞式轻5~8倍。

(2)由于它没有汽阀活塞环等易损部件,又没有曲柄连杆机构,运转平衡,操作可靠,运转率高,摩擦件少,因之备件需用量少,维护费用及人员少。

(3)工作轮和机壳之间没有摩擦,无需润滑。

在化工流程中,离心式压缩机对化工介质可以做到绝对无油的压缩过程。

(4)、离心式压缩机为一种回转运动的机器,它适宜于工业汽轮机或燃汽轮机直接拖动。

对一般大型化工厂,常用副产蒸汽驱动工业汽轮机作动力,为热能综合利用提供了可能。

离心式制冷压缩机的缺点:
(1)离心式压缩机目前还不适用于气量太小及压比过高的场合,并且由于适宜采用分子量比较大的制冷剂,故只适用于大制冷量,一般都在25~30万大卡/时以上。

相关文档
最新文档