2020年高考数学全真模拟试卷一(全国三卷)
2020高考数学(文科)全国三卷高考模拟试卷(1)

)
A .5
B .10
C.﹣ 5
【解答】 解:根据题意,等差数列 { an} 中,有 a4+a8= 2a6,
若 a4+a8= 10,
则 a6= 5; 故选: A.
D. √10
10.( 5 分)甲、乙两位同学将高三 6 次物理测试成绩做成如图所示的茎叶图加以比较(成
绩均为整数满分 100 分),乙同学对其中一次成绩记忆模糊,只记得成绩不低于
5
C. 4
16 D.
5
4.( 5 分)某三棱锥的三视图如图所示,其中主视图是等边三角形,则该三棱锥外接球的表
面积为(
)
A .23π
23?? B.
4
C. 64π
5.( 5 分)若 α为第二象限角,下列结论错误的是(
)
A .sinα>cosα
B. sinα> tanα
C. cosα+tanα<0
D. sinα+cosα> 0
.
三.解答题(共 5 小题,满分 60 分,每小题 12 分)
17.( 12 分)△ ABC 中, AC= 3,三个内角 A, B,C 成等差数列.
( 1)若 ?????=??√?6,求 AB; 3
→→
( 2)求 ???????的? 最大值.
18.( 12 分)如图: AB⊥面 BCD, BC= CD,∠ BCD = 90°.∠ ADB= 30°, E, F 分别是 AC, AD 的中点. ( 1)求证:平面 BEF ⊥平面 ABC
D. sinα+cosα> 0
所以 sinα> 0,cosα< 0, tanα< 0,A, B,C 都对, D 错误.
故选: D .
2020年山东省普通高等学校招生全国统一考试模拟卷(三)数学试题(解析版)

绝密★启用前山东省2020年普通高等学校招生全国统一考试模拟卷(三)数学试题(解析版)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}{}312,log 1||A x x B x x =-≤≤=≤,则A B = ( )A. {|12}x x -≤≤B. {|02}x x <≤C. {|12}x x ≤≤D. {|1x x ≤-或2}x >【答案】B【解析】【分析】 先求出集合{03}B x x =<≤,再利用交集的定义得出答案.【详解】因为3{|log 1}B x x =≤可得{03}B x x =<≤,集合{|12}A x x =-≤≤, 所以{|02}A B x x ⋂=<≤故选B【点睛】本题主要考查了交集的定义,属于基础题.2.已知复数z 满足(1)1z i =+,则复平面内与复数z 对应的点在A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】【分析】 把已知等式变形,利用复数代数形式的乘除运算化简,求出z 的坐标得答案. 【详解】由()131i z i +=+,得()()()()1131313131313131313i i i z i i i i +-++-+-====++++-, ∴复数z 在复平面内对应的点的坐标为(13+,13-),在第四象限. 故选D . 【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.3.某校拟从甲、乙两名同学中选一人参加疫情知识问答竞赛,于是抽取了甲、乙两人最近同时参加校内竞赛的十次成绩,将统计情况绘制成如图所示的折线图.根据该折线图,下面结论正确的是( )。
最新2020年高三第三次模拟考试卷理科数学(一)(含答案)

( 2)在线段 PB 上是否存在点 G ,使得直线 AG 与平面 PBC 所成的角的正弦值为 确定点 G 的位置;若不存在,请说明理由.
15 ?若存在, 5
( 1)求 P 的轨迹 E ; ( 2)过轨迹 E 上任意一点 P 作圆 O : x2 y 2 3 的切线 l1 ,l2 ,设直线 OP ,l1 ,l2 的斜率分别是 k 0 ,
8.答案: C
解: 1
1 log 2019 2019
22
0 b log 2020 2019
a log 2019 2020
1 log 2019 2020
2
1 log 2019 2019 2 1 , 2
1
1 2 log 2020 2019
1
log 2
2020
2020
1 , c 2019 2020 2
1.
20.( 12 分)已知函数 f (x)
ex
.
( 1)求函数 f (x) 的单调区间; ( 2)若对任意的 x ( 2,0] ,不等式 2m( x 1) f ( x) 恒成立,求实数 m 的取值范围.
产业扶贫、 保障扶贫、 安居扶贫三场攻坚战. 为响应国家政策, 老张自力更生开了一间小型杂货店. 据
贫困县全部退出.围绕这个目标,江西正着力加快增收步伐,提高救助水平,改善生活条件,打好
请考生在 22 、 23 两题中任选一题作答,如果多做,则按所做的第一题记分.
22.( 10 分)【选修 4-4 :坐标系与参数方程】
在直角坐标系 xOy 中,直线 l 的参数方程为
x 3t ( t 为参数),在以坐标原点为极点,
C. 400
D. 420
得到的回归方程为 y? b?x a?,则(
2020年全国3卷高考理科数学仿真试卷(三)答案

绝密★启用前2020年普通高等学校招生全国统一考试仿真卷理科数学(三)答案第Ⅰ卷一、选择题:本大题共12小题,每小题5分一、选择题:本大题共12小题,每小题5分1.D 2.A 3.B 4.C 5.B 6.C 7.C8.C9.A10.B11.D12.D第Ⅱ卷本卷包括必考题和选考题两部分。
第(13)~(21)题为必考题,每个试题考生都必须作答。
第(22)~(23)题为选考题,考生根据要求作答。
二、填空题:本大题共4小题,每小题5分。
13.214.2015.32016.9π三、解答题:解答应写出文字说明、证明过程或演算步骤。
17.【答案】(1)2n a n =;(2)()1654209n nn S +-+=.【解析】(1)由题意得22228t t t t t -++==,所以2t =±,···········2分2t =时,12a =,公差2d =,所以2n a n =;···········4分2t =-时,16a =,公差2d =-,所以82n a n =-.···········6分(2)若数列{}n a 为递增数列,则2n a n =,所以2log 2n b n =,4n n b =,()()1214nn n a b n -=-⋅,···········8分所以()()231143454234214n nn S n n -=⋅+⋅+⋅++-⋅+-⋅ ,·········9分()()23414143454234214n n n S n n +=⋅+⋅+⋅++-⋅+-⋅ ,所以()23134242424214n n n S n +-=+⋅+⋅++⋅--⋅ ()()211414422143n n n -+-=+⨯---()1206543n n +---=,···········10分所以()1654209n nn S +-+=.···········12分18.【答案】(1)见解析;(2)4.【解析】(1)随机变量X 的可取值为0,1,2,3,4···········1分 (2) (3)分 (4) (5)分···········6分故随机变量X 的分布列为:X 01234P1708351835835170···········7分(2)随机变量X 服从超几何分布:()4428E x ⨯∴==,···········9分()1422E Y ∴=⨯=.···········11分()()224E X E Y ∴+=+=.···········12分19.【答案】(1)证明见解析;(2).【解析】(1)在半圆柱中,1BB ⊥平面11PA B ,所以1BB PA ⊥.···········2分因为11A B 是上底面对应圆的直径,所以11PA PB ⊥.···········4分因为111PB BB B = ,1PB ⊂平面1PBB ,11BB PBB ⊂,所以1PA ⊥平面1PBB .···········5分(2)以C 为坐标原点,以CA ,CB 为,y 轴,过C 作与平面ABC 垂直的直线为轴,建立空间直角坐标系C xyz -.如图所示,设1CB =,则()1,0,0B ,()0,1,0A,(1A,(1B,(P .···6分平面11PA B 的一个法向量()10,0,1=n .···········8分设平面11CA B 的一个法向量()2,,x y z =n ,则1z =···········10分···········11分由图可知二面角11P A B C --为钝角,所以所求二面角的余弦值为.···········12分20.【答案】(1)2214y x +=;(2)答案见解析.【解析】(1)取(0,F ',连结PF ',设动圆的圆心为M ,∵两圆相内切,∴122OM FP =-,又12OM PF =',∴4PF PF FF +=>='',···········3分∴点P 的轨迹是以F ,F '为焦点的椭圆,其中24a =,2c =,∴2a =,c =,∴2221b a c =-=,∴C 的轨迹方程为2214y x +=.···········5分(2)当AB x ⊥轴时,有12x x =,12y y =-,由⊥m n ,得112y x =,又221114y x +=,∴122x =,1y =,∴111121222AOB S x y ∆=⨯⨯=⨯=.···········7分当AB 与轴不垂直时,设直线AB 的方程为y kx m =+,()2224240k x kmx m +++-=,则12224kmx x k -+=+,212244m x x k -=+,···········9分由0⋅=m n ,得121240y y x x +=,∴()()121240kx m kx m x x +++=,整理得()()22121240k x x km x x m ++++=,···········10分∴2224m k =+,1221==,综上所述,AOB △的面积为定值.···········12分21.【答案】(1)见解析;(2)当1m <时,()g x 没有零点;1m =时,()g x 有一个零点;1m >时,()g x 有两个零点.【解析】(1)1m =时,()1e ln x f x x x -=-,()1'e ln 1x f x x -=--,········1分要证()f x 在()0+∞,上单调递增,只要证:()0f x '≥对0x >恒成立,令()1e x i x x -=-,则()1e 1x i x -'=-,当1x >时,()0i x '>,···········2分当1x <时,()0i x '<,故()i x 在()1-∞,上单调递减,在()1+∞,上单调递增,所以()()10i x i =≥,···········3分即1e x x -≥(当且仅当1x =时等号成立),令()()1ln 0j x x x x =-->当01x <<时,()'0j x <,当1x >时,()'0j x >,故()j x 在()0,1上单调递减,在()1+∞,上单调递增,所以()()10j x j =≥,即ln 1x x +≥(当且仅当1x =时取等号),()1e ln 1x f x x -'=--()ln 10x x -+≥≥(当且仅当1x =时等号成立),()f x 在()0+∞,上单调递增.···········5分(2)由()e ln x m g x x m -=--有,显然()g x '是增函数,令()00g x '=,00e e x m x =,00ln m x x =+,则(]00,x x ∈时,()0g x '≤,[)0,x x ∈+∞时,()0g x '≥,∴()g x 在(]00,x 上是减函数,在[)0,x +∞上是增函数,∴()g x ···········7分①当1m =时,01x =,()()=10g x g =极小值,()g x 有一个零点1;···········8分②当1m <时,001x <<02ln 0x <,001x <<,所以()0g x >0,()g x 没有零点;···········9分③当1m >时,01x >,()01010g x <--=,又()eee e e 0mmm mmg m m -----=+-=>,又对于函数e 1x y x =--,'e 10x y =-≥时0x ≥,∴当0x >时,1010y >--=,即e 1x x >+,∴()23e ln3m g m m m =-->21ln3m m m +--=1ln ln3m m +--,令()1ln ln3t m m m =+--,则()11'1m t m m m-=-=,∵1m >,∴()'0t m >,∴()()12ln30t m t >=->,∴()30g m >,又0e 1m x -<<,000333ln m x x x =+>,∴()g x 有两个零点,综上,当1m <时,()g x 没有零点;1m =时,()g x 有一个零点;1m >时,()g x 有两个零点.···········12分请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分。
2020年高考仿真模拟试题(新课标全国卷Ⅰ)理科数学(三)(含答案解析)

2020年高考仿真模拟试题(新课标全国卷Ⅰ)理科数学(三)本试卷分必考和选考两部分.必考部分一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项符合题目要求的.1.已知复数z 满足(2+i)z=3+4i(i 为虚数单位),则z 的共轭复数为( )A .2−iB .2+iC .1−2iD .1+2i 2.已知集合M ={−1,0,1},N ={y |y =1+sin2x π,x ∈M },则集合M ∩N 的真子集的个数是( )A .4B .3C .2D .1 3.已知变量x 和y 的统计数据如下表:x 6 8 10 12 y2356根据上表可得回归直线方程ˆy=0.7x +a ,据此可以预测当x =15时,y =( ) A .7.8 B .8.2 C .9.6 D .8.5 4.若向量a ,b 满足|a |=3,|b |=2,a ⊥(a −b ),则a 与b 的夹角为( )A .2π B .23π C .6πD .56π5.阅读如图所示的程序框图,如果输出的函数值在区间[1,3]上,则输入的实数x 的取值范围是( )A .{x ∈R |0 x 2log 3}B .{x ∈R |−2 x 2}C .{x ∈R |0 x 2log 3或x =2}D .{x ∈R |−2 x 2log 3或x =2}6.设变量x ,y 满足10222270x y x y x y -+⎧⎪+-⎨⎪+-⎩≥≥≤,z =2a x y +(0<a)的最大值为5,则a =( )A .1B .12C.2 D7.已知双曲线2x −2y =1的左、右两个焦点分别是1F 、2F ,O 为坐标原点,圆O 是以12F F 为直径的圆,直线lt -+=0与圆O 有公共点,则实数t 的取值范围是( ) A .[−2,2] B .[0,2] C .[−4,4] D .[0,4]8.已知等差数列{n a }的公差d ≠0,首项1a =d ,数列{2n a }的前n 项和为n S ,等比数列{n b }是公比q 小于1的正项有理数列,首项1b =2d ,其前n 项和为n T ,若33S T 是正整数,则q 的可能取值为( )A .17B .37C .12D .349.若函数y=cos(2x +φ)(0<φ<2π)的图象的对称中心在区间(6π,3π)内只有一个,则φ的值可以是( ) A .12π B .6π C .3πD .56π 10.已知三棱锥P −ABC 的顶点都在同一个球面上(球O ),且P A =2,PB =PC,当三棱锥P −ABC 的三个侧面的面积之和最大时,该三棱锥的体积与球O 的体积的比值是( ) A .316π B .38π C .116πD .18π11.已知抛物线2y =8x 的准线与双曲线22221x y a b-=相交于A ,B 两点, 若直线AF (点F 为抛物线的焦点)与直线y =x 垂直,则双曲线的离心率为( ) A .3 B .2 CD12.已知函数()f x =ln x 与()g x =a −x (1ex e )的图象上恰好存在唯一一对关于x 轴对称的点,则实数a 的取值范围是( )A .(1e +1,e −1]B .[1e+1,e −1)C.{1}∪(1e+1,e−1] D.{1}∪[1e+1,e−1)二、填空题:本题共4小题,每小题5分.13.若261()(2)x a xx+-展开式中的常数项为60,则实数a的值为.14.已知一个空间几何体的三视图如图所示,则该几何体的体积是.15.已知在三角形ABC中,角A,B都是锐角,且sin(B+C)+3sin(A+C)cos C=0,则tan A的最大值为.16.已知函数()f x=212ln xx-,若对任意的1x,2x∈(0,1e],且1x≠2x,122212()()||f x f xx x-->2212kx x⋅恒成立,则实数k的取值范围是.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知数列{na}的前n项和为nS,且满足3nS=2na+1.(1)求数列{na}的通项公式;(2)设数列{nb}满足nb=(n+1)na,求数列{nb}的前n项和nT.18.(本小题满分12分)某运动会为每场排球比赛提供6名球童,其中男孩4名,女孩2名,赛前从6名球童中确定2名正选球童和1名预备球童为发球队员递球,假设每名球童被选中是等可能的.(1)在一场排球比赛中,在已知预备球童是男孩的前提下,求2名正选球童也都是男孩的概率;(2)(i)求选中的3名球童中恰有2名男孩和1名女孩的概率;(ii)某比赛场馆一天有3场排球比赛,若每场排球比赛都需要从提供的6名球童中进行选择,记球童选取情况恰为(i)中结果的场次为ξ,求随机变量ξ的分布列及数学期望.19.(本小题满分12分)已知四棱锥A−BCPM及其三视图如图所示,其中PC⊥BC,侧视图是直角三角形,正视图是一个梯形.(1)求证:PC⊥AB;(2)求二面角M−AC−B的余弦值.20.(本小题满分12分)已知椭圆C:22221x ya b+=(a>b>0)的左、右焦点分别为1F,2F,过点A (−4,0)的直线l与椭圆C相切于点B,与y轴交于点D(0,2),又椭圆的离心率为12.(1)求椭圆C的方程;(2)圆Q与直线l相切于点B,且经过点2F,求圆Q的方程,并判断圆Q与圆2x+2y=2a的位置关系.21.(本小题满分12分)已知函数()f x=ax+ln x−2,a∈R.(1)若曲线y=()f x在点P(2,m)处的切线平行于直线y=−32x+1,求函数()f x的单调区间;(2)是否存在实数a,使函数()f x在(0,2e]上有最小值2?若存在,求出a的值,若不存在,请说明理由.选考部分请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4─4:坐标系与参数方程已知极坐标系的极点与直角坐标系的坐标原点重合、极轴与x 轴的正半轴重合,若直线l 的极坐标方程为ρsin(θ−6π)=12.(1)写出直线l 的参数方程;(2)设直线l 与圆ρ=2相交于A ,B 两点,求点P (1,1)到A ,B 两点的距离之积. 23.(本小题满分10分)选修4─5:不等式选讲设函数()f x =1+|2x −3|,()g x =|9x +3|.(1)求不等式()f x13()g x 的解集; (2)若不等式()f x 2t x +12+|x −32|的解集非空,求实数t 的取值范围.2020年高考仿真模拟试题(新课标全国卷Ⅰ)理科数学(三)答案1.A 【解析】由(2+i)z=3+4i ,得z=34i (34i)(2i)105i2i (2i)(2i)5++-+==++-=2+i ,则z 的共轭复数为2−i ,选A .2.B 【解析】因为N ={0,1,2},所以M ∩N ={0,1},其真子集的个数是3,故选B . 3.B 【解析】根据题中表格可知x =6810124+++=9,y =23564+++=4,所以a =y −0.7x =4−0.7×9=−2.3,所以ˆy=0.7x −2.3, 当x =15时,y =0.7×15−2.3=8.2.4.C 【解析】通解 因为a ⊥(a −b ),所以a ·(a −b )=0,即a ·a −a ·b =|a |2−|a |·|b |cos<a ,b >=0,所以cos<a ,b >=2||||||⋅a a b =32,又<a ,b >∈[0,π],故a 与b 的夹角为6π,选C .优解 因为a ⊥(a −b ),所以利用三角形法则不难得出,向量a ,b ,a −b 构成直角三角形,且a ,b 的夹角必定为锐角,从而可知选C .5.C 【解析】根据题意,得当x ∈(−2,2)时,()f x =2x ,由1 2x 3,得0 x 2log 3;当x ∉(−2,2)时,()f x =x +1,由1 x +1 3,得0 x 2,即x =2.故输入的实数x 的取值范围是{x ∈R |0 x 2log 3或x =2}.故选C .6.A 【解析】如图,画出可行域,∵z =2a x +y ,∴y =−2a x z +,求z 的最大值,即求直线y=−2a x z+在y 轴上的最大截距,显然当直线y=−28a x +过点A 时,在y 轴上的截距取得最大值.由10270x y x y -+=⎧⎨+-=⎩,解得A (2,3),则22a +3=5,可得a =1.故选A .7.C 【解析】双曲线2x −2y =1的两个焦点分别是1F (2,0),2F 2,0),从而圆O 的方程为2x +2y =253x t +=0与圆O 有公共点,,即|t| 4,从而实数t的取值范围是[−4,4],故选C.8.C【解析】由题意知,33ST=2222222249141d d dd d q d q q q++=++++为正整数,设为t,则1+q+2q=14t,即2q+q+1−14t=0,因为q有解,故1−4(1−14t) 0,t563.故q因而t整除56,即t的可能取值为1、2、4、7、8、14,经检验当t=8时符合题意,此时q12=,故选C.9.A【解析】令2x+φ=2π+kπ(k∈Z),则x=4π+2kπ−2ϕ,所以6π<4π+2kπ−2ϕ<3π,即ϕπ−16<k<ϕπ+16.又由0<φ<2π,得−16<ϕπ−16<13,16<ϕπ+16<23,所以k=0,此时φ∈(−6π,6π),选A.10.A【解析】三棱锥P−ABC的三个侧面的面积之和为12×sin∠APB+12×sin∠APC+12sin∠BPC,由于∠APB,∠APC,∠BPC相互之间没有影响,所以只有当上述三个角均为直角时,三棱锥P−ABC的三个侧面的面积之和最大,此时P A,PB,PC两两垂直,以其为长方体的三条棱长得出一个长方体,则三棱锥P−ABC与该长方体有共同的外接球,故球O的半径r==2,所以三棱锥P−ABC的体积与球O的体积的比值是311233241623ππ⨯⨯=⨯.11.A【解析】通解因为直线AF(点F为抛物线的焦点)与直线y=x垂直,所以直线AF的斜率为AFk=−1,又抛物线2y=8x的焦点为F(2,0),则直线AF的方程为y=−x+2,与抛物线的准线:x=−2联立,得点A(−2,4),又点A在双曲线上,所以24a−1616=1,解得2a=2,故2e=22ca=9,双曲线的离心率e=3.故选A.优解 因为直线AF (点F 为抛物线的焦点)与直线y =x 垂直,所以直线AF 的斜率为AF k =−1,又A ,B 两点是抛物线2y =8x 的准线与双曲线222116x y a -=的交点,根据双曲线的对称性,可知△ABF 是等腰直角三角形,故由点A 的横坐标为−2,AF k =−1,知点A 的纵坐标为4,即A (−2,4),代入双曲线方程可得24a −1616=1,解得2a =2, 2e =22c a =9,故双曲线的离心率e =3.故选A .12.C 【解析】因为函数()f x =ln x 与()g x =a −x (1ex e )的图象上恰好存在唯一一对关于x 轴对称的点,即点(x ,y )与(x ,−y )分别在两个函数的图象上,且唯一.又1ex e ,所以()ln ()y f x x y g x x a==⎧⎨=-=-⎩,即方程ln x =x −a 在[1e ,e ]上有唯一解,所以函数()f x =ln x 的图象和直线y=x −a 在区间[1e ,e ]上有唯一的公共点,作出大致图象如图所示.当两函数图象相切时, 设切点为(0x ,0y ),1()(ln )f x x x''==,所以001()f x x '=,所以0x =1,切点为(1,0),代入直线方程得a =1.当直线y =x −a 过点A (1e ,−1)时,a =1e+1;当直线y =x −a 过点B (e ,1)时,a =e −1.结合图象可知,若恰好存在唯一一对关于x 轴对称的点,则a =1或1e+1<a e −1.13.1【解析】261(2)x x -展开式的通项为1r T +=6C r 26(2)r x -−1()r x-=(−1)r ×62r -6C r 123rx -,当12−3r =0时,r =4,而12−3r =−1时,r =133不符合题意,所以常数项为(−1)4×2246C a =60,解得a =1.14.4【解析】由三视图得该几何体是底面为直角梯形,一条侧棱垂直于直角梯形的上底边的直角顶点的四棱锥,所以该几何体的体积为13×242+×2×2=4.15.34【解析】因为sin (B +C )+3sin (A +C )cos C =0,所以sin(B +C )=−3sin B cos C ,即sin B cos C +cos B sin C =−3sin B cos C ,sin C cos B =−4sin B cos C .易知C ≠90°, 所以tan C =−4tan B ,所以tan(A +B )=4tan B , 所以tan A =tan[(A +B )−B ]=2tan()tan 3tan 1tan()tan 14tan A B B BA B B B+-==-+⋅+114tan 3tan 3B B +34=(B 是锐角,tan B >0),当且仅当1tan B=4tan B , 即tan B =12时取等号,所以tan A 的最大值为34. 16.(−∞,4]【解析】由对任意的1x ,2x ∈(0,1e],且1x ≠2x ,122212()()||f x f x x x -->2212kx x ⋅, 得122212()()||11f x f x x x --min >k ,令g (21x )=()f x ,x ∈(0,1e ],则()g x =x +x ln x ,x ∈[2e ,+∞),()g x '=2+ln x ≥4,又122212()()||11f x f x x x --=2212221211()()||11g g x x x x --表示曲线y=()g x在[2e ,+∞)上不同两点的割线的斜率的绝对值, 则122212()()||11f x f x x x -->4,则k ≤4,即实数k 的取值范围是(−∞,4].17.【解析】(1)当n =1时,31S =21a +1⇒1a =1,当n ≥2时,由11321321n n n n S a S a --=+⎧⎨=+⎩,得3(n S −1n S -)=2n a −21n a -⇒n a =−21n a -,从而n a =(−2)1n -.(4分)(2)由n b =(n +1) n a 得n b =(n +1)×(−2)1n -,则n T =2×(−2)0+3×(−2)1+4×(−2)2+…+(n +1)×(−2)1n -, ① −2n T =2×(−2)1+3×(−2)2+4×(−2)3+…+(n +1)×(−2)n , ② 由①−②得,3n T =2×(−2)0+(−2)1+(−2)2+…+(−2)1n -−(n +1)×(−2)n=1+1(2)1(2)n ----−(n +1)×(−2)n =43−(n +43)×(−2)n ,从而n T =49−349n +×(−2)n . (12分)18.【解析】(1)从6名球童中选取3名球童,已知预备球童为男孩,2名正选球童从其余5人中选取,共有25C =10种不同的选法,因为2名正选球童都是男孩,则需要从剩余3名男球童中选取,有23C =3种选法,由古典概型的概率计算公式,得2名正选球童也都是男孩的概率P =310. (5分)(2)(i)从6名球童中选取3名球童,共有36C =20种不同的选法,记事件A 为“选中的3名球童中恰有2名男孩和1名女孩”,则事件A 包含的选法有2142C C =12种,由古典概型的概率计算公式,得P (A )=123205=. (7分) (ii)随机变量ξ的所有可能取值为0,1,2,3,且ξ~B (3,0.6),P (ξ=0)=03C (0.6)0×(0.4)3=0.064,P (ξ=1)=13C (0.6)1×(0.4)2=0.288, P (ξ=2)=23C (0.6)2×(0.4)1=0.432,P (ξ=3)=33C (0.6)3×(0.4)0=0.216.(10分) 因而ξ的分布列为P0.064 0.288 0.432 0.216Eξ=3×0.6=1.8.(12分) 【备注】在解决概率与统计问题时,一定要根据有关概念,判断是等可能事件、互斥事件、相互独立事件,还是某一事件在n 次独立重复试验中恰好发生k 次的情况,从而选择正确的概率计算公式,同时注意上述几种事件的综合问题,要全面考虑.19.【解析】(1)由三视图可知,平面PCBM ⊥平面ABC ,又平面PCBM ∩平面ABC =BC ,且PC ⊥BC ,(2分)∴PC ⊥平面ABC ,又AB ⊂平面ABC ,∴PC ⊥AB .(4分)(2)解法一 如图,取BC 的中点N ,连接MN ,由三视图可知,PM ∥CN 且PM =CN , ∴MN ∥PC ,MN =PC ,由(1)知PC ⊥平面ABC ,∴MN ⊥平面ABC . 作NH ⊥AC ,交AC 的延长线于H ,连接MH ,易知AC ⊥MH ,∴∠MHN 为二面角M −AC −B 的平面角.(6分)由三视图可知PC =MN =1,PM =CN =1,CB =2,AC =1,过点A 作AE ⊥BC ,交BC 的延长线于点E ,则A 到直线BC 的距离为AE 3(7分) 在Rt △AEC 中,AC =1,AE 3sin ∠ACE 3 ∴∠ACE =60°,∴∠ACB =120°,(8分) 在Rt △NHC 中,∵∠NCH =∠ACE =60°,∴NH =CN ·sin ∠NCH =1×sin 60°=32.(10分) 在Rt △MNH 中,∵MH 22MN NH +7cos ∠MHN =NH MH =217.故二面角M −AC −B的余弦值为217.(12分)解法二 如图,取BC 的中点N ,连接MN ,由三视图可知,PM ∥CN 且PM =CN , ∴MN ∥PC ,MN =PC ,由(1)知PC ⊥平面ABC ,∴MN ⊥平面ABC .(5分)由三视图知PC =MN =1,CB =2,AC =1,过A 作AE ⊥BC ,交BC 的延长线于点E ,则点A 到直线BC 的距离为AE =32.(6分) 在平面ABC 内,过C 作BC 的垂线,并建立如图所示的空间直角坐标系.在Rt △AEC 中,AC =1,AE =32,∴CE =12, ∴C (0,0,0),P (0,0,1),M (0,1,1),B (0,2,0),A 3−12,0), ∴CA u u u r 3−12,0),AM u u u u r =(3,32,1).(8分) 设平面MAC 的法向量为n =(x ,y ,z ),则由00AM CA ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u u r n n ,得33023102x y z x y ⎧++=⎪⎪⎨⎪-=⎪⎩,令z =1,则x =3y =−1, ∴n =(−33,−1,1)是平面MAC 的一个法向量.(10分) 又平面ABC 的一个法向量为CP u u u r =(0,0,1),∴cos<n ,CP u u u r >=||||CP CP ⋅=u u u r u u u r n n 21. 由图可知二面角M −AC −B 为锐二面角,∴二面角M −AC −B 的余弦值为217.(12分)20.【解析】(1)由题意知,直线l的方程为x−2y+4=0,由22221240 x yabx y⎧+=⎪⎨⎪-+=⎩,得(2a+42b)2y−162b y+162b−2a2b=0,(2分)又椭圆的离心率e=ca=12,所以2e=2222214c a ba a-==,因而42b=32a,则42a2y−122a y+234a(16−2a)=0,(3分)由直线l与椭圆相切,得Δ=22(12)a−124a(16−2a)=0,则2a=4,2b=3,所以椭圆C的方程为22143x y+=.(5分)(2)由(1)得B(−1,32),2F(1,0),由题意知圆心Q在过点B与l垂直的直线上,该直线方程为y−32=−2(x+1),即4x+2y+1=0.(6分)设圆心Q(x,y),因而4x+2y+1=0,连接QB,2QF,则|QB|=|2QF|,(7分)从而2(1)x++23()2y-=2(1)x-+2y,解得x=−38,y=14,则Q(−38,14),圆Q的半径R=|QB223135(1)()8428-++-=,(9分)所以圆Q的方程为(x+38)2+(y−14)2=12564.(10分)而2x +2y =4的圆心为O (0,0),半径r =2,两圆的圆心距|OQ ,(10分)由于144>125,因而16−5因而|OQ <2,即两圆内含. (12分)【备注】分析近几年的高考题可知,解析几何的考查基本稳定在椭圆与圆、抛物线与圆、椭圆与抛物线的结合上,已知条件以向量的形式呈现也很普遍,而众多与圆、椭圆、抛物线有关的结论更是备受青睐,因而在复习备考阶段,应加以强化,这些结论不但要知其然,更要知其所以然,突破传统思维定势的影响,寻求解题的突破口,提高复习的全面性与灵活性.21.【解析】(1)∵()f x =a x+ln x −2(x >0), ∴()f x '=2a x -+1x(x >0),(1分) 又曲线y =()f x 在点P (2,m )处的切线平行于直线y =−32x +1, ∴(2)f '=−14a +12=−32⇒a =8. ∴()f x '=28x -+1x =28x x -(x >0),(3分) 令()f x '>0,得x >8,()f x 在(8,+∞)上单调递增;令()f x '<0,得0<x <8,()f x 在(0,8)上单调递减.∴()f x 的单调递增区间为(8,+∞),单调递减区间为(0,8).(5分)(2)由(1)知()f x '=2a x -+1x =2x a x- (x >0). (i)当a 0时,()f x '>0恒成立,即()f x 在(0,2e ]上单调递增,无最小值,不满足题意.(6分)(ii)当a >0时,令()f x '=0,得x =a ,所以当()f x '>0时,x >a ,当()f x '<0时,0<x <a ,(7分)此时函数()f x 在(a ,+∞)上单调递增,在(0,a )上单调递减.若a >2e ,则函数()f x 在(0,2e ]上的最小值()f x min =2()f e =2a e +ln 2e −2=2a e , 由2a e=2,得a =22e ,满足a >2e ,符合题意;(8分) 若a 2e ,则函数()f x 在(0,2e ]上的最小值()f x min =()f a =a a +ln a −2=ln a −1, 由ln a −1=2,得a =3e ,不满足a 2e ,不符合题意,舍去.综上可知,存在实数a =22e ,使函数()f x 在(0,2e ]上有最小值2.(12分)22.【解析】(1)将直线l 的极坐标方程化为直角坐标方程,得y −1=3(x −1), 显然,直线l 过定点(1,1),倾斜角为6π, 因此直线l 的参数方程为1cos 61sin 6x t y t ππ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数),即1112x y t ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数).(5分)(2)圆ρ=2的直角坐标方程为22x y +=4,把12112x y t ⎧=+⎪⎪⎨⎪=+⎪⎩代入22x y +=4, 得)2+(1+12t )2=4,2t+1)t −2=0, 因为+1)2+8>0,故设其两根分别为1t ,2t ,显然12t t =−2,故点P (1,1)到A ,B 两点的距离之积为2.(10分)【备注】极坐标方程与直角坐标方程互化及参数方程与普通方程互化是本知识板块的基础,当然也是近年高考命题的重点与热点.直线参数方程中参数的几何意义的应用也是重要的考点,值得考生关注.23.【解析】(1)由()f x 13()g x,可得|3x+1|−|2x−3| 1,则当x32时,3x+1−2x+3 1,即x −3,∴不符合题意;当−13x<32时,3x+1+2x−3 1,∴−13x35;当x<−13时,−3x−1+2x−3 1,∴−5 x<−13.综上,不等式()f x13()g x的解集为{x|−5 x35}.(5分)(2)根据题意,由不等式()f x−2tx12+|x−32|,化简得()f x−tx 0,即()f x tx.由()f x=1+|2x−3|=322,2342,2x xx x⎧-⎪⎪⎨⎪-<⎪⎩≥,作出y=()f x与y=tx的大致图象如图所示.由单调性可知()f x的最小值点为A(32,1),∵当过原点的直线y=tx经过点A时,t=23,当直线y=tx与AC平行时,t=−2.∴当−2 t<23时,y=()f x与y=tx的图象无交点,且y=tx的图象都在y=()f x的图象的下方,∴当不等式()f x−tx 0的解集非空时,t的取值范围是(−∞,−2)∪[23,+∞).(12分)。
2020年全国3卷高考理科数学仿真试卷(三)

绝密★启用前2020年普通高等学校招生全国统一考试仿真卷理科数学(三)本试题卷共8页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合{}|11A x x =-<<,{}|02B x x =<<,则A B = ()A .{}|11x x -<<B .{}|12x x -<<C .{}|02x x <<D .{}|01x x <<2.设复数12i z =+(是虚数单位),则在复平面内,复数2z 对应的点的坐标为()A .()3,4-B .()5,4C .()3,2-D .()3,43.()()6221x x -+的展开式中4x 的系数为()A .-160B .320C .480D .6404.某几何体的三视图如图所示,则该几何体的表面积为()A .52π+B .42π+C .44π+D .54π+5.过双曲线221916x y -=的右支上一点P ,分别向圆1C :()2254x y ++=和圆2C :()2225x y r -+=(0r >)作切线,切点分别为M ,N ,若22PM PN -的最小值为58,则r =()A .B .2C .3D .6.设函数()()3sin cos 0f x x x ωωω=+>,其图象的一条对称轴在区间,63ππ⎛⎫⎪⎝⎭内,且()f x 的最小正周期大于,则ω的取值范围为()A .1,12⎛⎫ ⎪⎝⎭B .()0,2C .()1,2D .[)1,27.在ABC △中,内角A ,B ,C 的对边分别为,,,若函数()()3222113f x x bx a c ac x =+++-+无极值点,则角B 的最大值是()A .6πB .4πC .3πD .2π8.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”,刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为()(参考数据:sin150.2588≈ ,sin7.50.1305≈ )班级姓名准考证号考场号座位号此卷只装订不密封A .12B .20C .24D .489.设π02x <<,则“2cos x x <”是“cos x x <”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件10.欧阳修的《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆盖其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为3cm 的圆面,中间有边长为1cm 的正方形孔.现随机向铜钱上滴一滴油(油滴的大小忽略不计),则油滴落入孔中的概率为()A .14πB .49πC .19D .58π11.已知()cos23,cos67AB =︒︒ ,()2cos68,2cos22BC =︒︒,则ABC △的面积为()A .2B 2C .1D .2212.已知定义在R 上的可导函数()f x 的导函数为()f x ',对任意实数均有()()()10x f x xf x '-+>成立,且()1e y f x =+-是奇函数,则不等式()e 0x xf x ->的解集是()A .(),e -∞B .()e,+∞C .(),1-∞D .()1,+∞第Ⅱ卷本卷包括必考题和选考题两部分。
2020届普通高等学校招生全国统一考试模拟测卷(一)(全国Ⅲ卷)数学(文)试题解析

绝密★启用前2020届普通高等学校招生全国统一考试内参模拟测卷(一)(全国Ⅲ卷)数学(文)试题注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题卡上一、单选题1.已知集合2{|160}A x Z x =∈-<,2{|430}B x x x -=+>,则A B =IA .{|41x x -<<或34}x <<B .{}4,3,2,1,0,3,4----C .{|1x x <或34}x <<D .{3,2,1,0}---答案:D{}2{|160}{|44}3,2,1,0,1,2,3A x Z x x Z x =∈-<=∈-<<=---Q{}{}2430|13B x x x x x x =-+=或 {}3,2,1,0A B ∴⋂=--- ,选D2.已知i 是虚数单位,则11z i=-在复平面内对应的点位于 A .第一象限 B .第二象限C .第三象限D .第四象限答案:A分子分母同时乘以()1i +,化简整理,得出z ,再判断象限. 解:11i 12z i +==-,在复平面内对应的点为(1122,),所以位于第一象限.故选A . 点评:本题考查复数的基本运算及复数的几何意义,属于基础题. 3.已知()1f x x =,()2sin f x x =,()3cos f x x =,()41f x x=,从以上四个函数中任意取两个函数相乘得到新函数,那么所得新函数为偶函数的概率为( ) A .14B .13C .12D .23答案:C任意两个相乘得到的函数个数有6个,得到偶函数的个数为3个,即可算出答案 解:()1f x x =,()2sin f x x =,()41f x x=为奇函数,()3cos f x x =为偶函数,任意两个相乘得到的函数个数有6个,为:()()12f x f x ,()()13f x f x ,()()14f x f x()()23f x f x ,()()24f x f x ,()()34f x f x得到偶函数的个数为3个,为:()()12f x f x ,()()14f x f x ,()()24f x f x 故概率为3162=. 故选:C 点评:本题考查的是计算古典概型的概率,较简单.4.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图(如图①)、90后从事互联网行业岗位分布条形图(如图②),则下列结论中不一定正确的是( )注:90后指1990年及以后出生,80后指1980~1989年之间出生,80前指1979年及以前出生.A .互联网行业从业人员中90后占一半以上B .互联网行业中从事技术岗位的人数超过总人数的20%C .互联网行业中从事运营岗位的人数90后比80前多D .互联网行业中从事技术岗位的人数90后比80后多 答案:D根据饼图中的数据结合岗位分布图中的数据,对选项进行一一分析,即可得答案; 解:对A ,可知90后占了56%,故A 正确; 对B ,技术所占比例为39.65%,故B 正确; 对C ,可知90后明显比80前多,故C 正确;对D ,因为技术所占比例,90后和80后不清楚,所以不一定多,故D 错误.故选:D. 点评:本题考查统计图的信息提取,考查数据处理能力,属于基础题.5.函数ππsin cos 33y x x ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭的最大值为( )A B C .4D 答案:D)111πsin cos cos sin cos 2222224y x x x x x x x ⎛⎫=+++=+=+ ⎪⎝⎭,即可得出答案 解:)11πsin cos sin cos 224y x x x x x x x ⎛⎫=++=+=+ ⎪⎝⎭故选:D 点评:在解决本类题目时,应将函数化为基本型.6.已知曲线421y x ax =++在点()()1,1f --处切线的斜率为6,则()1f -=( )A .3B .4-C .3-D .4答案:C对函数求导,再根据'(1)6y -=可得a 的值,再将1x =-代入函数中,即可得答案;解:342y x ax '=+Q ,426a ∴--=,5a ∴=-,()1113f a ∴-=++=-.故选:C. 点评:本题考查导数几何意义的运用,考查运算求解能力,属于基础题. 7.执行如图所示的程序框图,输出的T 的值是( )A .20B .26C .57D .16答案:B阅读程序框图根据T 与S 的大小关系,一步一步模拟运行程序,即可得答案; 解:第一次循环,00≤是,44S S ∴=+=,20T T n =+=,11n n =+=; 第二次循环,04≤是,48S S ∴=+=,21T T n =+=,12n n =+=; 第三次循环,18≤是,412S S ∴=+=,24T T n =+=,13n n =+=; 第四次循环,412≤是,416S S ∴=+=,211T T n =+=,14n n =+=; 第五次循环,1116≤是,420S S ∴=+=,226T T n =+=,15n n =+=;2620≤否,故输出T 的值是26.故选:B. 点评:本题考查程序框图中的直到型循环,考查运算求解能力,求解时注意程序运行终止的条件.8.如图,三棱柱111ABC A B C -中,侧棱1AA ⊥底面111A B C ,底面三角形111A B C 是正三角形,E 是BC 中点,则下列叙述正确的是( )A .1CC 与1B E 是异面直线B .AC ⊥平面11ABB A C .AE ,11B C 为异面直线,且11AE B C ⊥D .11//A C 平面1AB E答案:C根据异面直线定义可判断A ;由线面垂直的性质即可判断B ;由异面直线的位置关系并得11AE B C ⊥可判断C ;根据线面平行的判定定理可判断D. 解:对于A 项,1CC 与1B E 在同一个侧面中,故不是异面直线,所以A 错;对于B 项,由题意知,上底面是一个正三角形,故AC ⊥平面11ABB A 不可能,所以B 错;对于C 项,因为AE ,11B C 为在两个平行平面中且不平行的两条直线,故它们是异面直线,由底面111A B C 是正三角形,E 是BC 中点,根据等腰三角形三线合一可知AE BC ⊥,结合棱柱性质可知11//B C BC ,则11AE B C ⊥,所以C 正确;对于D 项,因为11A C 所在的平面与平面1AB E 相交,且11A C 与交线有公共点,故11//A C 平面1AB E 不正确,所以D 项不正确. 故选C. 点评:该题考查的是有关立体几何中空间关系的问题,在解题的过程中,需要对其相关的判定定理和性质定理的条件和结论熟练掌握,注意理清其关系,属于中档题 9.函数()sin 2xf x x =-([2,2]x ππ∈-)的大致图象为( ) A . B .C .D .答案:A分析:由函数的解析式,求解函数函数()f x 为奇函数,图象关于原点对称,排除B 、D 项;再由x π=时,()0f π>,排除C ,即可得到答案. 详解:由函数()sin 2xf x x =-,则满足()sin()(sin )()22x xf x x x f x --=--=--=-,所以函数()f x 为奇函数,图象关于原点对称,排除B 、D 项;由当x π=时,()sin 022f ππππ=-=>,排除C ,故选A .点睛:本题主要考查了函数的图象的识别问题,其中熟记函数的基本性质和特殊点的函数值的计算,采用排除法是解答的关键,着重考查了分析问题和解答问题的能力. 10.在ABC V 中,若2π3C =,3AB =,则ABC V 的周长的最大值为( ) A .9 B .6C.3+D.3+答案:C利用正弦定理将三角形的周长表示成关于A 的三角函数,再利用三角函数的有界性,即可得答案; 解:根据正弦定理,32πsin sin sin sin3AB BC AC C A B ====,那么BC A =,AC B =, 所以周长等于π3sin sin 33A B A A ⎤⎛⎫++=+-+ ⎪⎥⎝⎭⎦1cos sin 322A A ⎫=++⎪⎪⎭π33A ⎛⎫=++ ⎪⎝⎭,π0,3A ⎛⎫∈ ⎪⎝⎭Q ,所以当6A π=时,ABC V的周长的最大值为3+故选:C. 点评:本题考查正弦定理的应用、三角函数的有界性求周长的最值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意A 的范围.11.若椭圆()222210x y a b a b+=>>过点),且以该椭圆的四个顶点为顶点的四边。
2020届普通高等学校高三招生全国统一考试模拟(三)数学(理)模拟试题word版有答案

普通高等学校招生全国统一考试模拟试题理数(三)本试卷共6页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上.并将准考证号条形码粘贴在答题卡上的指定位置。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第I 卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合(){}2ln 330A x x x =-->,集合{}231,B x x U R =->=,则()U C A B ⋂=A. ()2,+∞B. []2,4C. (]1,3D. (]2,42.设i 为虚数单位,给出下面四个命题:1:342p i i +>+;()()22:42p a a i a R -++∈为纯虚数的充要条件为2a =;()()23:112p z i i =++共轭复数对应的点为第三象限内的点; 41:2i p z i +=+的虚部为15i . 其中真命题的个数为A .1B .2C .3D .43.某同学从家到学校途经两个红绿灯,从家到学校预计走到第一个红绿灯路口遇到红灯的概率为0.75,两个红绿灯路口都遇到红灯的概率为0.60,则在第一个路口遇到红灯的前提下,第二个路口也遇到红灯的概率为A .0.85B .0.80C .0.60D .0.564.已知函数()f x =的值域为A ,且,a b A ∈,直线()()2212x y x a y b +=-+-=与圆有交点的概率为 A .18B .38C.78D.145.一条渐近线的方程为43y x =的双曲线与抛物线2:8C y x =的一个交点为A ,已知AF =(F 为抛物线C 的焦点),则双曲线的标准方程为A .2211832x y -=B .2213218y x -= C .221916x y -=D .2291805y x -= 6.如图,弧田由圆弧和其所对弦围成,《九章算术》中《方田》章给出计算弧田面积所用的经验公式为:以弦乘矢,矢又自乘,并之,二而一”,即弧田面积12=(弦×矢+矢2).公式中“弦”指圆弧所对的线段,“矢”等于半径长与圆心到弦的距离之差,按照上述的经验公式计算弧田面积与实际面积存在误差,则圆心角为3π,弦长为1的弧田的实际面积与经验公式算得的面积的差为 A .138-B .31168π+- C .123623π+- D .53325-7.已知()()32210012100223nn x dx x x a a x a x a x =+-=+++⋅⋅⋅+⎰,且,则12310012102310a a a a a a a a +++⋅⋅⋅++++⋅⋅⋅+的值为 A .823B .845C .965-D .8778.已知函数()()sin 2cos 2,0,66f x x x x f x k ππ⎛⎫⎡⎤=++∈= ⎪⎢⎥⎝⎭⎣⎦当时,有两个不同的根12,x x ,则()12f x x k ++的取值范围为A .)1,3⎡⎣B .)3,23⎡⎣C .33,12⎛⎫+ ⎪ ⎪⎭D .)3,2⎡⎣ 9.运行如图所示的程序框图,输出的S 值为 A .2018201722⨯- B .2018201822⨯+ C. 2019201822⨯-D .2019201722⨯+10.已知直线()()21350m x m y m +++--=过定点A ,该点也在抛物线()220x py p =>上,若抛物线与圆()()()222:120C x y rr -+-=>有公共点P ,且抛物线在P 点处的切线与圆C 也相切,则圆C 上的点到抛物线的准线的距离的最小值为 A .35-B. 33-C .3D .32-11.已知几何体的三视图如图所示,则该几何体的外接球的表面积为 A .2143π B .1273πC.1153π D .1243π12.已知函数()f x 的导函数为()'fx ,且满足()32123f x x ax bx =+++,()()''24f x f x +=-,若函数()6ln 2f x x x ≥+恒成立,则实数b 的取值范围为A .[)64ln3,++∞B .[)5ln5,++∞ C.[)66ln6,++∞ D .[)4ln 2,++∞第Ⅱ卷本卷包括必考题和选考题两部分。