七年级数学代数式练习
人教版数学七年级上《代数式》测试题(答案)

人教版数学七年级上《代数式》测试题(答案)代数式一、选择题(每题3分,共30分)1.下列各式子中,符合代数式书写要求的是()。
C)x + 3千米(D)ab•32.下列各式不是同类项的是()。
C)ab与3ab3.下列各式正确的是()。
D)23x(3x2)4.单项式2ab的次数是()。
B) -25.一个三位数,a表示百位数,b表示十位数,c表示个位数,那么这个三位数可表示为()。
D) 100a + 10b + c6.在排成每行七天的日历表中取下一个3×3方块(如图)。
若所有日期数之和为189,则n的值为:B)117.若k为自然数,xy与xk3y3是同类项,则满足条件的k值有()。
C) 3个8.长方形的一边长等于3a + 2b,另一边比它小a b,那么这个长方形的周长是()。
A) 10a + 6b9.代数式a3a7a7与32a3a a的和是()。
B) 偶数10.如果A是三次多项式,B是三次多项式,那么A+B一定是()。
C) 三次多项式二、填空题。
(每题3分,共24分)11.实数a(a≠0)的相反数的倒数是-1/a。
12.a,b两个数在数轴上表示如右图,则表示这两个数的两点之间的距离是|a-b|。
13.单项式πr的系数是-π,次数是1.14.多项式a-2a2+1的最高次项是-2a2,最高次项的系数是-2.15.一年期的存款的年利率为p%,利息个人所得税的税率为20%。
某人存入的本金为a元,则到期支出时实得本利和为(1+p%×0.8)a。
16.2a4b3与a b的2倍是3a-6b-6.17.已知多项式ax+bx+cx+9,当x=-1时,多项式的值为17.则该多项式当x=1时的值是3a+3b+2c+9.18.已知甲、乙两种糖果的单价分别为x元/千克和12元/千克。
为了使甲乙两种糖果分别销售与把它们混合成什锦糖后再销售收入保持不变,则由20千克甲种糖果和y千克乙种糖果混合而成的什锦糖的单价应为(20x+y*12)/(20+y)元/千克。
七年级数学上册《代数式》同步练习题(附答案)

七年级数学上册《代数式》同步练习题(附答案)课前练习1. 用字母表示数的书写规则:(1)字母与字母相乘时,“×”号通常省略不写或写成“ ______ ”;(2)字母与数相乘时,数通常写在字母的__________;(3)带分数与字母相乘时,通常化带分数为___________;(4)字母与字母相除时,要写成__________的形式;2. 用含字母的式子表示数量关系:用表示数的_______表示问题中的数或数量;_____________能简明表达数量关系;同一问题中,相同的字母必须表示相同的量,不同的____必须用不同的字母表示;用字母表示实际问题中的某个量时,字母的______必须使式子有意义且符合实际情况.3. 用字母表示数,字母和数一样参与运算,可以用_____把数量关系简明地表示出来.4. 下列含有字母的式子符合书写规范的是( )A. 1aB. 312bC. 0.5xyD. (x +y )÷z 5. “比a 的32倍大1的数”用式子表示为( )A. 32a +1B. 23a +1C. 52aD. 32(a +1) 6. 购买1个单价为a 元的面包和3瓶单价为b 元的饮料,所需钱数为( )A. (a+b )元B. 3(a+b )元C. (3a+b )元D. (a+3b )元7. 填空:(1)买单价为6元的钢笔a 支,共需______元;(2)一台电视机的标价为a 元,则打八折后的售价为______元;(3)温度由30度下降t 度后是______度课前练习参考答案1. ①. ②. 前面 ③. 假分数 ④. 分数2. ①. 字母 ②. 用字母表示数 ③. 量 ④. 取值3.式子4.C5.A6.D【解析】试题分析:买1个面包和3瓶饮料所用的钱数:a+3b 元;故选D .考点:列代数式.7. ①. 6a ②. 0.8a ③. (30-t )1.用代数式表示:a 与3的和的2倍,下列选项中的表示正确的是( )A .2(a +3)B .2a +3C .2(a −3)D .23a -2.下列代数式书写正确的是( )A .7aB .x ÷yC .3a +bD .123ab3.下列代数式中符合书写要求的是( ) A .ab4 B .413x C .x ÷y D .−52a4.某种苹果的售价是每千克x 元,打7折销售后每千克____元.5.小明买单价为x 元的球拍a 个,结账后还有27元,小明出门带了现金____元.6.甲数比乙数的5倍小3,若乙数为x ,则甲数为_________.7.下列各式书写规范的是( )A .3a ⨯B .112abC .5x +只D .m2n8.一个两位数,它的十位数字是x ,个位数字是y ,那么这个两位数是( ).A .x +yB .10xyC .10(x +y )D .10x +y9.列代数式:x 的三分之二比x 的2倍少多少?__________.10.现有5元面值人民币m 张,10元面值人民币n 张,共有人民币________元(用含m 、n 的代数式表示).11.某眼镜公司积极响应国家号召,在技术顾问和市场监管局的帮助下,开始生产医用护目镜.第一周生产a 个,工人在技术员的指导下,技术越来越熟练,第二周比第一周增长10%.用含a 的代数式表示该公司这两周共生产医用护目镜______个.12.为鼓励居民节约用水,某市自来水公司实施阶梯水价:如果每月用水不超过8吨,按每吨2.3元收费;如果每月用水量超过8吨,则超出部分按每吨3.5元收费,设每月用水量为x 吨.(1)当每月用水量不超过8吨时,用含x 的代数式表示用水费用为 元;(2)当每月用水超过8吨时,需付水费多少元?(用含x 的代数式表示)(3)若小红家8月份用水12吨,则需交水费多少元?课堂练习参考答案1.A【分析】根据和与倍数关系得出代数式解答即可.【详解】解:a 与3和的2倍用代数式表示为:2(a +3),故选:A .【点睛】此题考查列代数式问题,关键是根据和与倍数关系得出代数式.2.C【分析】根据代数式的书写方法分别进行判断.【详解】解:A 、7a 应写为7a ,故不符合题意;B 、x ÷y 应写为x y ,故不符合题意;C 、3a +b 书写正确,故符合题意;D 、123ab 应写为53ab ,故不符合题意;故选C .【点睛】本题考查了代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子.单独的一个数或者一个字母也是代数式.也考查了代数式的书写.3.D【分析】根据代数式的书写规范逐项排查即可.【详解】解:A 、不符合书写要求,应为4ab ,故此选项不符合题意;B 、不符合书写要求,应为133x ,故此选项不符合题意; C 、不符合书写要求,应为x y ,故此选项不符合题意;D 、−52a 符合书写要求,故此选项符合题意.故选:D .【点睛】本题考查了代数式的书写规范,书写代数式要关注以下几点:①在代数式中出现的乘号,通常简写成“·”或者省略不写;②数字与字母相乘时,数字要写在字母的前面;③在代数式中出现的除法运算,一般按照分数的写法来写、带分数也要写成假分数.4.0.7x【分析】根据题意,可以用含x 的代数式表示出苹果现价,本题得以解决.【详解】解:由题意可得,苹果现价是每千克0.7x 元,故答案为:0.7x .【点睛】本题考查了列代数式,解答本题的关键是明确题意,列出相应的代数式.5.(ax +27)【分析】用球拍的总价加上结账后剩余的钱可得结果.【详解】解:由题意可得:小明出门带了现金:(ax +27)元,故答案为:(ax +27).【点睛】本题考查了列代数式,解题的关键是理解题意,理清数量关系.6.5x -3【分析】设乙数是x ,根据甲数比乙数的5倍小3,列出代数式即可.【详解】解:设乙数为x ,则甲数为5x -3,故答案为:5x -3.【点睛】本题考查代数式问题,理解题意能力,关键是设出未知数,根据题目所给的等量关系列代数式求解.7.B【分析】根据代数式的书写要求判断各项.【详解】解:A 、数字与字母相乘时,数字要写在字母的前面且省略乘号,原书写不规范,不符合题意;B 、112ab 是正确的形式,符合题意;C 、5x +只应写为(5x +)只,不符合题意;D 、m2n 应写为2mn ,不符合题意;故选B .【点睛】本题考查了代数式,解题的关键是掌握代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.8.D【分析】根据两位数的表示方法:十位数字×10+个位数字,即可解答.【详解】解:∵一个两位数,它的十位数是x ,个位数字是y ,∴根据两位数的表示方法,这个两位数表示为:10x +y .故选:D【点睛】本题考查了用字母表示数的方法,会用含有字母的式子表示数量是解题的关键.9.2x −23x【分析】根据分数、倍数与差的意义解答.【详解】解:∵x 的三分之二为23x ,x 的2倍为2x ,∴“x 的三分之二比 x 的 2 倍少多少”列代数式为:2x −23x ,故答案为:2x −23x .【点睛】本题考查列代数式的有关应用,熟练掌握分数、倍数与差的意义是解题关键.10.(5m +10n )【分析】由5元面值人民币m张,可得人民币5m元,由10元面值人民币n张,可得人民币10n元,从而可得答案.【详解】解:由题意得:共有人民币(5m+10n)元,故答案为:(5m+10n)【点睛】本题考查的是列代数式,掌握列代数式的方法是解题的关键.11.2.1a【分析】根据题意,第二周的生产数量为:(110%)a+,加上第一周的数量,合并同类项即可求得【详解】第一周生产a个第二周生产(110%)a+=1.1a个这两周共生产a+1.1a=2.1a个故答案为:2.1a【点睛】本题考查了列代数式,单项式的加法即合并同类项,求得第二周的生产数量是解题的关键.12.(1)2.3x;(2)3.5x−9.6;(3)32.4元【分析】(1)根据当每月用水量不超过8吨时,按每吨2.3元收费,则可用含x的代数式表示用水费用;(2)根据当每月用水量超过8吨时,则超出部分按每吨3.5元收费,则可用含x的代数式表示用水费用;(3)根据小红家用水量为12吨,则按照(2)中水费公式计算,即可得到答案.【详解】(1)∵根据当每月用水量不超过8吨时,按每吨2.3元收费,∴此时用水费用=2.3x;(2)∵每月用水不超过8吨,按每吨2.3元收费;每月用水量超过8吨,则超出部分按每吨3.5元收费,∴此时用水费用=2.3×8+3.5×(x−8)=3.5x−9.6;(3)∵小红家用水量为12吨,∴需交水费=3.5×12−9.6=32.4(元)【点睛】本题考查了由实际问题列代数式,解答本题的关键是正确理解题意,分清楚如何计算水费.课后练习1.下列各式:①113x;②2•3;③20%x;④a-b÷c;⑤m3n23;⑥x-5;其中,不符合代数式书写要求的有()A.5个B.4个C.3个D.2个2.某水果批发市场规定,批发苹果重量不少于100kg时,批发价为2.5元/kg,批发苹果重量多于100kg 时,超过的部分按批发价打八折.若某人批发苹果重量为x(x>100)kg时,需支付多少现金,可列式子为()A.100xB.100x+2.5×0.8×(x﹣100)C.100×2.5+2.5×0.8×(x﹣100)D.x+2.5×(x﹣100)的意义是()3.代数式mn−2n 除mA.m除以n减2 B.2C.n与2的差除以m D.m除以n与2的差所得的商4.下列图形是由同样大小的棋子按一定规律组成的,其中第①个图形有1颗棋子,第②个图形一共有6颗棋子,第③个图形一共有16颗棋子,…,则第⑧个图形中棋子的颗数为()A.141 B.106 C.169 D.1505.用代数式表示“m的3倍与n的差的平方”为____________.6.n是任意整数,我们常用2n表示偶数,由此想到奇数可以表示为____________,比2n小的最大奇数为____________.7.对单项式“0.75m”可以解释为:一件商品原价m元,若按原价的七五折出售,这件商品现在的售价为0.75m 元.某超市的苹果价格为39元/斤,则代数式“50−3.9x”可表示的实际意义______.8.某花店新开张,第一天销售盆栽m盆,第二天比第一天多销售7盆,第三天的销量是第二天的3倍少13盆,则第三天销售了_________盆.(结果用含m的式子表示)9.一条河的水流速度时3km/ℎ,船在静水中的速度是v km/ℎ,则船在这条河中顺水行驶的速度是______km/ℎ;逆水行驶的速度是______km/ℎ.10.如图的瓶子中盛满了水,则水的体积是__________________.(用代数式表示)11.图1由若干个小圆圈组成的一个形如正三角形的图案,第1层有1个圆圈,每一层都比上一层多1个圆圈,一共堆了n层.(1)如图1所示,第100层有个小圆圈,从第1层到第n层共有个小圆圈;(2)我们自上往下按图2的方式排列一串连续的正整数1,2,3,…,则第20层的第5个数是;(3)我们自上往下按图3的方式排列一串整数31,﹣33,35,﹣37,…,则求从第1层到第20层的所有数的绝对值的和.课后练习参考答案1.C【分析】根据代数式的书写规则:分数不能为带分数,不能出现除号,单位名称前面的代数式不是单项式要加括号,数与字母相乘,乘号省略或者用“.”表示,对各项代数式逐一判定即可.x中分数不能为带分数;【详解】①113②2•3中数与数相乘不能用“.”;③20%x,书写正确;④a-b÷c中不能出现除号;⑤m3n2书写正确;3⑥x-5书写正确;不符合代数式书写要求的有①②④共3个.故选:C.【点睛】本题考查代数式的书写要求,解题的关键是要熟练地掌握代数式的书写要求:分数不能为带分数,不能出现除号,单位名称前面的代数式不是单项式要加括号,数与字母相乘,乘号省略或者用“.”表示. 2.C【分析】根据批发苹果重量不少于100kg时,批发价为2.5元/kg,批发苹果重量多于100kg时,超过的部分按批发价打八折,列式子即可.【详解】解:由题意可列式子为:100×2.5+2.5×0.8×(x﹣100)故选:C.【点睛】本题考查列代数式,解题的关键是读懂题意正确列出式子.3.D【分析】根据代数式的意义,表示m除以n与2的差所得的商.表示m除以n与2的差所得的商,【详解】解:代数式mn−2故选:D.【点睛】本题考查了代数式,掌握代数式的意义,要把运算过程表述清楚.4.A【分析】本题的图从②个图开始可以看作是由图①的一个棋子为中心依次向外以五边形的形式向外扩张,棋子依次是5的整数倍关系.所以第⑥个图形中棋子的颗数也就容易计算了.【详解】解:∵第①个图形中棋子的个数为:1=1+5×0=1+5×0;第②个图形中棋子的个数为:1+5×(0+1)=6;第③个图形中棋子的个数为:1+5×(0+1+2)=16;…∴第n个图形中棋子的个数为:1+5×(0+1+2+⋯+n−1)=1+5n(n−1);2=141则第⑧个图形中棋子的颗数为:1+5×8×72故应选A.【点睛】本题考查了规律型中图形的变化类,根据图形中棋子数目的变化找出变化规律是解题的关键.5.(3m-n)2【分析】m的3倍是3m,与n的差就是3m-n,然后对差求平方.【详解】解:m的3倍与n的差的平方是(3m-n)2.故答案是:(3m-n)2.【点睛】本题考查了列代数式的知识;列代数式的关键是正确理解文字语言中的关键词,比如该题中的“倍”、“差”等,从而明确其中的运算关系,正确地列出代数式.6.2n+1或2n-1 2n-1【分析】根据偶数和奇数的意义:整数中,是2的倍数的数是偶数,不是2的倍数的数是奇数,偶数可用2n表示,奇数可用2n+1表示,故可求解.【详解】n是任意整数,我们常用2n表示偶数,由此想到奇数可以表示为2n+1或2n-1,比2n小的最大奇数为2n-1.故答案为:2n+1或2n-1; 2n-1.【点睛】解答此题的关键:应明确偶数和奇数的含义.7.用50元买原价39元/斤一折出售的苹果x斤后余下的钱.【分析】根据代数式50−3.9x,50是支付的钱,3.9x=(39×110)x按原价一折,购买x斤的钱,其差表示余下的钱即可.【详解】解:3.9x按原价一折,购买x斤的钱,代数式“50−3.9x=50−(39×110)x”可表示的实际意义是:支付50元买原价39元/斤一折出售的苹果x 斤后余下的钱,故答案为:用50元买原价39元/斤一折出售的苹果x斤后余下的钱.【点睛】本题考查代数式的意义,特别注意减号与小数的实际意义,通过代数式变形将小数的实际意义突出出来是解题关键.8.(3m+8)【分析】先求出第二天销售的盆数,然后求出第三天销售的盆数即可.【详解】解:由题意可得,第二天销售了(m+7)盆第三天销售了3(m+7)-13=(3m+8)盆故答案为:(3m+8).【点睛】此题考查的是利用代数式表示实际意义,掌握实际问题中各个量的关系是解题关键.9.(3+v)(v−3)【分析】根据顺水逆水行船问题可知顺水速度=船在静水中的速度+水速,逆水速度=船在静水中的速度-水速,由此可求解.【详解】解:由顺水速度=船在静水中的速度+水速,逆水速度=船在静水中的速度-水速,可得:船在这条河中顺水行驶的速度是(3+v)km/h,逆水行驶的速度是(v−3)km/h;故答案为:(3+v);(v−3).【点睛】本题主要考查了列代数式,熟练掌握列代数式是解题的关键.10.πa2(H+ℎ4)【分析】根据圆柱体积公式计算即可.【详解】解:瓶子的体积为:π(2a2)2H+π(a2)2ℎ=πa2(H+ℎ4),故填:πa2(H+ℎ4).【点睛】本题主要考查了圆柱体积的计算,发现水的体积等于两个容器的体积之和成为解答本题的关键.11.(1)100,n(n+1)2;(2)195;(3)50400.【分析】(1)观察图1发现规律:第n层有n个小圆圈,从第1层到第n层共有圆圈的个数为1+2+3+…+n,计算即可得圆圈的个数,进而可得结论;(2)观察图2发现规律:从1开始的自然数列,第n层放n个,进而可得第20层第5个数;(3)观察图3发现规律:第n层放n个,从第1个数开始,符号“+﹣”周期变化,绝对值依次加2,可得第20层最后一个数的绝对值,最后得第1层到第20层所有数的绝对值和.【详解】解:(1)图1规律:第n层有n个小圆圈,则第100层有100个小圆圈,.因为1+2+3+…+n=n(n+1)2所以从第1层到第n层共有n(n+1)个小圆圈;2;故答案为:100,n(n+1)2(2)图2规律:从1开始的自然数列,第n层放n个,则第20层第5个数为:1+2+3+…+19+5=195.故答案为:195;(3)图3规律:第n层放n个,从第1个数开始,符号“+﹣”周期变化,绝对值依次加2,则第20层最后一个数的绝对值为:31+(2+3+4+…+20)×2=449,则第1层到第20层所有数的绝对值和为:31+33+35+…+449=50400.故答案为:50400.【点睛】本题考查了根据图形的变化规律列式,计算等知识,理解图形的变化规律,并寻找其中规律是解题关键.。
七年级数学《代数式》习题

七年级数学《代数式》—巩固提高一、耐心填一填:1、32x y 5-的系数就是2、当x= __________时,的值为自然数;312-x 3、a 就是13的倒数,b 就是最小的质数,则21a b-= 。
4、三角形的面积为S,底为a,则高h= __________ 5、去括号:-2a 2 - [3a 3 - (a - 2)] = __________6、若-7x m+2y 与-3x 3y n 就是同类项,则m n +=7、化简:3(4x -2)-3(-1+8x )= 8、y 与10的积的平方,用代数式表示为________9、当x=3时,代数式________132的值是--x x 10、当x=________时,|x|=16;当y=________时,y 2=16; 二、精心选一选: 1、 a 的2倍与b 的31的差的平方,用代数式表示应为( ) A 22312b a - B b a 3122- C 2312⎪⎭⎫ ⎝⎛-b a D 2312⎪⎭⎫⎝⎛-b a2、下列说法中错误的就是( )A x 与y 平方的差就是x 2-y 2B x 加上y 除以x 的商就是x+xyC x 减去y 的2倍所得的差就是x-2yD x 与y 与的平方的2倍就是2(x+y)2 3、已知2x 6y 2与321,9m - 5mn -173m nx y -是同类项则的值是 ( ) A -1 B -2 C -3 D -44、已知a=3b, c=) (cb ac b a ,2a 的值为则-+++ A 、712D 611C 115B 511、、、5、已知:a<0, b>0,且|a|>|b|, 则|b+1|-|a-b|等于( )A 、2b-a+1B 、1+aC 、a-1D 、-1-a6、上等米每千克售价为x 元,次等米每千克售价为y 元,取上等米a 千克与次等米b 千克,混合后的大米每千克售价为( ) Aa bx y++ Bax by ab + Cax bya b++ D x y 2+ 7、 小华的存款就是x 元小林的存款比小华的一半还多2元,则小林的存款就是( ) A)2(21+x B )2(21-x C 221+x D 221-x 8、m-[n-2m-(m-n)]等于( )A -2mB 2mC 4m-2nD 2m-2n 9、若k 为有理数,则|k|-k 一定就是( )A 0B 负数C 正数D 非负数10、已知长方形的周长就是45㎝,一边长就是a ㎝,则这个长方形的面积就是( )A 、平方厘米、平方厘米245aB 2)45(a a -C 、平方厘米、平方厘米-a)-245a( D a)245(三、化简题1、2222(835)(223)a ab b a ab b ----+ 2、)231(34x xy xy -+- 3、)(2)2(333c b a c b a b a ---+ 4、 ()⎪⎭⎫ ⎝⎛++-+--13431354b a b a5、2223[723()1]a a a a a ----+ 6、2222(876)[8()]x y xy xy xy x y y x -+---+四、化简求值1、523531411()[2()()][()()]2323x y x y x y x y x y +++-+-+-+,其中3x y += 2、2225[(53)6()]a a a a a a -+---,其中12a =-3、已知:2(2)10x y +++=,求222225{2[3(42)]}xy xy xy xy x y ----的值。
七年级数学上册代数式运算专项练习题

七年级数学上册代数式运算专项练习题1. 计算下列代数式的值:a) 3x - 2y,当 x = 5,y = 2 时;b) 2a^2 + 3a - 4,当 a = 4 时;c) 5b - 3b^2,当 b = -2 时。
2. 化简下列代数式:a) 2(x + 3) - 4(2 - 3x);b) 3(2 - m) + 4(m - 1);c) 5x - (2x + 3)。
3. 展开并化简下列代数式:a) (x - 2)(x + 4);b) (3a + 2)(4a - 1);c) (2x - 1)(3x + 2)。
4. 因式分解下列代数式:a) 2x^2 + 6x;b) 4m^2 - 9;c) 5x^2 - 20x。
5. 求解下列方程:a) 2x + 3 = 7;b) 4y - 5 = 3y + 10;c) 3z - 2(z + 4) = z + 6。
解答:1. a) 3x - 2y,当 x = 5,y = 2 时:3(5) - 2(2) = 15 - 4 = 11b) 2a^2 + 3a - 4,当 a = 4 时:2(4)^2 + 3(4) - 4 = 2(16) + 12 - 4 = 32 + 12 - 4 = 40 c) 5b - 3b^2,当 b = -2 时:5(-2) - 3(-2)^2 = -10 - 3(4) = -10 - 12 = -222. a) 2(x + 3) - 4(2 - 3x):2x + 6 - (8 - 12x) = 2x + 6 - 8 + 12x = 14x - 2b) 3(2 - m) + 4(m - 1):6 - 3m + 4m - 4 = 1m + 2c) 5x - (2x + 3):5x - 2x - 3 = 3x - 33. a) (x - 2)(x + 4):x(x) + x(4) - 2(x) - 2(4) = x^2 + 4x - 2x - 8 = x^2 + 2x - 8b) (3a + 2)(4a - 1):3a(4a) + 3a(-1) + 2(4a) + 2(-1) = 12a^2 - 3a + 8a - 2 = 12a^2 + 5a - 2 c) (2x - 1)(3x + 2):2x(3x) + 2x(2) - 1(3x) - 1(2) = 6x^2 + 4x - 3x - 2 = 6x^2 + x - 24. a) 2x^2 + 6x:2x(x + 3) = 2x^2 + 6xb) 4m^2 - 9:(2m)^2 - 3^2 = (2m + 3)(2m - 3)c) 5x^2 - 20x:5x(x - 4) = 5x^2 - 20x5. a) 2x + 3 = 7:2x = 7 - 32x = 4x = 2b) 4y - 5 = 3y + 10:4y - 3y = 10 + 5y = 15c) 3z - 2(z + 4) = z + 6:3z - 2z - 8 = z + 6z - 8 = z + 6-8 = 6 (不满足方程,无解)通过解答以上的代数式运算专项练习题,我们可以对七年级数学上册的代数式运算有更深入的理解。
七年级上册数学代数式

七年级上册数学代数式一、选择题(共12小题)1.已知m=1,n=0,则代数式m+n的值为()A.﹣1B.1C.﹣2D.2【考点】代数式求值.【分析】把m、n的值代入代数式进行计算即可得解.【解答】解:当m=1,n=0时,m+n=1+0=1.故选B.【点评】本题考查了代数式求值,把m、n的值代入即可,比较简单.2.已知2﹣2﹣8=0,则32﹣6﹣18的值为()A.54B.6C.﹣10D.﹣18【考点】代数式求值.【专题】计算题.【分析】所求式子前两项提取3变形后,将已知等式变形后代入计算即可求出值.【解答】解:∵2﹣2﹣8=0,即2﹣2=8,∴32﹣6﹣18=3(2﹣2)﹣18=24﹣18=6.故选B.【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.3.已知a2+2a=1,则代数式2a2+4a﹣1的值为()A.0B.1C.﹣1D.﹣2【考点】代数式求值.【专题】计算题.【分析】原式前两项提取变形后,将已知等式代入计算即可求出值.【解答】解:∵a2+2a=1,∴原式=2(a2+2a)﹣1=2﹣1=1,故选B【点评】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.4.在数学活动课上,同学们利用如图的程序进行计算,发现无论取任何正整数,结果都会进入循环,下面选项一定不是该循环的是()A.4,2,1B.2,1,4C.1,4,2D.2,4,1【考点】代数式求值.【专题】压轴题;图表型.【分析】把各项中的数字代入程序中计算得到结果,即可做出判断.【解答】解:A、把=4代入得:=2,把=2代入得:=1,本选项不合题意;B、把=2代入得:=1,把=1代入得:3+1=4,把=4代入得:=2,本选项不合题意;C、把=1代入得:3+1=4,把=4代入得:=2,把=2代入得:=1,本选项不合题意;D、把=2代入得:=1,把=1代入得:3+1=4,把=4代入得:=2,本选项符合题意,故选D【点评】此题考查了代数式求值,弄清程序框图中的运算法则是解本题的关键.5.当=1时,代数式4﹣3值是()A.1B.2C.3D.4【考点】代数式求值.【专题】计算题.【分析】把值代入原式计算即可得到结果.【解答】解:当=1时,原式=4﹣3=1,故选A.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.6.已知=1,y=2,则代数式﹣y的值为()A.1B.﹣1C.2D.﹣3【考点】代数式求值.【分析】根据代数式的求值方法,把=1,y=2代入﹣y,求出代数式﹣y的值为多少即可.【解答】解:当=1,y=2时,﹣y=1﹣2=﹣1,即代数式﹣y的值为﹣1.故选:B.【点评】此题主要考查了代数式的求法,采用代入法即可,要熟练掌握,解答此题的关键是要明确:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.7.已知2﹣2﹣3=0,则22﹣4值为()A.﹣6B.6C.﹣2或6D.﹣2或30【考点】代数式求值.【专题】整体思想.【分析】方程两边同时乘以2,再化出22﹣4求值.【解答】解:2﹣2﹣3=02(2﹣2﹣3)=02(2﹣2)﹣6=022﹣4=6故选:B.【点评】本题考查代数式求值,解题的关键是化出要求的22﹣4.8.按如图的运算程序,能使输出结果为3的,y的值是()A.=5,y=﹣2B.=3,y=﹣3C.=﹣4,y=2D.=﹣3,y=﹣9【考点】代数式求值;二元一次方程的解.【专题】计算题.【分析】根据运算程序列出方程,再根据二元一次方程的解的定义对各选项分析判断利用排除法求解.【解答】解:由题意得,2﹣y=3,A、=5时,y=7,故A选项错误;B、=3时,y=3,故B选项错误;C、=﹣4时,y=﹣11,故C选项错误;D、=﹣3时,y=﹣9,故D选项正确.故选:D.【点评】本题考查了代数式求值,主要利用了二元一次方程的解,理解运算程序列出方程是解题的关键.9.若m+n=﹣1,则(m+n)2﹣2m﹣2n的值是()A.3B.0C.1D.2【考点】代数式求值.【专题】整体思想.【分析】把(m+n)看作一个整体并代入所求代数式进行计算即可得解.【解答】解:∵m+n=﹣1,∴(m+n)2﹣2m﹣2n=(m+n)2﹣2(m+n)=(﹣1)2﹣2(﹣1)=1+2=3.故选:A.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.10.已知﹣2y=3,则代数式6﹣2+4y的值为()A.0B.﹣1C.﹣3D.3【考点】代数式求值.【分析】先把6﹣2+4y变形为6﹣2(﹣2y),然后把﹣2y=3整体代入计算即可.【解答】解:∵﹣2y=3,∴6﹣2+4y=6﹣2(﹣2y)=6﹣23=6﹣6=0故选:A.【点评】本题考查了代数式求值:先把所求的代数式根据已知条件进行变形,然后利用整体的思想进行计算.11.当=1时,代数式a3﹣3b+4的值是7,则当=﹣1时,这个代数式的值是()A.7B.3C.1D.﹣7【考点】代数式求值.【专题】整体思想.【分析】把=1代入代数式求出a、b的关系式,再把=﹣1代入进行计算即可得解.【解答】解:=1时,a3﹣3b+4=a﹣3b+4=7,解得a﹣3b=3,当=﹣1时,a3﹣3b+4=﹣a+3b+4=﹣3+4=1.故选:C.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.12.如图是一个运算程序的示意图,若开始输入值为81,则第2022次输出的结果为()A.3B.27C.9D.1【考点】代数式求值.【专题】图表型.【分析】根据运算程序进行计算,然后得到规律从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3,然后解答即可.【解答】解:第1次,81=27,第2次,27=9,第3次,9=3,第4次,3=1,第5次,1+2=3,第6次,3=1,…,依此类推,偶数次运算输出的结果是1,奇数次运算输出的结果是3,∵2022是偶数,∴第2022次输出的结果为1.故选:D.【点评】本题考查了代数式求值,根据运算程序计算出从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3是解题的关键.。
【人教版】七年级数学代数式练习题及答案

代数式 同步练习一.选择题(共10小题)1.“m 与n 差的3倍”用代数式可以表示成( ) A .3m n −B .3m n −C .3()n m −D .3()m n −2.下列各式符合代数式书写规范的是( ) A .18b ⨯B .114xC .2b a −D .2m n ÷3.下列代数式的书写格式规范的是( ) A .51a b ⨯÷+B .34abC .2abD .213x4.某商店促销的方法是将原价x 元的衣服以(0.810)x −元出售,意思是( ) A .原价减去10元后再打8折 B .原价打8折后再减去10元C .原价减去10元后再打2折D .原价打2折后再减去10元5.代数式2x y −的意义为( ) A .x 与y 的差的平方 B .x 与y 的平方的差C .x 的平方与y 的平方的差D .x 与y 的相反数的平方差6.下列图形是按照一定规律画出的.对于第n 个图形,有x 个正方形和一定数量的三角形,三角形的个数可以表示为( )A .44x −B .44n −C .4x n +D .4n x +7.按一定规律排列的一列数依次为16,112,11,2030⋯⋯按此规律排列下去,这列数的第9个数是( ) A .119B .1110C .190 D .198.一个矩形的周长为l ,若矩形的长为a ,则该矩形的宽为( ) A .2la − B .2l a− C .l a − D .2l a9.代数式3m n +的值为5,则代数式32m n −−−的值为( ) A .7B .7−C .3D .3−10.当2x=时,38ax bx++=;那么当2x=−时,3ax bx++的值为() A.8−B.2C.2−D.8二.填空题(共9小题)11.已知23a b−=,则代数式241a b−+的值为.12.根据如图所示的计算程序,若输入的值3x=−,则输出y的值为.13.如果某种商品每8千克的售价为32元,那么这种商品m千克的售价为元.14.m的2倍与n的差大于0表示为:.15.将下列各式按照列代数式的规范要求重新书写:(1)5a⨯,应写成;(2)S t÷应写成;(3)123a a b⨯⨯−⨯,应写成;(4)413x,应写成.16.每件a元的上衣,降价20%后的售价是.17.小明买了6本笔记本,10支圆珠笔,设笔记本的单价为a元,圆珠笔的单价为b元,则小明共花费元(用含a,b的代数式表示).18.下列各式是按新定义的已知“△”运算得到的,观察下列等式:2△523511=⨯+=,2△(1)23(1)5−=⨯+−=,6△363321=⨯+=,4△(3)43(3)9−=⨯+−=⋯⋯根据这个定义,计算(2022)−△2022的结果为.19.已知有理数x、y满足2|3|(24)0x y−++=,则代数式x y+的值为.三.解答题(共5小题)20.某校为实现垃圾分类投放,计划购进大小两种垃圾桶,大小垃圾桶的进价分别为m 元/个、50元/个,购进7个大垃圾桶和10个小垃圾桶. (1)用含m 的代数式表示共付款多少元?(2)若110m =,学校预算购买垃圾桶资金为1200元是否够用?为什么?21.当2x =,5y =−时,求多项式223x y x y +−+−的值.22.根据下列语句列出代数式: (1)x 与y 的和乘以3的积的倒数; (2)x 、y 两数的平方差; (3)x 、y 两数和的平方的2倍.23.阅读下列例题:计算:23456102222222++++++⋯+. 解:设23456102222222S =++++++⋯+,①那么2345102345101122(222222)222222S =⨯+++++⋯+=++++⋯++.② ②−①,得1122S =−. 所以原式1122=−. 仿照上面的例题计算: 234201833333++++⋯+.24.当2a =−,3b =时,求下列代数式的值. (1)2(2)a b +; (2)222a b ab −−.代数式 巩固练习 答案一.选择题(共10小题)1.“m 与n 差的3倍”用代数式可以表示成( ) A .3m n −B .3m n −C .3()n m −D .3()m n −【解答】解:“m 与n 差的3倍”用代数式可以表示为:3()m n −. 故选:D .2.下列各式符合代数式书写规范的是( ) A .18b ⨯B .114xC .2b a −D .2m n ÷【解答】解:A 、正确书写格式为:18b ,故此选项不符合题意; B 、正确书写格式为:54x ,故此选项不符合题意;C 、是正确的书写格式,故此选项符合题意;D 、正确书写格式为:2mn,故此选项不符合题意. 故选:C .3.下列代数式的书写格式规范的是( ) A .51a b ⨯÷+B .34abC .2abD .213x【解答】解:.15abA +,故A 不符合题意; 3.4B ab ,故B 符合题意; .2C ab ,故C 不符合题意;5.3D x ,故D 不符合题意; 故选:B .4.某商店促销的方法是将原价x 元的衣服以(0.810)x −元出售,意思是( ) A .原价减去10元后再打8折 B .原价打8折后再减去10元C .原价减去10元后再打2折D .原价打2折后再减去10元【解答】解:某商店促销的方法是将原价x 元的衣服以(0.810)x −元出售,意思是:原价打8折后再减去10元, 故选:B .5.代数式2x y −的意义为( ) A .x 与y 的差的平方 B .x 与y 的平方的差C .x 的平方与y 的平方的差D .x 与y 的相反数的平方差【解答】解:字母表达式2x y −的意义为x 与y 的平方的差. 故选:B .6.下列图形是按照一定规律画出的.对于第n 个图形,有x 个正方形和一定数量的三角形,三角形的个数可以表示为( )A .44x −B .44n −C .4x n +D .4n x +【解答】解:第1个图形中,有2个正方形和4个三角形,44(21)=⨯−; 第2个图形中,有3个正方形和8个三角形,84(31)=⨯−; 第3个图形中,有4个正方形和12个三角形,124(41)=⨯−; ⋯⋯,∴第n 个图形中,三角形的个数为4n 或44x −.故选:A .7.按一定规律排列的一列数依次为16,112,11,2030⋯⋯按此规律排列下去,这列数的第9个数是( ) A .119B .1110C .190 D .19【解答】解:11623=⨯, 111234=⨯, 112045=⨯, ⋯⋯∴第n 个数为:1(1)(2)n n ++,∴第9个数为:111011110=⨯. 故选:B .8.一个矩形的周长为l ,若矩形的长为a ,则该矩形的宽为( ) A .2la − B .2l a− C .l a − D .2l a【解答】解:矩形的宽为:2la −. 故选:A .9.代数式3m n +的值为5,则代数式32m n −−−的值为( ) A .7B .7−C .3D .3−【解答】解:35m n +=, ∴原式3()2m n =−+−52=−−7=−.故选:B .10.当2x =时,38ax bx ++=;那么当2x =−时,3ax bx ++的值为( ) A .8−B .2C .2−D .8【解答】解:当2x =时,3ax bx ++的值是8, 2238a b ∴++=,即225a b +=,∴当2x =−时,3(22)3532ax bx a b ++=−++=−+=−.故选:C .二.填空题(共9小题)11.已知23a b −=,则代数式241a b −+的值为 7 . 【解答】解:23a b −=,∴原式2(2)1617a b =−+=+=.故答案为:7.12.根据如图所示的计算程序,若输入的值3x =−,则输出y 的值为 10 .【解答】解:当3x =−时,由程序图可知:221(3)19110y x =+=−+=+=. 故答案为:10.13.如果某种商品每8千克的售价为32元,那么这种商品m 千克的售价为 4m 元. 【解答】解:这种商品的单价为3284÷=元,∴这种商品m 千克的售价为4m 元.故答案为:4m .14.m 的2倍与n 的差大于0表示为: 20m n −> . 【解答】解:m 的2倍为2m ,与n 的差为:2m n −,m ∴的2倍与n 的差大于0表示为:20m n −>.故答案为:20m n −>.15.将下列各式按照列代数式的规范要求重新书写: (1)5a ⨯,应写成 5a ; (2)S t ÷应写成 ;(3)123a a b ⨯⨯−⨯,应写成 ;(4)413x ,应写成 .【解答】(1)55a a ⨯=, 故答案为:5a ; (2)SS t t÷=. 故答案为:S t; (3)212233ba ab a ⨯⨯−⨯=−,故答案为:223b a −; (4)47133x x =,故答案为:73x .16.每件a 元的上衣,降价20%后的售价是 (120%)a −元/件 . 【解答】解:每件a 元的上衣降价20%后,出售的价格为(120%)a −(元/件). 故答案为:(120%)a −(元/件).17.小明买了6本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小明共花费 (610)a b + 元(用含a ,b 的代数式表示). 【解答】解:依题意得:小明共花费(610)a b +元, 故答案是:(610)a b +.18.下列各式是按新定义的已知“△”运算得到的,观察下列等式: 2△523511=⨯+=,2△(1)23(1)5−=⨯+−=, 6△363321=⨯+=,4△(3)43(3)9−=⨯+−=⋯⋯根据这个定义,计算(2022)−△2022的结果为 4044− . 【解答】解:根据前几个数可以找到规律,a △3b a b =⨯+, 故(2022)−△20222022320224044=−⨯+=−, 故答案为:4044−.19.已知有理数x 、y 满足2|3|(24)0x y −++=,则代数式x y +的值为 1 .【解答】解:2|3|(24)0x y −++=, 30x ∴−=,240y +=,解得:3x =,2y =−, 则321x y +=−=. 故答案为:1.三.解答题(共5小题)20.某校为实现垃圾分类投放,计划购进大小两种垃圾桶,大小垃圾桶的进价分别为m 元/个、50元/个,购进7个大垃圾桶和10个小垃圾桶.(1)用含m 的代数式表示共付款多少元?(2)若110m =,学校预算购买垃圾桶资金为1200元是否够用?为什么?【解答】解:(1)购进7个大垃圾桶和10个小垃圾桶,共付款71050(7500)m m +⨯=+(元);(2)当110m =时,750071105001270m +=⨯+=(元),12001270<,1200∴元不够用.21.当2x =,5y =−时,求多项式223x y x y +−+−的值.【解答】解:当2x =,5y =−时,223x y x y +−+−222(5)2(5)3=+−−+−−425253=+−−−19=.22.根据下列语句列出代数式:(1)x 与y 的和乘以3的积的倒数;(2)x 、y 两数的平方差;(3)x 、y 两数和的平方的2倍.【解答】解:(1)由题意可得,13()x y +; (2)由题意可得,22x y −;(3)由题意可得,22()x y +.23.阅读下列例题:计算:23456102222222++++++⋯+.解:设23456102222222S =++++++⋯+,①那么2345102345101122(222222)222222S =⨯+++++⋯+=++++⋯++.② ②−①,得1122S =−.所以原式1122=−.仿照上面的例题计算:234201833333++++⋯+.【解答】解:设234201833333S =++++⋯+,①那么23420182019333333S =+++⋯++.②(②−①)2÷,得2019332S −=. 所以原式2019332−=. 24.当2a =−,3b =时,求下列代数式的值.(1)2(2)a b +;(2)222a b ab −−.【解答】解:(1)2a =−,3b =,2(2)a b ∴+2(223)=−+⨯2(26)=−+24=16=;(2)2a =−,3b =,222∴−−a b ab22=−−−⨯−⨯(2)32(2)3 4912=−+=.7。
七年级数学代数式试题

七年级数学代数式试题一、选择题(每题3分,共30分)1.单项式﹣12πx2y的系数与次数分别是()A.-12,3 B.-12,4 C.-12π,3 D.-12π,42.如果一个多项式的次数都相等,则称该多项式为齐次多项式,例如:x3+2x2y+y3是三次齐次多项式,若xmy+3x3y2+5x2yn+y5是齐次多项式,则mn等于()A.32 B.64 C.81 D.1253.如图,大正方形与小正方形的面积之差为S,则图中阴影部分的面积是()A.2S B.S C.D.4.已知甲、乙码头相距s千米,某船在静水中的速度为a千米/时,水流速度为b千米/时(a>b),则该船一次往返两个码头所需的时间为()A.时B.时C.()时D.()时5..如图,在矩形ABCD中放入正方形AEFG,正方形MNRH,正方形CPQN,点E 在AB上,点M、N在BC上,若AE=4,MN=3,CN=2,则图中右上角阴影部分的周长与左下角阴影部分的周长的差为()A.5 B.6 C.7 D.86..已知x2﹣3x﹣12=0,则代数式3x2﹣9x+5的值是()A.31 B.﹣31 C.41 D.﹣417.如图,从标有单项式的四张卡片中找出所有能合并的同类项,若它们合并后的结果为a,则代数式221a a++的值为()A.1-B.0 C.1 D.28. 若M=2a2b,N=7ab2,P=-4a2b,则下列等式成立的是()A. M+N=9a2bB. N+P=3abC. M+P=-2a2bD. M-P=2a2b9.已知a,b为系数,且ax2+2xy﹣x与3x2﹣2bxy+3y的差中不含二次项,求a2﹣4b的值()A.13 B.8 C.5 D.910.填在下面各正方形中的四个数之间都有相同的规律,根据这种的规律,m的值是()A.92 B.88 C.90 D.94二、填空题(每题3分,共18分)11.电脑原价a元的八五折再减50元后的售价为________元.12.当m=_____时,3x m y与﹣yx2是同类项.13.当2x y-=时,代数式2()2()5x y x y-+-+的值是_______.14.多项式2357x x--与2652x x--的和等于_____________________15.当1≤m<3时,化简|m﹣1|﹣|m﹣3|=.16.若a+b=3,ab=﹣2,则(4a﹣5b﹣3ab)﹣(3a﹣6b+ab)=.三、解答题(共52分)17.去括号,合并同类项:(1)(x﹣2y)﹣(y﹣3x);(2).18.已知多项式(2mx2+4x2+3x+1)﹣(7x2﹣4y2+3x)化简后不含x2项,求多项式2m 3﹣[3m 2﹣(5m ﹣5)+m ]的值.19.已知A =2x 2+3xy ﹣2x ﹣1,B =﹣x 2+xy ﹣1;(1)求3A ﹣6B ;(2)若|x +2|+|y ﹣1|=0,求3A ﹣6B 的值.20.设55432543210(31)x a x a x a x a x a x a -=+++++,求:(1)0a 的值.(2)54321a a a a a ++++的值.(3)54321a a a a a -+-+-的值.21.有这样一道题:“当x =﹣2022,y =2023时,求多项式7x 3﹣6x 3y +3(x 2y +x 3+2x 3y )﹣(3x 2y +10x 3)的值”.有一位同学看到x ,y 的值就怕了,这么大的数怎么算啊?真的有这么难吗?你能用简便的方法帮他解决这个问题,是吗?22.我们把一列代数式的第一个记作1A ,第二个记作2A ,第三个记作3A ,…,第n 个记作n A ,规定:1231n i n i A A A A A ==++++∑.已知一列代数式22222,2,3,4,5x x x x x x x x x x -+--+--+…,求对于任意的实数x ,151i i A =∑的最大值。
七年级数学代数式专项练习.doc

七年级数学代数式专项练习.doc一、选择题1. 下列代数式书写规范的是( )A. a×2B.112aC.(5÷3)aD.2a³2. 下列代数式中符合书写要求的是( )A. ab4B.413mC. x+y D.−52a3. 一个两位数x,还有一个两位数y,若把两位数x放在y前面,组成一个四位数,则这个四位数为( )A. 10x+yB. xyC. 100x+yD. 1000x+y4. 今年学校运动会参加的人数是 m人,比去年增加10%,那么去年运动会参加的人数为()人.A.(1+10%)mB.(1-10%)mC. 1+10%D.m1−10%5. 若x表示一个两位数,y也表示一个两位数,小明想用x、y来组成一个四位数,且把x放在 y 的右边,你认为下列表达式中正确的是( )A. 100y+xB. 100x+yC. x+yD. yx6. 若干人做某项工作,每个人的工作效率相同,m个人做n天可完成,如果增加a人,则完成这项工作所需天数为( )A. n -aB. minuteC.D. n+a二、填空题7. 某工厂去年的产值是a万元,今年比去年增加10%,今年的产值是万元.8. 某种商品单价为a元,按8折出售后又涨价5%,则最后售价为元.9. 某种品牌的彩电降价30%以后,每台售价为a元,则该品牌彩电每台原价为 .10.巧克力糖每千克a元,奶油糖每千克b元,用6千克巧克力糖和4千克奶油糖混合成10千克混合糖,则这样得到的混合糖每千克的平均价格为元.11.某轮船顺水航行了4小时,溺水航行了3小时,已知轮船在静水中的速度为每小时a千米,水流速度为每小时b千米,则轮船共航行了千米.12.请你写出一个同时符合下列条件的代数式,(1)同时含有字母a,b:(2)是一个4次单项式:(3)它的系数是一个正数,你写出的一个代数式是 .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学代数式练习
1.代数式3x-7,
2
2
2,,
7
5y s m n v
-,
2
3,,23322x y m y x x x
π+-+,中单项式有
__________________________; 多项式有 ; 2.代数式-526
xy 的系数是 ,次数是 。
3.代数式2232xy x -+的次数是 4.在代数式2
42
1y
xy +-
中,写出各项的系数________________.
5.举例说明代数式25a+12b 的实际意义______________________________ 6.下列各式:1x +,0a ≠,a ,29>,
y
x y x +-,12
S ab
=
,其中代数式的个数
是 ( )
A. 5
B. 4
C. 3
D. 2
7.a 是一个三位数,b 是一个两位数,若把b 放在a 的左边,组成一个五位数,
则这个五位数为 ( ) A .a b + B .a b +10 C .a b +100 D .a b +1000 8.下列各式中,不是整式的式子是 ( ) A 、1
3 B 、a 2 C 、5x-1 D 、2
x
9.下列说法正确的是 ( )
A.3
1
πx 2的系数为3
1
B.
2
1xy 2的系数为2
1
x
C.3(-x 2
)的系数为3
D.3π(-x 2
)的系数为-3π
10.下列式子中符合代数式的书写格式的是 ( ) A .x·20y B .2÷ab C .(a-b )千克 D .2
3
2mn 千米
11.下列说法正确的是 ( ) A .0、b 、
x
1都是整式 B .单项式a 没有系数
C .没有加减运算的代数式是单项式
D .x 2—2xy —y 2是由x 2、—2xy 、—y 2三项组成.
12.观察下列顺序排列的等式:
2 2 –1 2 =3=2×1+1,
3 2 –2 2 =5=2×2+1,
4 2
–3 2
=7=2×3+1,
5 2 –4 2 =9=2×4+1, 62 –5 2 =11=2×5+1,
(1)第n 个等式(n 为正整数)怎样表示? (2)计算20052 -20042的值。
13.若
是关于 a,b 的五次单项式,求x 的值
14.如果(m-1)x 4-x n +x-1是二次三项式,求m 、n
15.计算: (1)()44
3499--÷⨯- (2)()()7111313689612⎡⎤⎛⎫
-+-⨯-÷- ⎪⎢⎥⎝⎭⎣⎦
(3)2
2
2
3
54
(1)[(3)2(5)]()(2)69----⨯÷⨯- (4) ()2
2221124333-⎛⎫⎛⎫-+-⨯-÷ ⎪ ⎪⎝⎭⎝⎭
2
(3)x
x a b -。