微波网络基础
微波技术原理 第4章 微波网络基础

7. 互易网络和无损网络的散射矩阵的性质
根据广义散射矩阵的定义得到:
(1) 互易网络的 [z]为对称矩阵,即 [z ]=[z ]T 。 可见,互易网络的散射矩阵是对称矩阵 [S]=[S]T 。
(2) 无损网络各端口的总输入能量等于总输出能量。
第4章 微波网络基础
微波系统中除了传输线外,还有各种各样的微波 元件或接头等非均匀区域。因为这些非均匀区域的形 状不规则,在其中的微波传输规律很复杂。因此,要 想通过求解麦克斯韦方程组得出其中的传输规律是不 可能的。
实际上,我们并不需要知道微波在其中的传输规 律,而只需知道这些非均匀区与外电路连接的端口特 性。所以通常将其等效为一个网络,称为微波网络。
微波网络的端口及其参考面举例
对于单模传输系统,微波网络的端口数 = 被等效区 域与外电路的接口数目 = 参考面的数目。
§4.3 微波网络的端口特性参量
1. 阻抗矩阵和导纳矩阵
V
2
I-2
V+2 I+2
I-3 V-3 I+3 V+3
I+1
V+1
I-1
V-1
I-N
I+N
V-N
V+N
2. 微波网络的互易性
从无耗网络的各个端口输入的总能量为 0。
互易网络的阻抗矩阵是对称的,因此,既互易又
无耗的网络满足:
(实部为0)
这说明,互易无耗网络的阻抗矩阵元为纯电抗。
例1 求下图的两端口网络的Z参量
ZA
ZB
端口1,V1
ZC
V2,端口2
根据定义:
微波技术基础期末复习题

《微波技术基础》期末复习题第2章 传输线理论1. 微波的频率范围和波长范围频率范围 300MHz ~ 3000 GHz 波长范围 1.0 m ~ 0.1mm ;2. 微波的特点⑴ 拟光性和拟声性;⑵ 频率高、频带宽、信息量大;⑶ 穿透性强;⑷ 微波沿直线传播;3. 传输线的特性参数⑴ 特性阻抗的概念和表达公式特性阻抗=传输线上行波的电压/传输线上行波的电流 1101R j L Z G j C ⑵ 传输线的传播常数传播常数 j γαβ=+的意义,包括对幅度和相位的影响。
4. 传输线的分布参数:⑴ 分布参数阻抗的概念和定义⑵ 传输线分布参数阻抗具有的特性()()()in V d Z d I d =00ch sh sh ch L L L L V d I Z d V d I d Z γγγγ+=+000th th L L Z Z d Z Z Z d γγ+=+① 传输线上任意一点 d 的阻抗与该点的位置d 和负载阻抗Z L 有关; ② d 点的阻抗可看成由该点向负载看去的输入阻抗;③ 传输线段具有阻抗变换作用;由公式 ()in Z d 000th th L L Z Z d Z Z Z dγγ+=+ 可以看到这一点。
④ 无损线的阻抗呈周期性变化,具有λ/4的变换性和 λ/2重复性; ⑤ 微波频率下,传输线上的电压和电流缺乏明确的物理意义,不能直接测量;⑶ 反射参量① 反射系数的概念、定义和轨迹;② 对无损线,其反射系数的轨迹?;③ 阻抗与反射系数的关系;in ()1()()()1()V d d Z d I d d 01()1()d Z d ⑷ 驻波参量① 传输线上驻波形成的原因?② 为什么要提出驻波参量?③ 阻抗与驻波参量的关系;5. 无耗传输线的概念和无耗工作状态分析⑴ 行波状态的条件、特性分析和特点;⑵ 全反射状态的条件、特性分析和特点;⑶ 行驻波状态的条件、特性分析和特点;6. 有耗传输线的特点、损耗对导行波的主要影响和次要影响7. 引入史密斯圆图的意义、圆图的构成;8. 阻抗匹配的概念、重要性9. 阻抗匹配的方式及解决的问题⑴ 负载 — 传输线的匹配⑵ 信号源 — 传输线的匹配⑶ 信号源的共轭匹配10. 负载阻抗匹配方法⑴ λ/4阻抗匹配器⑵ 并联支节调配器⑶ 串联支节调配器第3章 规则金属波导1. 矩形波导的结构特点、主要应用场合;2. 矩形波导中可同时存在无穷多种TE 和TM 导模;3. TE 和TM 导模的条件;TE 导模的条件:00(,,)(,)0j z z z z E H x y z H x y e β-==≠TE 导模的条件:00(,,)(,)0j z z z z H E x y z E x y e β-==≠4. 关于矩形波导的5个特点;5. 掌握矩形波导TE 10模的场结构,并在此基础上掌握TE m0模的场结构;6. 管壁电流的概念;7. 管壁电流的大小和方向;8. 矩形波导的传输特性(导模的传输条件与截止);9. 圆形波导主模TE11模的场结构。
微波工程-第4章微波网络分析

电阻与耗散功率有关
4 Wm We I
2
电抗与储能有关
* 端口阻抗和反射系数的奇偶性
Z R jX Z 0 1 1
j
T=
波导模式的波阻抗——与传输线的形状、材料、频率和模式有关
Et 1 120 Zw H t Yw e Z TE or Z TM TEM quasi-TEM TE or TM
U , H
需满足条件三:人为指定特征阻抗(三种定义原则) 1. 特征阻抗等于波阻抗 (特定模式的波阻抗) 2. 特征阻抗等于1
特性之间的关系时,可以采用类似于低频时的网络理论对微 波传输线或元器件进行分析。
取定参考面 ti ,参考面以内是不均匀的,参考面以外是均匀传输线; 将参考面以内的不均匀性等效成 N 端口网络; 将参考面以外的均匀传输线等效成双导线。
微波工程基础 第四章 微波网络分析
微波工程基础 第四章 微波网络分析 非TEM模的等效电压和电流(没有唯一解!!!)
I1 0
Z12
V1 I2
I1 0
V2 ZC ZC Z21 I2 ZB Z C
V1 S11 V2 S 21 SN1 VN
S12 S 22 SN 2
S1N V1 S2 N V2 S NN VN
Y0 iY0 j
P
n 1
N
n
0
单位矩阵——只有对角线上元素为1, 其余元素均为0 * 广义散射矩阵与归一化阻抗矩阵的关系
S Z U
微波电路及设计的基础知识

微波电路及设计的基础知识1. 微波电路的基本常识2. 微波网络及网络参数3. Smith圆图4. 简单的匹配电路设计5. 微波电路的电脑辅助设计技术及常用的CAD软件6. 常用的微波部件及其主要技术指标7. 微波信道分系统的设计、计算和指标分配8. 测试及测试仪器9. 应用电路举例微波电路及其设计1.概述所谓微波电路,通常是指工作频段的波长在10m~1cm(即30MHz~30GHz)之间的电路。
此外,还有毫米波〔30~300GHz〕及亚毫米波〔150GHz~3000GHz〕等。
实际上,对于工作频率较高的电路,人们也经常称为“高频电路”或“射频〔RF〕电路”等等。
由于微波电路的工作频率较高,因此在材料、结构、电路的形式、元器件以及设计方法等方面,与一般的低频电路和数字电路相比,有很多不同之处和许多独特的地方。
作为一个独立的专业领域,微波电路技术无论是在理论上,还是在材料、工艺、元器件、以及设计技术等方面,都已经发展得非常成熟,并且应用领域越来越广泛。
另外,随着大规模集成电路技术的飞速发展,目前芯片的工作速度已经超过了1GHz。
在这些高速电路的芯片、封装以及应用电路的设计中,一些微波电路的设计技术也已得到了充分的应用。
以往传统的低频电路和数字电路,与微波电路之间的界限将越来越模糊,相互间的借鉴和综合的技术应用也会越来越多。
2.微波电路的基本常识2.1 电路分类2.1.1 按照传输线分类微波电路可以按照传输线的性质分类,如:图1 微带线图2 带状线图3 同轴线图4 波导图5 共面波导2.1.2 按照工艺分类微波混合集成电路:采用别离组件及分布参数电路混合集成。
微波集成电路〔MIC〕:采用管芯及陶瓷基片。
微波单片集成电路〔MMIC〕:采用半导体工艺的微波集成电路。
图6微波混合集成电路例如图7 微波集成电路〔MIC〕例如图8微波单片集成电路〔MMIC〕例如2.1.3 微波电路还可以按照有源电路和无源电路分类。
微波网络基础(1)

反射系数与输入阻抗
传输线某一点的输入阻抗 Z in (z ) 和该点的反射系数ρ ( z ) 之间的关 系
1 + ρ (z ) V (z ) Z in (z ) = = Zc ⋅ 1 − ρ (z ) I (z )
−
Z = Rc 无耗时, 纯电阻) 无耗时,传输线阻抗 c (纯电阻)
引
传输线的基本理论 史密斯圆图 微波网络
言
传输线基本理论
均匀长线及其等效电路
R
L
G
C
传输线方程
dz段的等效电路 段的等效电路
R0 dz L0 dz G0 dz C0 dz
传输线方程
dU ( z ) = − ZI ( z ) dz dI ( z ) = −YU ( z ) dz
其中: 其中: Z = R0 + jωL0
+ X (B)
0(0.5λ )
导纳圆图: 导纳圆图 1.短路点 短路点C(-1,0) 短路点 2.开路点 开路点A(1,0) 开路点 3.匹配点 匹配点B(0,0) 匹配点
A
B
C
0.25λ
传向负载 的波长
− X (B)
史密斯圆图的简单用法(1) 史密斯圆图的简单用法(1)
反射系数 ρ ( z ) 的计算
Y = G0 + jωC0
传输线方程的解
传输线方程的解: 传输线方程的解:
U ( z ) = A1e −γz + A2 eγz I (z ) = 1 A1e −γz − A2 eγz Z0
(
)
(特征阻抗) (传播常数)
式中: 式中:
Z0 = R0 + jωL0 G0 + jωC0 γ = (R0 + jωL0 ) ⋅ (G0 + jωC0 )
微波技术基础课后习题(A)

杜 英
2011.5.1
第二章 传输线理论
2-6 如图所示为一无耗传输线,已知工作频率
Z L 1 5 0 j 5 0
f 3G H z , Z 0 1 0 0
Z 01
,
,欲使 A 处无反射,试求 l 和
。
答案:由输入阻抗定义知
Z in A Z 0 1 Z L jZ 0 1 tan l Z 0 1 jZ 位面沿轴向移动的速
vp
度,公式表示为
p
p
2
相波长 是等相位面在一个周期T内移动的距离,有
欲使电磁波传输信号,必须对波进行调制,调制后的波不再是单一频 率的波,而是一个含有多种频率的波。这些多种频率成分构成一个“波群”
2 又称为波的包络,其传播速度称为群速,用 v g 表示,即 v g v 1 c
c
、 ,随着频率的变化,传播长数 可能为虚数,也可能为实
0
数,还可以等于零。当
时,系统处于传输与截止状态之间的临界状态,此
时对应的波长为截止波长。
当 c 时,导波系统中传输该种波型。
当 c 时,导波系统中不能传输该种波型。
第三章 微波传输线
3-3 什么是相速、相波长和群速?对于TE波、TM波和TEM波,它们的相速 相波长和群速有何不同? 答案: 相速
0.125
0.188
D
A
0 0.5
D
0.25
B
0.15
0.2
C
0.375
0.361
0.338
第三章 微波传输线
3-2 何谓波导截止波长 c ?工作波长 大于 c 或小于 c 时,电磁波的特性有
第四章-微波网络基础

其它几种网络参量的互易特性为
A11 A22 A12 A21 1
~~ ~~ A11 A22 A12 A21 1
S12 S21
T11T22 T12T21 1
S1,1 ,S22
第四章 微波网络基础
(二) 对称网络 一个对称网络具有下列特性
Z11 Z22 Y11 Y22
,
其它几种网络参量的对称性为
T12 T21
A11 A22
Z01 Z02
由此可见,一个对称二端口网络的两个参考面上的输 入阻抗、输入导纳以及电压反射系数等参量一一对应 相等
第四章 微波网络基础
(三) 无耗网络
利用复功率定理和矩阵运算可以证明,一个无耗网络的散射矩 阵一定满足“么正性”,即
[S]T [S * ] [1]
按微波元件的功能来分
1.阻抗匹配网络 2.功率分配网络 3.滤波网络 4.波型变换网络
第四章 微波网络基础
(二) 微波网络的性质
(1) 对于无耗网络,网络的全部阻抗参量和导纳参量均为纯虚数,
即有
Zij jX ij
Yij jBij i, j 1,2,,n
(2) 对于可逆网络,则有下列互易特性
Zij Z ji
Z 01 Z 02
第四章 微波网络基础
2. 导纳参量
用T1和T2两个参考面上的电压表示两个参考面上的电流,其网 络方程为
I1
I
2
Y11 Y21
各导纳参量元素定义如下
Y12 U1
Y22
U
2
Y11
I1 U1
U2 0
Y22
I2 U2
U1 0
Y12
I1 U2
U1 0
Y21
第五章 微波网络基础 传输(ABCD)矩阵(转移矩阵)

B1 V2 I D1 2
V2 A2 I C 2 2
B2 V3 D2 I 3
V1 A1 I C 1 1
B1 A2 D1 C2
B2 V3 M个二端口网络级联 [ A] [ A1 ][ A2 ] [ AM ] D2 I 3
I1 D I2
V2 0
2
(端口2短路)
传输矩阵应用
传输矩阵的应用——二端口网络的级联
I1
+ -
I2
V1
I3
A1 B1 C D 1 1
二端口网络1
+ -
V2
A2 B2 C D 2 2
二端口网络2
+ -
V3
V1 A1 I C 1 1
传输矩阵参量计算
变压器:
传输矩阵与阻抗矩阵之间的关系
阻抗矩阵线性方程组
V1 Z11 V Z 2 21
A
B
注意负号意义!
Z12 I1 I Z 22 2
I1Z11 Z11 / Z 21 I1Z 21
V1 I1Z11 I 2 Z12 V2 I1Z 21 I 2 Z 22
若网络是互易的, Z12 Z 21
I1 D I2
I 2 Z 22 / Z 21 Z 22 / Z 21 I2 V 0
2
AD BC 1
11
二端口网络
二端口网络——微波电路中最常见
衰减器
移相器 匹配器 滤波器 ……
12
失配损耗 耗散损耗
V1 AV2 BI 2 I1 CV2 DI 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
归一化阻抗
~ Z
Z
1
Z0 1
故归一化电压和电流的定义为
复功率
U~z Uz
I~z
Z0
Iz
Z0
P
1
U~
z
~ I
z
1
Uz
2
2
Z0
I z Z0
1UzI z
2
第四章 微波网络基础
等效双线上的电压和电流可写成入射波和反射波之和,即
第四章 微波网络基础
(一) 阻抗参量、导纳参量和转移参量
1 阻抗参量
用T1和T2两个参考面上的电流表示两个参考面上的电压,其 网络方程为
U1 U 2
Z11 Z21
Z12 I1
Z
22
I
2
各阻抗参量元素定义如下
Z11
U1 I1
I2 0
表示T2面开路时,端口(1)的输入阻抗;
Z22
U2 I2
I1 0
表示T1面开路时,端口(2)的输入阻抗;
Z12
U1 I2
I1 0
表示T1面开路时,端口(2)至端口(1)的转移阻抗;
Z21
U2 I1
I2 0
表示Tห้องสมุดไป่ตู้面开路时,端口(1)至端口(2)的转移阻抗。
第四章 微波网络基础
特性阻抗归一化
T1和T2参考面上的归一化电压和归一化电流分别为
参考面的位置可以任意选,但必须考虑以下两点:
(1)单模传输时,参考面的位置应尽量远离不连续性区域, 这样参考面上的高次模场强可以忽略,只考虑主模的场强; (2)选择参考面必须与传输方向相垂直,这样使参考面上 的电压和电流有明确的意义
如果参考面位置改变,则网络参数也随之改变。
第四章 微波网络基础
对于单模 传输情况来说, 微波网络的外 接传输线的路 数与参考面的 数目相等。如 图所示
微波元件及其等效网络
第四章 微波网络基础
二、不均匀区等效为微波网络
微波元件对电磁波的控制作用是通过微波元件内部的不均匀区 (不连续性边界)和填充媒质的特性来实现的。将不均匀区等效为 微波网络,需要用到电磁场的唯一性原理和线性叠加原理。
线性叠加原理
对于n端口线性网络, U1 U2
Z11 I1 Z21 I1
~ U1
U1 Z01
~ U2
U2 Z02
~ I1 = I1 Z01 ~ I 2 = I 2 Z02
归一化
~ ~~ ~~ U~1 Z~11 I~1 Z~12 I~2
U 2 Z21 I1 Z22 I 2
Yij Yji i j, i, j 1,2,,n
(3) 对于对称网络,则有
Zii Z jj
Yii Yjj i j, i, j 1,2,,n
第四章 微波网络基础
4-4 二端口微波网络
一、 二端口微波网络的网络参量 在各种微波网络中,二端口微波网络是最基本的。例如: 衰减器、移相器、阻抗变换器和滤波器等均属于二端口微 波网络。 表征二端口微波网络特性的参量可以分为两大类: 一、反映网络参考面上电压与电流之间关系的参量 二、反映网络参考面上入射波电压与反射波电压之间 关系的参量。如图所示。
1.阻抗匹配网络 2.功率分配网络 3.滤波网络 4.波型变换网络
第四章 微波网络基础
(二) 微波网络的性质
(1) 对于无耗网络,网络的全部阻抗参量和导纳参量均为纯虚数,
即有
Zij jX ij
Yij jBij i, j 1,2,,n
(2) 对于可逆网络,则有下列互易特性
Zij Z ji
第四章 微波网络基础
归一化入射波电压模的平方正比于入射波功率,
即
Pi
1 2
U
i
z
Ii z
Ui z 2
2Z0
1 2
Ui z 2
Z0
1 2
~ Ui
z
2
归一化反射波电压模的平方正比于反射波功率,
即
Pr
1 2
U
r
z
Ir z
Ur z 2
2Z0
1 2
Ur z 2
Z0
1 2
~ Ur
z
2
双线上传输的有功功率PL等于
PL
1 Re UzI z
2
1 2
Re
U
i
z
I
i
z1
1
1 2
Ui z
Ii z
1
2
Pi 1 2
Pi Pr
第四章 微波网络基础
4-3微波元件等效为微波网络 一、 网络参考面的选择
U 2
Z21
Z22
Z
2n
I
2
U
n
Zn1
Zn2
Z nn
I
n
I1 Y11 Y12 Y1n U1
I
2
Y21
Y22
Y2
n
U
2
Z12 I 2 Z1n I n Z22 I 2 Z2n I n
U n Zn1 I1 Zn2 I 2 Znn I n
式中Zmn为阻抗参量,若m=n称它为自阻抗,若mn称它为转 移阻抗。
第四章 微波网络基础
如果n端口网络的各个参考面上同时有电压作用时
Uz Ui z Ur z
Iz
Ii
z
Ir
z
1 Z0
Ui z
Ur
z
电压、电流进行归一化
Uz Ui z Ur z
Z0
Z0
Z0
Iz
Z0
Ui z
Z0
Ur z
Z0
即
UI~~zz
UU~~iizz
UU~~rrzz
I1 Y11U1 Y12U 2 Y1nU n
I 2 Y21U1 Y22U 2 Y2nU n
I n Yn1U1 Yn2U 2 YnnU n
式中Ymn为导纳参量,若m=n称它为自导纳,若mn称它为转移导纳。
U1 Z11 Z12 Z1n I1
I
n
Yn1
Yn2
Ynn
U
n
U ZI
I YU
第四章 微波网络基础
三、 微波网络的特性 (一) 微波网络的分类
按网络的特性进行分类
1. 线性与非线性网络 2. 可逆与不可逆网络 3. 无耗与有耗网络 4. 对称与非对称网络
按微波元件的功能来分