数学分析(1)复习题

数学分析(1)复习题
数学分析(1)复习题

数学分析(1)复习题(一)

一、按要求写出下列定义的数学描述(4?/5=20/)

1、A x f x ≠+∞

→)(lim 的X -ε正面描述为

2、由Cauchy 收敛准则,若数列{}n x 收敛,则

3、η为非空数集S 的下确界即

4、a 为无限集合S 的聚点即

5、区间套[]{}n n b a ,的定义为 二、计算题(8?/6=48/)

1、求2

1

0)sin (lim x x x

x →.

2、求)sin

2

sin

1(sin

lim 2

2

2

n

n n n n +???++++∞

→π

π

π

.

3、确定x

x x f sin )(=的间断点并判断其类型.

4、设x x x x f x

x

sin )(sin +=,求)(x f '.

5、x y 3sin =,求)(n y .

6、求x e x x f 2)(=带有Lagrange 余项的n 阶Maclaurin 展式.

7、设)7ln 12(4-=x x y ,试确定其凹凸区间及拐点.

8、确定,,b a 使函数???≥++<+=0,10,2)(2x bx x x a e x f x 在0=x 处连续.

三、证明题(4?/8=32/) 1、用δε-定义证明.10

3

1lim

2

3

=+→x x x 2、设)(x f 在[]b a ,上连续,在()b a ,内可导,证明至少存在(),,b a ∈ξ使得下式成

立: .ln )()()(a

b

f a f b f ξξ'=-

3、证明:若f 在[]b a ,上连续,)(lim x f x +∞

→存在且有限,则f 在[)+∞,a 上一致连续.

4、设f 在()+∞,a 内可微并且,0)(lim ='+∞

→x f x 证明0)

(lim

=+∞

→x

x f x .

数学分析(1)复习题(二)

一、单项选择题(5?/3=15/) 1、=∞→n n n

2lim

( ) A.0;B 、2

1;C 、1;D 、2. 2、设函数是n 次多项式,则=+)()1(x f n ( ) A 、n ;B 、n+1;C 、0;D 、1.

3、如果当0→x 时,)(x f 是x 的高价无穷小量,则=→x

x f x sin )

(lim 0

( ). A.

2

1

; B 、0; C 、2; D 、1. 4、设f 在x 的某邻域内有有定义,则下列命题哪一个为假?( )

A.f 在点x 可微,则f 在点x 连续; B 、f 在点x 不连续,则f 在点x 一定不可导;

C 、f 在点x 连续,则f 在点x 可微;

D 、f 在点x 可导当且仅当f 在点x 可微.

5、函数2)(x x f =与x x g =)(定义在[)∞,0上,它们在定义区间上是一致连续的

吗?( )

A.两个都是一致连续的; B 、两个都不是一致连续的; C 、f 是一致连续的,g 不是一致连续的; D 、f 不是一致连续的,g 是一致连续的.

二、填空题(5?/3=15/)

1、如果要使函数x

x x f 1

sin )(=在点0=x 连续,需重新定义=)0(f

2、设1)(0='x f ,则=--+→h

h x f h x f h )

()(lim

000 3、函数???≤>+=,1,,

1,)(2x x x b ax x f 在1=x 处可导,则=+2013b a

4、设)(x y y =由方程e xy e y =+确定,则=')0(y

5、设???-=-=t

y t t x cos 1sin ,则

==

2

π

t dx dy

三、计算题(6?/6=36/)

1、用N -ε语言叙述数列{}n x 收敛到a 的定义,并根据定义验证数列???

???++11222n n 收

敛.

2、①求极限x

x x 2211lim ??? ??++∞

→; ②求极限x

x e x x cos 1sin )1(lim 0--→ 3、设x

tg a x x y 1

)ln(2

22--+=,求dy . 4、设函数2

2

)(x e x f -=,求)0()4(f .

5、求曲线2

11

x y +=在

)21,1(-处的切线方程和法线方程. 6、求函数1)(23+--=x x x x f 的单调区间、凹凸区间、极值和拐点. 四、证明题(1、2、3题各9分,4题7分,共34分)

1、叙述单调有界定理并考虑下列问题.设,1),,2,1)(1

(211>???=+=+x n x x x n

n n

(1) 证明数列{}n x 单调递减有下界. (2)求数列{}n x 的极限.

2、用罗尔(Rolle )定理证明拉格朗日(Lagrange)中值定理并证明不等式:

)0()1l n (1><+<+x x x x

x

3、叙述连续函数的零点定理并用区间套定理加以证明.

4、用柯西收敛准则证明数列n n n

x 2

sin 22sin 21sin 12+???+++=收敛. 数学分析(1)复习题(三)

一、 填空(共15分,每题5分):

1. 设=∈-=E R x x x E sup ,|][{则 , =E inf ;

2. 设=--='→5

)

5()(lim

,2)5(5

x f x f f x 则 ;

3. 设??

?>++≤=0

,

)1ln(,

0,

sin )(x b x x ax x f 在==a x 处可导,则

0 , =b 。

二、 计算下列极限:(共20分,每题5分)

1、n n n

1

)1

31211(lim ++++∞→ ; 2、3)

(21lim

n n

n ++∞→; 3、 a

x a

x a x --→sin sin lim ; 4、x

x x 1

)21(lim +→。

三、 计算导数(共15分,每题5分):

1. );(),1ln(1)(22x f x x x x f '++-+=

2.

3. 设。

求)100(2,

2sin )23(y x x y -= 四、 (12分)设0>a ,}{n x 满足:

,00>x ,2,1,0),(211 =+=

+n x a

x x n

n n

证明:}{n x 收敛,并求。n n x ∞

→lim

五、 10分)求椭圆),(10022

22y x b

y a x 过其上点

=+ 处的切线方程。

六、 (10分)利用Cauchy 收敛原理证明:单调有界数列必收敛。 七、(8分)设满足:上在)0(),[)(>+∞a a x f

|||)()(|),,[,y x K y f x f a y x -≤-+∞∈?

为常数)。证明:0(≥K

1、

上有界;在),[)

(+∞a x

x f 2、上一致连续。在),[)

(+∞a x

x f ;sin cos 3

3表示的函数的二阶导数求由方程???==t a y t

a x

八、(10分)设n a a a ,,21为实常数,证明:

nx

a x a x a x f n cos 2cos cos )(21++

+=

内必有零点。在),0(π

数学分析(1)复习题(四)

一、单项选择题(每小题3分,共15分)

1、设)()()(x a x x f ?-=,其中)(x ?在a x =处连续但不可导,则=)('a f ( ) A 、不存在; B 、)('a ?; C 、)(a ?; D 、)('a ?-。

2、当x 很小时,下列近似公式正确的是( )

A 、x e x ≈ ;

B 、x x ≈ln ;

C 、x x n +≈+11; `

D 、x x ≈sin 。

3、曲线x x y arctan =的图形应为( )

A 、在),(+∞-∞内上凸;

B 、在),(+∞-∞内下凸;

C 、在),(+∞-∞内单调上升;

D 、在),(+∞-∞内单调下降。

4、当0→x 时,)cos 3(cos 4

1

x x -是2x 的( )

A 、高阶无穷小;

B 、同阶无穷小,但不是等阶无穷小;

C 、低阶无穷小;

D 、等阶无穷小。

5、设)(x f 三阶连续可导于[]δδ,-上且0)0('')0('==f f ,

2)

('''lim 0

=→x

x f x 则( ) A 、)0(f 是)(x f 的极大值 ; B 、)0(f 是)(x f 的极小值; C 、)0(,0(f 是曲线)(x f y =的拐点; D 、))0(,0(f 不是)(x f y =的拐点。 二、填空题(每小题3分,共15分)

1、设)sgn(cos )(x x f =,则[]ππ,)(-在x f 上的全部间断点是 。

2、=-+-+∞

→1

2)1

323(

lim x x x x 。 3、抛物线2x y =的最小曲率半径是 。

4、设)

1(1

)(x x x f -=

,则)()(x f n 。

5、曲线x y x y 2sin )(==与在原点相切,则=∞→)4

(lim n nf n 。

三、计算题(每小题8分,共40分)。 1、求极限)sin 1

1(

lim 220

x

x x -→。 2、求')(ln sin 2y x x x x y 的导数++=。

3、设函数)(x y y =由方程e xy e y =+所确定,求)0(''y 。

4、如果函数???≥++<+=0,10

,2)(2x bx x x a e x f x 在0=x 连续可导,求b a +

5、求x e x x f 2)(=带有Lagrange 余项的n 阶Maclaurin 展式。 四、证明题(每小题5分,共20分)。 1、按δε-定义证明5

3

11lim

22

=++→x x x 。 2、证明:当)2,0(π

∈x 时有不等式π

x x 2sin >。

3、设)(x f 在[]b a ,上连续)0( a ,在),(b a 内可导,则存在ξ,),(b a ∈η使

)('2)('ηη

ξf b

a f +=

。 4、若[]上连续在+∞,)(a x f ,)(lim x f x +∞

→存在且有限,则[)+∞,)(a x f 在上一致连续。 五、应用题(本题共10分)

已知曲线1=xy 在第一象限的分支上有一定点)1

,(a

a P )0(>a ,在给定曲线的

第二象限中的分支上有一动点Q 。试求使线段PQ 长度为最短的Q 点的坐标。

大一下学期 数学分析 第四套复习题

《数学分析》期末考试复习题(第四套) 班级 学 号 姓 名 一.( 满分 2 0 分,每小题 2 分)判断题: 1. 设ξ是数集E 的聚点 . 则存在0 >δ,使在) , (δξδξ+-外仅有数集E 的 有限个点. ( ) 2. 单调有界数列必为基本列 . ( ) 3. 闭区间] , [b a 上仅有一个间断点的函数必( R )可积 . ( ) 4. 当无穷积分 ? +∞ a dx x f )(和 ?+∞ a dx x g )(都收敛时,积分 ? +∞ a dx x g x f )()(必收敛 () 5. 若级数∑ +α 11n 收敛 , 则必有0>α. ( ) 6. 设0>n u 且) ( , 0∞→→n u n . 则级数∑+-n n u 1) 1 (必收敛 . ( ) 7. 设在区间I 上对n ?有)( |)(|x v x u n n ≤. 若级数∑)(x v n 在区间I 上 一致收 敛 , 则级数∑)(x u n 也在区间I 上 一致收敛 . ( ) 8. 设在区间I 上函数列)}({x f n 收敛于函数)(x f .若存在数列?} {n x I , 使 0|)()(|→/-n n n x f x f ,则函数列)}({x f n 在区间I 上非一致收敛 . ( ) 9. 设函数)(x f 在区间)0 ( ) , (>-R R R 内有任意阶导数 , 且其Maclaurin 级数 ∑ ∞ =0 ) (! ) 0(n n n x n f 在 ) , (R R -内收敛 . 则在 ) , (R R -内有= )(x f ∑ ∞ =0 ) (! ) 0(n n n x n f .() 二. ( 满分 1 0 分,每小题 2 分)填空题: 10. ()?-=+-+-1 1 52212sin ||dx x x x x x x . 11. = +? →3 2 )1ln(lim x dt t x x .

数学分析期末考试题

数学分析期末考试题 一、单项选择题(从给出的四个答案中,选出一个最恰当的答案填入括号内,每小题2分, 共20分) 1、 函数)(x f 在[a,b ]上可积的必要条件是( ) A 连续 B 有界 C 无间断点 D 有原函数 2、函数)(x f 是奇函数,且在[-a,a ]上可积,则( ) A ?? =-a a a dx x f dx x f 0 )(2)( B 0)(=?-a a dx x f C ?? -=-a a a dx x f dx x f 0 )(2)( D )(2)(a f dx x f a a =?- 3、 下列广义积分中,收敛的积分是( ) A ? 1 1dx x B ? ∞ +1 1dx x C ? +∞ sin xdx D ?-1 131dx x 4、级数 ∑∞ =1 n n a 收敛是 ∑∞ =1 n n a 部分和有界且0lim =∞ →n n a 的( ) A 充分条件 B 必要条件 C 充分必要条件 D 无关条件 5、下列说法正确的是( ) A ∑∞ =1n n a 和 ∑∞ =1 n n b 收敛, ∑∞ =1 n n n b a 也收敛 B ∑∞ =1 n n a 和 ∑∞ =1 n n b 发散, ∑∞ =+1 )(n n n b a 发散 C ∑∞ =1n n a 收敛和 ∑∞ =1 n n b 发散, ∑∞ =+1 )(n n n b a 发散 D ∑∞=1 n n a 收敛和∑∞ =1 n n b 发散, ∑∞ =1 n n n b a 发散 6、 )(1 x a n n ∑∞ =在[a ,b ]收敛于a (x ),且a n (x )可导,则( ) A )()('1'x a x a n n =∑∞ = B a (x )可导 C ?∑? =∞ =b a n b a n dx x a dx x a )()(1 D ∑∞ =1 )(n n x a 一致收敛,则a (x )必连续 7、下列命题正确的是( )

18数学分析-1复习题试题及参考答案

18数学分析-1复习题参考答案 一、选择题 1.函数1 ()ln(2) f x x = -的连续区间是 ( B ) A. (2,)+∞ ; B. (2,3)(3,)?+∞; C. (,2)-∞ ; D. (3,)+∞. 2.若函数x x x f = )(,则=→)(lim 0 x f x ( D ). A.0 ; B.1- ; C.1 ; D.不存在. 3.下列变量中,是无穷小量的为( C ). A.1ln (0)x x +→; B.cos (0)x x →;C.ln (1)x x → ;D.22(2)4 x x x -→-. 4. 1lim(1)1 n n n →∞ + =+( B ). 1 2.1 ...-A B e C e D e 5.1lim(1)1 →∞ + =-n n n ( B ). 12.1...-A B e C e D e 6.下列两个函数是同一函数的是 ( C ) A. ()3,()f x x x ?=+=41 ()ln ,()ln 4 f x x x x ?== ; C. 2 2 ()sin cos ,()1f x x x x ?=+= ; D. 2 (1)(),()11 x f x x x x ?-= =-- . 7.22 39 lim 712 x x x x →-=-+ ( C ) A.0 ; B.25- ; C.6- ; D. 7 6 . 8.0sin 2lim →=x x x ( D ) A. 0 ; B. 1 ; C. 3 ; D . 2 . 9.=→x x x 1 sin lim 2 ( C ). 1 1A B C D ∞-

数学分析试题库--证明题

数学分析题库(1-22章) 五.证明题 1.设A ,B 为R 中的非空数集,且满足下述条件: (1)对任何B b A a ∈∈,有b a <; (2)对任何0>ε,存在B y A x ∈∈,,使得ε<-x Y . 证明:.inf sup B A = 2.设A ,B 是非空数集,记B A S ?=,证明: (1){}B A S sup ,sup max sup =; (2){}B A S inf ,inf min inf = 3. 按N -ε定义证明 3 52325lim 22=--+∞→n n n n 4.如何用ε-N 方法给出a a n n ≠∞ →lim 的正面陈述?并验证|2n |和|n )1(-|是发散数列. 5.用δε-方法验证: 3) 23(2lim 221-=+--+→x x x x x x . 6. 用M -ε方法验证: 2 11lim 2- =-+-∞ →x x x x . 7 . 设a x x x =→)(lim 0 ?,在0x 某邻域);(10δx U ?内a x ≠)(?,又.)(lim A t f a t =→证明 A x f x x =→))((lim 0 ?. 8.设)(x f 在点0x 的邻域内有定义.试证:若对任何满足下述条件的数列{}n x , (1))(0x U x n ?∈,0x x n →, (2)0010x x x x n n -<-<+,都有A x f n n =∞ →)(lim , 则A x f x x =→)(lim 0 . 9. 证明函数 ? ? ?=为无理数为有理数x , x x x f ,0,)(3 在00=x 处连续,但是在00≠x 处不连续.

数学分析大一上学期考试试题 B

数学分析第一学期期末考试试卷(B 卷) 一、叙述题(每题5分,共10分) 1.上确界; 2.区间套的定义。 二、填空题(每题4分,共20分)1.函数|3|ln 3)(--=x x x f 的全部间断点是. 2.定义在]1,0[区间上的黎曼函数的连续点为. 3.)1ln()(2 x x f +=,已知5 6)2()(lim 000=--→h h x f x f h ,=0x .4.正弦函数x y sin =在其定于内的拐点为.5.点集}1)1({n S n +-=的所有聚点为.三、计算题(每题4分,共28分)(1)求]1 21 11[lim 222n n n n n ++++++∞→ ;(2)求30sin tan lim x x x x -→;(3)求)1ln(sin 1tan 1lim 30x x x x ++-+→;(4)求2210)21(e lim x x x x +-→;(5)求)1ln(2x x y ++=的一阶导; (6)求3)(sin )(+=x x x f 的一阶导; (7)求???==; cos ,sin 22t t y t t x 的一阶导。四、讨论题(共12分)1.极限x x 1sin lim 0 →是否存在,说明原因。2.设000)()(=≠?????-=-x x x e x g x f x ,其中)(x g 具有二阶连续导数,且

1)0(,1)0(-='=g g .求)(x f '并讨论)(x f '在),(+∞-∞上的连续性. 五、证明题(共30分)1.证明.x x f 2cos )(=在),0[+∞上一致连续. 2.设f 在],[b a 上连续,],[,,,21b a x x x n ∈ ,另一组正数n λλλ,,,21 满足121=+++n λλλ .证明:存在一点],[b a ∈ξ,使得 )()()()(2211n n x f x f x f f λλλξ+++= . 3.设函数)(x f 在[]b a ,上连续,在),(b a 内可导,且0>?b a .证明存在),(b a ∈ξ,使得)()()()(1 ξξξf f b f a f b a b a '-=-.

数据分析期末试题及答案

数据分析期末试题及答案 一、人口现状.sav数据中是1992年亚洲各国家和地区平均寿命(y)、按购买力计算的人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)的数据,试用多元回归分析的方法分析各国家和地区平均寿命与人均GDP、成人识字率、一岁儿童疫苗接种率的关系。(25分) 解: 1.通过分别绘制地区平均寿命(y)、按购买力计算的人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)之间散点图初步分析他们之间的关系 上图是以人均GDP(x1)为横轴,地区平均寿命(y)为纵轴的散点图,由图可知,他们之间没有呈线性关系。尝试多种模型后采用曲线估计,得出 表示地区平均寿命(y)与人均GDP(x1)的对数有线性关系

上图是以成人识字率(x2)为横轴,地区平均寿命(y)为纵轴的散点图,由图可知,他们之间基本呈正线性关系。 上图是以疫苗接种率(x3)为横轴,地区平均寿命(y)为纵轴的散点图,由图可知,他们之间没有呈线性关系 。 x)为横轴,地区平均寿命(y)为纵轴的散点图,上图是以疫苗接种率(x3)的三次方(3 3 由图可知,他们之间呈正线性关系 所以可以采用如下的线性回归方法分析。

2.线性回归 先用强行进入的方式建立如下线性方程 设Y=β0+β1*(Xi1)+β2*Xi2+β3* X+εi i=1.2 (24) 3i 其中εi(i=1.2……22)相互独立,都服从正态分布N(0,σ^2)且假设其等于方差 R值为0.952,大于0.8,表示两变量间有较强的线性关系。且表示平均寿命(y)的95.2%的信息能由人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)一起表示出来。 建立总体性的假设检验 提出假设检验H0:β1=β2=β3=0,H1,:其中至少有一个非零 得如下方差分析表 上表是方差分析SAS输出结果。由表知,采用的是F分布,F=58.190,对应的检验概率P值是0.000.,小于显著性水平0.05,拒绝原假设,表示总体性假设检验通过了,平均寿命(y)与人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)之间有高度显著的的线性回归关系。

数学分析(2)期末试题

数学分析(2)期末试题 课程名称 数学分析(Ⅱ) 适 用 时 间 试卷类别 1 适用专业、年级、班 应用、信息专业 一、单项选择题(每小题3分,3×6=18分) 1、 下列级数中条件收敛的是( ). A .1(1)n n ∞ =-∑ B . 1n n ∞ = C . 21(1)n n n ∞=-∑ D . 11(1)n n n ∞ =+∑ 2、 若f 是(,)-∞+∞内以2π为周期的按段光滑的函数, 则f 的傅里叶(Fourier )级数 在 它的间断点x 处 ( ). A .收敛于()f x B .收敛于1 ((0)(0))2f x f x -++ C . 发散 D .可能收敛也可能发散 3、函数)(x f 在],[b a 上可积的必要条件是( ). A .有界 B .连续 C .单调 D .存在原函 数 4、设()f x 的一个原函数为ln x ,则()f x '=( ) A . 1x B .ln x x C . 21 x - D . x e 5、已知反常积分2 (0)1dx k kx +∞ >+? 收敛于1,则k =( ) A . 2π B .22π C . 2 D . 24π 6、231ln (ln )(ln )(1)(ln )n n x x x x --+-+-+L L 收敛,则( ) A . x e < B .x e > C . x 为任意实数 D . 1e x e -<<

二、填空题(每小题3分,3×6=18分) 1、已知幂级数1n n n a x ∞ =∑在2x =处条件收敛,则它的收敛半径为 . 2、若数项级数1 n n u ∞ =∑的第n 个部分和21 n n S n = +,则其通项n u = ,和S = . 3、曲线1 y x = 与直线1x =,2x =及x 轴所围成的曲边梯形面积为 . 4、已知由定积分的换元积分法可得,1 ()()b x x a e f e dx f x dx =??,则a = ,b = . 5、数集(1) 1, 2 , 3, 1n n n n ?? -=??+?? L 的聚点为 . 6、函数2 ()x f x e =的麦克劳林(Maclaurin )展开式为 . 65

数学分析试题集锦

June21,2006 2002 1.(10) lim x→0( sin x1?cos x . 2.(10)a≥0x1=√2+x n n=1,2,... lim n→∞ x n 3.(10)f(x)[a,a+α]x∈[a,a+α]f(x+α)?f(x)= 1 1?x2+arcsin x f′(x). 5.(10)u(x,y)u ?2u ?x?y + ?2u x2+y2dx dy dz,?z=

x2+y2+z2=az(a>0) 8.(10) ∞ n=1ln cos1 ln(1+x2) 2 √ (2).{n . ?x (4). L(e y+x)dx+(xe y?2y)dy.L O(0,0),A(0,1),B(1,2) O B OAB. √ 2.(15)f(x)=3

4. 15 f (x )[0,1] sup 01 | n ?1 i =0 f (i n ? 1 f (x )dx |≤ M a n 6.(15 ) θ θ(x )= +∞ n =?∞ e n 2 x x >0 7.(15 ) F (α)= +∞ 1 arctan αx x 2?1 dx ?∞<α>+∞ 8.(21 ) R r r 2004 1.( 6 30 ) (1).lim n →?∞ ( 1 n +2 +...+ 1 f (x ) ) 1 3 sin(y 1+n

(5).e x=1+x+x2 n1 4≤e x+y?2. 5.(12)F(x)= Γf(xyz)dxdydy,f V={(x,y,z)|0≤x≤t,0≤y≤t,0≤z≤t}(t>0), F′(t)=3 a+n √ 2 n(a>0,b>0) (2).lim n→∞ 10x n√ 2 0dx 3 . (5).F(t)= x2+y2+z2=t2f(x,y,z)dS, f(x,y,z)= x2+y2,z≥ x2+y2

数学系第三学期数学分析期末考试题及答案

第三学期《数学分析》期末试题 一、 选择题:(15分,每小题3分) 1、累次极限存在是重极限存在的( ) A 充分条件 B 必要条件 C 充分必要条件 D 无关条件 2、 =??),(00|) ,(y x x y x f ( ) A x y x f y y x x f x ?-?+?+→?),(),(lim 00000 ; B x y x x f x ??+→?) ,(lim 000; C x y x x f y y x x f x ??+-?+?+→?),(),(lim 00000 ; D x y x f y x x f x ?-?+→?) ,(),(lim 00000。 3、函数f (x,y )在(x 0,,y 0)可偏导,则( D ) A f (x,y )在(x 0,,y 0)可微 ; B f (x,y )在(x 0,,y 0)连续; C f (x,y )在(x 0,,y 0)在任何方向的方向导数均存在 ; D 以上全不对。 4、2 222 2) (),(y x y x y x y x f -+=的二重极限和二次极限各为( B ) A 、0,0,0; B 、不存在,0,0,; C 、0,不存在,0; D 、0,0,不存在。 5、设y x e z =,则=??+??y z y x z x ( A ) A 、0; B 、1; C 、-1; D 、2。 二、计算题(50分,每小题10分) 1、 证明函数?? ? ??=+≠++=0 00),(22222 2y x y x y x xy y x f 在(0,0)点连续且可偏导, 但它在该点不可微; 2、 设 ??'=-x x t x f x f dt d e x f 0) (),(,)(2 求ττ; 3、 设有隐函数,0 x y F z z ??= ???,其中F 的偏导数连续,求z x ??、z y ??; 4、 计算 (cos sin ) x C e ydx ydy -? ,其中C 是任一条以为(0,0)A 起点、(,)B a b 为终点 的光滑曲线; 5、 计算 zdS ∑ ??,其中∑为22 z x y =+在 1 4z ≤ 的部分; 三、验证或解答(满分24分,每小题8分)

数学分析试题及答案解析

2014 ---2015学年度第二学期 《数学分析2》A 试卷 一. 判断题(每小题3分,共21分)(正确者后面括号内打对勾,否则打叉) 1.若()x f 在[]b a ,连续,则()x f 在[]b a ,上的不定积分()?dx x f 可表为()C dt t f x a +?( ). 2.若()()x g x f ,为连续函数,则()()()[]()[]????= dx x g dx x f dx x g x f ( ). 3. 若()?+∞a dx x f 绝对收敛,()?+∞a dx x g 条件收敛,则()()?+∞ -a dx x g x f ][必然条件收敛( ). 4. 若()?+∞ 1dx x f 收敛,则必有级数()∑∞=1 n n f 收敛( ) 5. 若{}n f 与{}n g 均在区间I 上内闭一致收敛,则{}n n g f +也在区间I 上内闭一致收敛( ). 6. 若数项级数∑∞ =1n n a 条件收敛,则一定可以经过适当的重排使其发散 于正无穷大( ). 7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到 的新幂级数收敛半径与收敛域与原幂级数相同( ). 二. 单项选择题(每小题3分,共15分) 1.若()x f 在[]b a ,上可积,则下限函数()?a x dx x f 在[]b a ,上( ) A.不连续 B. 连续 C.可微 D.不能确定 2. 若()x g 在[]b a ,上可积,而()x f 在[]b a ,上仅有有限个点处与()x g 不相 等,则( )

A. ()x f 在[]b a ,上一定不可积; B. ()x f 在[]b a ,上一定可积,但是()()??≠b a b a dx x g dx x f ; C. ()x f 在[]b a ,上一定可积,并且()()??=b a b a dx x g dx x f ; D. ()x f 在[]b a ,上的可积性不能确定. 3.级数()∑∞=--+12111n n n n A.发散 B.绝对收敛 C.条件收敛 D. 不确定 4.设∑n u 为任一项级数,则下列说法正确的是( ) A.若0lim =∞→n n u ,则级数∑ n u 一定收敛; B. 若1lim 1<=+∞→ρn n n u u ,则级数∑n u 一定收敛; C. 若1,1<>?+n n u u N n N ,时有当,则级数∑n u 一定收敛; D. 若1,1>>?+n n u u N n N ,时有当,则级数∑n u 一定发散; 5.关于幂级数∑n n x a 的说法正确的是( ) A. ∑n n x a 在收敛区间上各点是绝对收敛的; B. ∑n n x a 在收敛域上各点是绝对收敛的; C. ∑n n x a 的和函数在收敛域上各点存在各阶导数; D. ∑n n x a 在收敛域上是绝对并且一致收敛的;

数学分析1-期末考试试卷(A卷)

数学分析1 期末考试试卷(A 卷) 一、填空题(本题共5个小题,每小题3分,满分15分) 1、设 82lim =?? ? ??-+∞→x x a x a x , 则 =a 。 2、设函数) 2(1 )(--=x x e x f x ,则函数的第一类间断点是 ,第二类间断点 是 。 3、设)1ln(2 x x y ++=,则=dy 。 4、设)(x f 是连续函数,且dt t f x x f )(2)(1 0?+=,则=)(x f 。 5、xdx arctan 1 ?= 。 二、单项选择题(本题共5个小题,每小题3分,满分15分) 1、设数列n x 与数列n y 满足0lim =∞ →n n n y x ,则下列断言正确的是( )。 (A )若n x 发散,则n y 必发散。 (B )若n x 无界,则n y 必无界。 (C )若n x 有界,则n y 必为无穷小。 (D )若n x 1 为无穷小,则n y 必为无穷小。 2、设函数x x x f =)(,则)0(f '为( )。 (A ) 1。 (B )不存在。 (C ) 0。 (D ) -1。 3、若),() ()(+∞<<-∞=-x x f x f 在)0(,-∞内0)(,0)(<''>'x f x f ,则 )(x f 在),0(+∞内有( )。 (A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。

(C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 4、设)(x f 是连续函数,且? -=dt t f x F x e x )()(,则)(x F '等于( ) 。 (A )() )(x f e f e x x ----。 (B )() )(x f e f e x x +---。 (C ) () )(x f e f e x x --- 。 (D )() )(x f e f e x x +--。 5、设函数x x a x f 3sin 31sin )(+=在3 π =x 处取得极值,则( )。 (A ))3(,1πf a =是极小值。 (B ))3 (,1π f a =是极大值。 (C ))3(,2πf a =是极小值。 (D ))3 (,2π f a =是极大值。 三、计算题(本题共7个小题,每小题6分,满分42分) 1、求 ) 1ln(sin 1tan 1lim 30x x x x ++-+→ 2、设4lim 221=-++→x x b ax x x ,求 b a 、。

数学分析试题及答案解析

2014---2015学年度第二学期 《数学分析2》A 试卷 学院班级学号(后两位)姓名 一. 1.若f 2.. . . 二. 1.若()x f 在[]b a ,上可积,则下限函数()?a x dx x f 在[]b a ,上() A.不连续 B.连续 C.可微 D.不能确定 2.若()x g 在[]b a ,上可积,而()x f 在[]b a ,上仅有有限个点处与()x g 不相等,则() A.()x f 在[]b a ,上一定不可积;

B.()x f 在[]b a ,上一定可积,但是()()??≠b a b a dx x g dx x f ; C.()x f 在[]b a ,上一定可积,并且()()??=b a b a dx x g dx x f ; D.()x f 在[]b a ,上的可积性不能确定. 3.级数()∑∞ =--+1 21 11n n n n A.发散 B.绝对收敛 C.条件收敛 D.不确定 4. A.B.C.D.5.A.B.C.D.三.1.()()()n n n n n n n +++∞→ 211lim 2.()?dx x x 2cos sin ln 四.判断敛散性(每小题5分,共15分) 1.dx x x x ? ∞ +++-0 2 113

2.∑ ∞ =1 !n n n n 3.()n n n n n 21211 +-∑ ∞ = 五.判别在数集D 上的一致收敛性(每小题5分,共10分) 1.()()+∞∞-=== ,,2,1,sin D n n nx x f n 2. 求七.八.

2014---2015学年度第二学期 《数学分析2》B 卷?答案 学院班级学号(后两位)姓名 一、 二.三. 而n 分 2.解:令t x 2sin =得 ()dx x f x x ? -1=()() t d t f t t 222 2sin sin sin 1sin ? -----------------2分 =tdt t t t t t cos sin 2sin cos sin ? =?tdt t sin 2-----------------------------------4分

上海财经大学 数学分析 测试题 (大一)

《数学分析》考试题 一、(满分10分,每小题2分)单项选择题: 1、{n a }、{n b }和{n c }是三个数列,且存在N,? n>N 时有≤n a ≤n b n c , ( ) A. {n a }和{n b }都收敛时,{n c }收敛; B. {n a }和{n b }都发散时,{n c }发散; C. {n a }和{n b }都有界时,{n c }有界; D. {n b }有界时,{n a }和{n c }都有界; 2、=)(x f ??? ????>+=<,0 ,2.( ,0 ,0, ,sin x x k x k x x kx 为常数) 函数 )(x f 在 点00=x 必 ( ) A.左连续; B. 右连续 C. 连续 D. 不连续 3、''f (0x )在点00=x 必 ( ) A. x x f x x f x ?-?+→?)()(lim 02020 ; B. ' 000)()(lim ??? ? ???-?+→?x x f x x f x ; C. '000)()(lim ???? ???-?+→?x x f x x f x ; D. x x f x x f x ?-?+→?)()(lim 0'0'0 ; 4、设函数)(x f 在闭区间[b a ,]上连续,在开区间(b a ,)内可微,但≠)(a f )(b f 。则 ( ) A. ∈?ξ(b a ,),使0)('=ξf ; B. ∈?ξ(b a ,),使0)('≠ξf ; C. ∈?x (b a ,),使0)('≠x f ; D.当)(b f >)(a f 时,对∈?x (b a ,),有)('x f >0 ; 5、设在区间Ⅰ上有?+=c x F dx x f )()(, ?+=c x G dx x g )()(。则在Ⅰ上有 ( ) A. ?=)()()()(x G x F dx x g x f ; B. c x G x F dx x g x f +=?)()()()( ; C. ?+=+c x G x F dx x F x g dx x G x f )()()]()()()([ ;

数学分析试题及答案解析

2014 —--2015学年度第二学期 《数学分析2》A 试卷 一. 判断题(每小题3分,共21分)(正确者后面括号内打对勾,否则打叉) 1.若()x f 在[]b a ,连续,则()x f 在[]b a ,上的不定积分()?dx x f 可表为()C dt t f x a +?( ) . 2.若()()x g x f ,为连续函数,则()()()[]()[] ????= dx x g dx x f dx x g x f ( ). 3. 若()? +∞a dx x f 绝对收敛,()? +∞ a dx x g 条件收敛,则()()?+∞-a dx x g x f ][必然条件收敛( )。 4. 若()? +∞1 dx x f 收敛,则必有级数()∑∞ =1 n n f 收敛( ) 5. 若{}n f 与{}n g 均在区间I 上内闭一致收敛,则{}n n g f +也在区间I上内闭一致收敛( )。 6。 若数项级数∑∞ =1n n a 条件收敛,则一定可以经过适当的重排使其发 散于正无穷大( ). 7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到的新幂级数收敛半径与收敛域与原幂级数相同( ). 二. 单项选择题(每小题3分,共15分) 1.若()x f 在[]b a ,上可积,则下限函数()?a x dx x f 在[]b a ,上( ) A.不连续 B. 连续 C .可微 D 。不能确定 2. 若()x g 在[]b a ,上可积,而()x f 在[]b a ,上仅有有限个点处与()x g 不

相等,则( ) A. ()x f 在[]b a ,上一定不可积; B. ()x f 在[]b a ,上一定可积,但是()()??≠b a b a dx x g dx x f ; C 。 ()x f 在[]b a ,上一定可积,并且()()??=b a b a dx x g dx x f ; D 。 ()x f 在[]b a ,上的可积性不能确定. 3.级数()∑∞ =--+1 21 11n n n n A.发散 B.绝对收敛 C.条件收敛 D . 不确定 4。设∑n u 为任一项级数,则下列说法正确的是( ) A .若0lim =∞ →n n u ,则级数∑ n u 一定收敛; B 。 若1lim 1 <=+∞→ρn n n u u ,则级数∑n u 一定收敛; C . 若1,1<>?+n n u u N n N ,时有当,则级数∑n u 一定收敛; D 。 若1,1>>?+n n u u N n N ,时有当,则级数∑n u 一定发散; 5.关于幂级数∑n n x a 的说法正确的是( ) A 。 ∑n n x a 在收敛区间上各点是绝对收敛的; B . ∑n n x a 在收敛域上各点是绝对收敛的; C . ∑n n x a 的和函数在收敛域上各点存在各阶导数;

数学分析试题及答案解析,(1)

数学分析试题及答案解析,(1) 20xx ---20XX学年度第二学期《数学分析2》A试卷学院班级学号(后两位)姓名题号一二三四五六七八总分核分人得分一. 判断题(每小题3分,共21分)(正确者后面括号内打对勾,否则打叉) 1.若在连续,则在上的不定积分可表为(). 2.若为连续函数,则(). 3. 若绝对收敛,条件收敛,则必然条件收敛(). 4. 若收敛,则必有级数收敛() 5. 若与均在区间I上内闭一致收敛,则也在区间I上内闭一致收敛(). 6. 若数项级数条件收敛,则一定可以经过适当的重排使其发散于正无穷大(). 7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到的新幂级数收敛半径与收敛域与原幂级数相同(). 二. 单项选择题(每小题3分,共15分) 1.若在上可积,则下限函数在上() A.不连续 B. 连续 C.可微 D.不能确定 2. 若在上可积,而在上仅有有限个点处与不相等,则() A. 在上一定不可积; B. 在上一定可积,但是; C. 在上一定可积,并且; D. 在上的可积性不能确定. 3.级数 A.发散 B.绝对收敛C.条件收敛 D. 不确定 4.设为任一项级数,则下列说法正确的是() A.若,则级数一定收敛; B. 若,则级数一定收敛; C. 若,则级数一定收敛;

D. 若,则级数一定发散; 5.关于幂级数的说法正确的是() A. 在收敛区间上各点 是绝对收敛的; B. 在收敛域上各点是绝对收敛的; C. 的和函数在收敛域上各点存在各阶导数; D. 在收敛域上是绝对并且一致收敛的; 三.计算与求值(每小题5分,共10分) 1. 2. 四. 判断敛散性(每小题5分,共15分) 1. 2. 3. 五. 判别在数集D上的一致收敛性(每小题5分,共 10分) 1. 2. 六.已知一圆柱体的的半径为 R,经过圆柱下底圆直径线并保持与底圆面角向斜上方切割,求从圆 柱体上切下的这块立体的体积。(本题满10分)七. 将一 等腰三角形铁板倒立竖直置于水中(即底边在上),且上底边距水表 面距离为10米,已知三角形底边长为20米,高为10米,求该三角 形铁板所受的静压力。(本题满分10分) 八. 证明:函 数在上连续,且有连续的导函数.(本题满分9分) 20xx ---20XX 学年度第二学期《数学分析2》B卷答案学院班级 学号(后两位)姓名题号一二三四五六七八 总分核分人得分一、判断题(每小题3分,共21分, 正确者括号内打对勾,否则打叉) 1.? 2.? 3.? 4. ? 5. ? 6. ? 7. ?二.单项选择题(每小题3分,共15分) 1. B ; 2. C ; 3.A ; 4.D; 5.B 三.求值与计算题(每小题5分,共 10分) 1. 解:由于-------------------------3分而 ---------------------------------4分故由数列极限的迫敛性

数学分析 期末考试试卷

中央财经大学2014—2015学年 数学分析期末模拟考试试卷(A 卷) 姓名: 学号: 学院专业: 联系方式: 一、填空题(本题共5个小题,每小题3分,满分15分) 1、设 82lim =?? ? ??-+∞→x x a x a x , 则 =a 。 2、设函数) 2(1 )(--=x x e x f x ,则函数的第一类间断点是 ,第二类间断点 是 。 3、设)1ln(2 x x y ++=,则=dy 。 4、设)(x f 是连续函数,且dt t f x x f )(2)(1 0?+=,则=)(x f 。 5、xdx arctan 1 ?= 。 二、单项选择题(本题共5个小题,每小题3分,满分15分) 1、设数列n x 与数列n y 满足0lim =∞ →n n n y x ,则下列断言正确的是( )。 (A )若n x 发散,则n y 必发散。 (B )若n x 无界,则n y 必无界。 (C )若n x 有界,则n y 必为无穷小。 (D )若n x 1 为无穷小,则n y 必为无穷小。 2、设函数x x x f =)(,则)0(f '为( )。 (A ) 1。 (B )不存在。 (C ) 0。 (D ) -1。 3、若),() ()(+∞<<-∞=-x x f x f 在)0(,-∞内0)(,0)(<''>'x f x f ,则 )(x f 在),0(+∞内有( )。

(A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。 (C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 4、设)(x f 是连续函数,且? -=dt t f x F x e x )()(,则)(x F '等于( ) 。 (A )() )(x f e f e x x ----。 (B )() )(x f e f e x x +---。 (C ) () )(x f e f e x x --- 。 (D )() )(x f e f e x x +--。 5、设函数x x a x f 3sin 31sin )(+ =在3 π =x 处取得极值,则( ) 。 (A ))3(,1πf a =是极小值。 (B ))3 (,1π f a =是极大值。 (C ))3(,2πf a =是极小值。 (D ))3 (,2π f a =是极大值。 三、计算题(本题共7个小题,每小题6分,满分42分) 1、求 ) 1ln(sin 1tan 1lim 3 x x x x ++-+→ 2、设4lim 221=-++→x x b ax x x ,求 b a 、。

数学分析试题及答案

(二十一)数学分析期终考试题 一 叙述题:(每小题5分,共15分) 1 开集和闭集 2 函数项级数的逐项求导定理 3 Riemann 可积的充分必要条件 二 计算题:(每小题7分,共35分) 1、 ? -9 1 31dx x x 2、求)0()(2 2 2 b a b b y x ≤<=-+绕x 轴旋转而成的几何体的体积 3、求幂级数 n n n x n ∑∞ =+1 2)11(的收敛半径和收敛域 4、1 1lim 2 2220 0-+++→→y x y x y x 5、2 2 ),,(yz xy x z y x f ++=,l 为从点P 0(2,-1,2)到点(-1,1,2)的方向, 求f l (P 0) 三 讨论与验证题:(每小题10分,共30分) 1、已知?? ???==≠+++=0 ,0001sin )(),(222 2 2 2y x y x y x y x y x f ,验证函数的偏导数在原点不连续, 但它在该点可微 2、讨论级数∑∞ =-+1 2211 ln n n n 的敛散性。 3、讨论函数项级数]1,1[)1( 1 1 -∈+-∑∞ =+x n x n x n n n 的一致收敛性。 四 证明题:(每小题10分,共20分) 1 若 ? +∞ a dx x f )(收敛,且f (x )在[a ,+∞)上一致连续函数,则有0)(lim =+∞ →x f x 2 设二元函数),(y x f 在开集2R D ? 内对于变量x 是连续的,对于变量y 满足Lipschitz 条件: ''''''),(),(y y L y x f y x f -≤-其中L D y x y x ,),(),,('''∈为常数证明),(y x f 在D 内连续。 参考答案 一、1、若集合S 中的每个点都是它的内点,则称集合S 为开集;若集合S 中包含了它的所有的聚点,则称集合S 为闭集。

浙江大学数学分析试题答案

2003年浙江大学数学分析试题答案 一、,,0N ?>?ε当N n >时,ε<->>?m n a a N n N m ,, 证明:该数列一定是有界数列,有界数列必有收敛子列 }{k n a ,a a k n k =∞ →lim , 所以, ε 2<-+-≤-a a a a a a k k n n n n 二 、,,0N ?>?ε当N x >时,ε<-)()(x g x f ,,0,01>?>?δε当1'''δ<-x x 时, ε<-)''()'(x f x f 对上述,0>ε当N x x >'','时,且1'''δ<-x x ε3)''()'()''()''()'()'()''()'(<-+-+-≤-x f x f x f x g x g x f x g x g 当N x x <'','时,由闭区间上的连续函数一定一致收敛,所以,0,02>?>?δε2'''δ<-x x 时 ε<-)''()'(x g x g ,当'''x N x <<时,由闭区间上的连续函数一定一致收敛,在 ],['','22δδ+-∈N N x x 时,ε<-)''()'(x g x g ,取},m in{21δδδ=即可。 三、由,0)('',0)('<>x f a f 得,0)('a f ,所以 )(x f 必有零点,又)(x f 递减,所以有且仅有一个零点。 四、? ?== 1 0,)(1)()(x dt t f x dt xt f x ?2 )()()('x dt t f x x f x x ? -= ?, 2 2)(lim )(lim ) (lim )0('0 2 A x x f x dt t f x x x x x x ====→→→???, 2 )(lim ) (lim )() (lim )('lim 2 002 00A x dt t f x x f x dt t f x x f x x x x x x x = -=-=? ? →→→→?,)('x ?在0=x 连续。 五、当k m ≠时,不妨设k m <, ??--+--= 1 111)(2)(2])1[(])1[(! !21)()(dx x x k m dx x P x P k k m m k m k m = --? -dx x x k k m m 1 1 )(2)(2])1[(])1[(dx x x x x m m k k k k m m ?-+--------1 1 )1(2)1(211 ) 1(2) (2 ])1[(])1[(] )1[(])1[(=

数学分析期末考试题

数学分析期末考试题 一、叙述题:(每小题5分,共10分) 1、 叙述反常积分 a dx x f b a ,)(? 为奇点收敛的cauchy 收敛原理 2、 二元函数),(y x f 在区域D 上的一致连续 二、计算题:(每小题8分,共40分) 1、)21 2111( lim n n n n +++++∞ →Λ 2、求摆线]2,0[)cos 1() sin (π∈? ??-=-=t t a y t t a x 与x 轴围成的面积 3、求?∞+∞-++dx x x cpv 211) ( 4、求幂级数∑∞ =-12 )1(n n n x 的收敛半径和收敛域 5、),(y x xy f u =, 求y x u ???2 三、讨论与验证题:(每小题10分,共30分) 1、y x y x y x f +-=2 ),(,求),(lim lim ),,(lim lim 0000y x f y x f x y y x →→→→;),(lim )0,0(),(y x f y x →是否存在?为 什么? 2、讨论反常积分 ? ∞ +0 arctan dx x x p 的敛散性。 3、讨论∑∞ =-+1 33))1(2(n n n n n 的敛散性。 四、证明题:(每小题10分,共20分) 1、 设f (x )在[a ,b ]连续,0)(≥x f 但不恒为0,证明0)(>? b a dx x f 2、 设函数u 和v 可微,证明grad (uv )=ugradv +vgradu

参考答案 一、1、,0.0>?>?δε使得δδδ<<?>?δε使得 D x x x x ∈<-?2,121,δ,成立ε<-)()(21x f x f 二、1、由于 x +11 在[0,1]可积,由定积分的定义知(2分) )21 2111( lim n n n n +++++∞ →Λ=2ln 11)11211111( 1lim 10=+=+++++?∞→dx x n n n n n n Λ(6分) 2、 、所求的面积为:220 23)cos 1(a dx x a ππ =-? (8分) 3、 解:π=++=++??-+∞→∞ +∞-A A A dx x x dx x x cpv 2 211lim 11) ( (3分) 4、解:11 lim 2=∞ →n n x ,r=1(4分) 由于x =0,x =2时,级数均收敛,所以收敛域为[0,2](4分) 5、解: y u ??=221y x f x f -(3分)3 22112212y x f xy f y f f y x u -++=???(5分) 三、1、解、 0lim lim lim ,1lim lim lim 2 02000200==+-==+-→→→→→→y y y x y x x x y x y x y x y x y x (5分)由于沿kx y =趋于(0,0)极限为k +11 所以重极限不存在(5分) 2、解:???∞+∞++=1100arctan arctan arctan dx x x dx x x dx x x p p p (2分),对?10arctan dx x x p ,由于 )0(1arctan 1+→→-x x x x p p 故p <2时?10arctan dx x x p 收敛(4分);?∞+1arctan dx x x p ,由于)(2arctan +∞→→x x x x p p π (4分)故p >1?∞+1arctan dx x x p 收敛,综上所述1

相关文档
最新文档