数学分析(1)复习题
数学分析习题课1.1

第一章 实数集与函数习题课 实数集、确界原理与函数一、基本要求:1、掌握有关实数的性质与运算。
2、正确理解确界概念与确界原理,并运用于有关命题的运算与证明。
3、在中学已掌握函数概念的基础上,以两个数集之间映射的观点来加深对函数概念的理解。
4、进一步掌握函数的运算性质(四则运算、复合运算、和反函数等)及其表示方法。
5、加深对某些特性函数(有界函数、单调函数、奇(偶)函数和周期函数)的认识。
并能依次对所给函数是否具有上述性质做出判断。
二、内容复习:1、实数的定义:实数是有理数和无理数的统称。
有理数可用分数形式qp(q p ,为整数,0≠q )表示也可用有限十进小数或无限十进循环小数来表示;而无限十进不循环小数则称为无理数。
2、实数的性质:(1) 封闭性:实数集R 对加、减、乘、除(除数不为0)四则运算是封闭的.(2) 有序性:任意两实数b a ,必满足下述三个关系之一:b a <,b a =,b a >.(3) 传递性:若b a >,c b >,则c a >.(4) 阿基米德性:对任何R b a ∈,,若0>>a b ,则存在正整数n ,使得b na >.(5) 稠密性:任何两个实数之间必有另一个实数,且既有有理数,也有无理数.(6) 实数集与数轴上的点有着一一对应关系.3、绝对值的定义:⎩⎨⎧<-≥=.0,,0,||a a a a a 从数轴上看,数a 的绝对值||a 就是a 到原点的绝对值.4、绝对值的性质:(1) 0||||≥-=a a ;当且仅当时0=a 有0||=a .第一章 实数集与函数(2) ||||a a a ≤≤-.(3) )0(||;||>≤≤-⇔≤<<-⇔<h h a h h a h a h h a .(4)对任何R b a ∈,有如下的三角不等式:||||||||||b a b a b a +≤±≤-.(5) ||||||b a ab =. (6) )0(||||≠=b b a b a . 5、区间与邻域的概念:有限区间:设a 、R b ∈,且b a <开区间:}|{),(b x a x b a <<=.闭区间:}|{],[b x a x b a ≤≤=.半开半闭区间:}|{),[b x a x b a <≤=或}|{],(b x a x b a ≤<=.无限区间:}|{],(a x x a ≤=-∞,}|{),(a x x a <=-∞}|{],(a x x a ≥=+∞,}|{),(a x x a >=+∞R =+∞-∞),(邻域:设0,>∈δR a点a 的δ邻域:),(}|||{);(δδδδ+-=<-=a a a x x a U .点a 的空心δ邻域:}||0|{);(δδ<-<=a x x a U .点a 的左δ邻域:],();(a a a U δδ-=-.点a 的右δ邻域:),[);(δδ+=+a a a U .∞邻域:}|||{)(M x x U >=∞,其中为充分大的正数(下同).∞+邻域:}|{)(M x x U >=+∞;∞-邻域:}|{)(M x x U -<=-∞.6、确界的定义:确界是上确界与下确界的统称。
数学分析课本(华师大三版)-习题集与答案解析第十七章

数学分析课本(华师大三版)-习题集与答案解析第十七章第十七章多元函数微分学一、证明题 1. 证明函数=+≠++=0y x 0,0y x ,y x yx y)f(x,2222222 在点(0,0)连续且偏导数存在,但在此点不可微.2. 证明函数=+≠+++=0y x 0,0y x ,y x 1)sin y (x y)f(x,22222222 在点(0,0)连续且偏导数存在,但偏导数在点(0,0)不连续,而f 在原点(0,0)可微.3. 证明: 若二元函数f 在点p(x 0,y 0)的某邻域U(p)内的偏导函数f x 与f y 有界,则f 在U(p)内连续.4. 试证在原点(0,0)的充分小邻域内有x y1yx arctg++≈x+y.5. 试证:(1) 乘积的相对误差限近似于各因子相对误差限之和; (2) 商的相对误差限近似于分子和分母相对误差限之和. 6.设Z=()22yx f y-,其中f 为可微函数,验证x 1x Z ??+y 1y Z ??=2yZ. 7.设Z=sin y+f(sin x-sin y),其中f 为可微函数,证明:xZsec x + y Z ??secy=1.8.设f(x,y)可微,证明:在坐标旋转变换x=u cos θ-v sin θ, y=u sin θ+v cos θ 之下.()2x f +()2yf 是一个形式不变量,即若g(u,v)=f(u cos θ-v sin θ,u sin θ+v cos θ). 则必有()2x f +()2yf =()2ug +()2vg .(其中旋转角θ是常数)9.设f(u)是可微函数, F(x,t)=f(x+2t)+f(3x-2t), 试求:F x (0,0)与F g (0,0)10..若函数u=F(x,y,z)满足恒等式 F(tx,ty,tZ)=t k (x,y,z)(t>0)则称F(x,y,x)为K 次齐次函数.试证下述关于齐次函数的欧拉定理:可微函数F(x,y,z)为K 次齐次函数的充要条件是:()z ,y ,x x F x +()z ,y ,x yF y +()z ,y ,x ZF x =KF(x,y,z).并证明:Z=xy yx xy 222-+为二次齐次函数.11..设f(x,y,z)具有性质f ()Z t ,y t ,tx mk =f t n(x,y,z)(t>0)证明:(1) f(x,y,z)=m k nx Z ,x y ,1f x ; (2) ()z ,y ,x x fx+()z ,y ,x kyf y +()z ,y ,x m zf z =nf(x,y,z).12.设由行列式表示的函数D(t)=()()()()()()()()()t a t a t a t a t a t a t a t a t a nn n21n 2n 22211n 1211其中()t a ij (i,j=1,2,…,n)的导数都存在,证明()dt t dD =∑=n1k ()()()()()()()()()t a t a t a t a t a t a t a t a t a nn n21n k n k 21k 1n 1211'???''?13.证明:(1) grad(u+c)=grad u(c 为常数);(2) graqd(αu+βv)=αgrad u+βgrad v(α,β为常数); (3) grsdu v=u grad v+v grsd u; (4) grad f(u)=f '(u)grad u.14.设f(x,y)可微,L 1与L 2是R 2上的一组线性无关向量,试证明;若()0,≡y x f i λ(i=1,2)则f(x,y)≡常数.15.通过对F(x,y)=sin x cos y 施用中值定理,证明对某∈θ (0,1),有43=6cos 3cos 3πθπθπ6sin 3sin 6πθπθπ-.16.证明:函数u=()ta 4b x 22eta 21--π(a,b 为常数)满足热传导方程:tu ??=222x u a ??17.证明:函数u=()()22b y a x ln-+-(a,b 为常数)满足拉普拉斯方程:22x u ??+22y u=0.18.证明:若函数u=f(x,y)满足拉普拉斯方程:22x u ??+22yu ??=0.则函数V=f(22y x x +,22y x y+)也满足此方程. 19.设函数u=()()y x φ+?,证明:x u y x u 2=y u 22x u. 20.设f x ,f y 和f yx 在点(x 0,y 0) 的某领域内存在,f yx 在点(x 0,y 0)连续,证明f xy (x 0,y 0)也存在,且f xy (x 0,y 0)= f yx (x 0,y 0),21.设f x ,f y 在点(x 0,y 0)的某邻域内存在且在点(x 0,y 0)可微,则有 f xy (x 0,y 0)= f yx (x 0,y 0)二、计算题1.求下列函数的偏导数:(1) Z=x 2y; (2) Z=ycosx; (3) Z=22yx 1+;(4) Z=ln(x+y 2); (5) Z=e xy ; (6) Z=arctg xy ; (7) Z=xye sin(xy); (8) u=zx y Z x y -+; (9) u=(xy)z ; (10) u=zy x .2. 设f(x,y)=x+(y-1)arcsinyx; 求f x (x,1). 3. 设=+≠++=0y x 0,0y x ,y x 1ysin y)f(x,222222 考察函数f 在原点(0,0)的偏导数.4. 证明函数Z=22y x +在点(0,0)连续但偏导数不存在. 5. 考察函数=+≠++=0y x 0,0y x ,y x 1xysin y)f(x,222222在点(0,0)处的可微性.6. 求下列函数在给定点的全微分; (1) Z=x 4+y 4-4x 2y 2在点(0,0),(1,1);(2) Z=22yx x +在点(1,0),(0,1).7. 求下列函数的全微分; (1) Z=ysin(x+y); (2) u=xe yx +e -z +y8. 求曲面Z=arctgx y 在点4,1,1π处的切平面方程和法线方程.9. 求曲面3x 2+y 2-Z 2=27在点(3,1,1)处的切平面方程与法线方程.10. 在曲面Z=xy 上求一点,使这点的切平面平行于平面x+3y+Z+9=0,并写出这切平面方程和法线方程.11. 计算近似值:(1) 1.002×2.0032×3.0043; (2) sin29°×tg46°.12. 设园台上下底的半径分别为R=30cm, r=20cm 高h=40cm. 若R,r,h 分别增加3mm,4mm,2mm.求此园台体积变化的近似值.13. 设二元函数f 在区域D=[a,b]×[c,d]上连续 (1) 若在intD 内有f x ≡0,试问f 在D 上有何特性? (2) 若在intD 内有f x =f y ≡0,f 又怎样?(3) 在(1)的讨论中,关于f 在D 上的连续性假设可否省略?长方形区域可否改为任意区域?14. 求曲面Z=4y x 22+与平面y=4的交线在x=2处的切线与OZ 轴的交角.15. 测得一物体的体积v=4.45cm 3,其绝对误差限为0.01cm 3,又测得重量W=30.80g,其绝对误差限为0.018,求由公式d= vw算出的比重d 的相对误差限和绝对误差限. 16.求下列复合函数的偏导数或导数: (1) 设Z=arc tg(xy),y=e x ,求xdZ α; (2) 设Z=xyy x 2222e xyyx ++,求x Z ??,yZ ??; (3) 设Z=x 2+xy+y 2,x=t 2,y=t,求dtZ ?; (4) 设Z=x 2lny,x=v u ,y=3u-2v,求u Z ??,vZ;(5) 设u=f(x+y,xy),求x u ??,yu; (6) 设u=f ?Z y ,y x ,求x u ??,y u ??,Zu. 17.求函数u=xy 2+z 3-xyz 在点(1,1,2)处沿方向L(其方向角分别为60,°45°,60°)的方向导数.18.求函数u=xyz 在点A(5,1,2)处沿到点B(9,4,14)的方向AB 上的方向导数. 19.求函数u=x 2+2y 2+3z 2+xy-4x+2y-4z 在点A(0,0,0)及点B(5,-3,3z)处的梯度以及它们的模.20.设函数u=ln ??r 1,其中r=()()()222c z 0y a x -+-+- 求u 的梯度;并指出在空间哪些点上成立等式gradu =1.21设函数u=222222by a x c z --,求它在点(a,b,c)的梯度.22.设r=222z y r ++,试求: (1)grad r; (2)gradr1. 23.设u=x 3+y 3+z 3-3xyz,试问在怎样的点集上grad u 分加满足:(1)垂直于Z 轴,(2)平行于Z 轴(3)恒为零向量.24.设f(x,y)可微,L 是R 2上的一个确定向量,倘若处处有f L (x,y)≡0,试问此函数f 有何特征? 25.求下列函数的高阶偏导数: (1) Z=x 4+y 4-4x 2y 2,所有二阶偏导数; (2) Z=e x (cos y+x sin y),所有二阶偏导数;(3) Z=xln(xy),y x z 23,23yx z; (4) u=xyze x+y+z ,r q p z q p zy x u++;(5) Z=f(xy 2,x 2y),所有二阶偏导数; (6) u=f(x 2+y 2+x 2),所有二阶偏导数; (7)Z=f(x+y,xy,yx),z x , z xx , Z xy . 26.求下列函数在指定点处的泰勒公式: (1) f(x,y)=sin(x 2+y 2)在点(0,0)(到二阶为止); (2) f(x,y)=yx在点(1,1)(到三阶为止);(3) f(x,y)=ln(1+x+y)在点(0,0);(4) f(x,y)=2x 2―xy ―y 2―6x ―36+5在点(1,-2).27.求下列函数的极值点:(1) Z=3axy ―x 3―y 3 (a>0);(2) Z=x 2+5y 2―6x+10y+6;(3) Z=e 2x (x+y 2+2y).28.求下列函数在指定范围内的最大值与最小值.(1) Z=22y x -,(){2x y ,x +}4y 2≤;(2) Z=22y x y x +-,(){}1y x y ,x ≤+;(3) Z=sinx+sing -sin(x+y),()(){}π≤+≥2y x ,0x y ,x y ,x29.在已知周长为2P 的一切三角形中,求出面积为最大的三角形.30.在xy 平面上求一点,使它到三直线x=0,y=0,及x+2y -16=0的距离平方和最小.31.已知平面上n 个点的坐标分别是()111y ,x A ,()222y ,x A ,…()n n n y ,x A .试求一点,使它与这n 个点距离的平方和最小.32.设 u=222z y x z y x1 1 1求(1)u x +u y +u z ; (2)xu x +yu x +zu z ; (3)u xx +u yy +u zz .33.设f(x,y,z)=Ax 2+By 2+Cz 2+Dxy+Eyz+Fzx,试按h,k,L 的下正整数幂展开f(x+h,y+k,z+L).三、三、考研复习题1. 设f(x,y,z)=x 2y+y 2z+z 2x,证明 f x +f y +f z =(x+y+z)2.2. 求函数=+≠++-=0y x 0,0y x ,y x y x y)f(x,22222233在原点的偏导数f x (0,0)与f y (0,0),并考察f(x,y)在(0,0)的可微性.3. 设 1n n 1n 21n 12n 2221n 21 x x x x x x xx x 1 1 1u ---=证明: (1)∑==??n1k k0;x u(2) ∑=-=??n1k k ku 21)n(n x u x . 4. 设函数f(x,y)具有连续的n 阶偏导数:试证函数g(t)=f (a+ht,b+kt)的n 阶导数kt)b ht,f(a y k x h dt g(t)d nn n +++??=. 5. 设 22x求x k z h y g y f x ez d zc y b x a z)y,(x,??+++++++++=?. 6. 设 (z )h (z )h (z )h (y )g (y )g (y )g (x )f (x )f (x )f z)y,Φ(x,321321321=求zy x Φ3. 7. 设函数u=f(x,y)在R 2上有u xy =0,试求u 关于x,y 的函数式.8. 设f 在点p 0(x 0,y 0)可微,且在p 0给定了n 个向量L i (i=1,2,…n).相邻两个向量之间的夹角为n2π,证明∑==n1i 0Li0)(p f.9. 设f(x,y)为n 次齐次函数,证明1)f m (n 1)n(n f y y x x m+--=???? ?+?? . 10. 对于函数f(x,y)=sinxy,试证my y x x ???? ?+??f=0.。
数学分析复习1-一般级数,广义积分的收敛

如 a n 收敛 称“绝对收敛” n 1 1. 设 a n收敛, n 1 如 a 发散 称“条件收敛” n n 1
一般级数中较为特殊的一种: 交错级数
设交错级数 ( 1) n1 an , an 0,
n1
三、莱布尼茨(Leibniz)判别法
二、绝对收敛和条件收敛
如 |f ( x| ) dx收敛, 称
a a
f ( x )dx 绝对收敛.
如
a
f ( x )dx收敛, 但 |f ( x| ) dx发散,
a
称
a
f ( x )dx 条件收敛.
定理11.6
a
f ( x )dx 收敛
a
f ( x )dx 收敛
四、Dirichlet判别法
定理11.9 设f和g满足下面两个条件 :
1 F ( A) f ( x )dx 在(a , )有界;
a A
2 g 在[a , )上单调, 且 lim g( x ) 0,
则
x
a
f ( x )g( x )dx 收敛.
例1
1
sin x dx — —条件收敛 x
x cos x dx 的敛散性? 例2 判断1 1 x x 证 设 f ( x ) cos x , g( x ) , 1 x
A
1
cos xdx sin A sin 1 2, 满足1 .
1 1 1 1 (1 x ) x (1 x ) 2 x g' ( x ) 2 x 0, 2 2 (1 x ) (1 x )
青岛科技大学成人高考2021年上学期《数学分析》期末复习题

【题型】计算题 【题干】求极限:【答案】解:【难度】4 【分数】15【课程结构】00362001002【题型】计算题【题干】求极限:【答案】解:【难度】4 【分数】15【课程结构】00362001002【题型】计算题 【题干】已知函数,求【答案】解:【难度】4【分数】15【课程结构】00362001003【题型】计算题【题干】已知函数,求,,,【答案】解:已知函数【难度】4【分数】15【课程结构】00362001003【题型】计算题【题干】计算不定积分【答案】解:【难度】4【分数】15【课程结构】00362001004【题型】计算题【题干】已知函数,求定积分【答案】解:【难度】4【分数】15【课程结构】00362001005 【题型】计算题【题干】计算定积分【答案】解:【难度】4【分数】15【课程结构】00362001005 【题型】计算题【题干】求极限【答案】解:【难度】4【分数】15【课程结构】00362001002 【题型】计算题【题干】求极限【答案】解:【难度】4【分数】15【课程结构】00362001002【题型】计算题【题干】设函数,求【答案】解:【难度】4【分数】15【课程结构】00362001003【题型】计算题【题干】设函数,求【答案】解:所以【难度】4【分数】15【课程结构】00362001003【题型】计算题【题干】求不定积分【答案】解:原式【难度】4【分数】15【课程结构】00362001004 【题型】计算题【题干】求不定积分【答案】解:【难度】4【分数】15【课程结构】00362001004 【题型】计算题【题干】求定积分【答案】解:令,即原式【难度】4【分数】15【课程结构】00362001005 【题型】计算题【题干】求极限【答案】解:【难度】4【分数】15【课程结构】00362001002;00362001003【题型】计算题【题干】求极限【答案】解:【难度】4【分数】15【课程结构】00362001002【题型】计算题【题干】已知函数,求,,,【答案】解:【难度】4【分数】15【课程结构】00362001003【题型】计算题【题干】利用凑微分法计算不定积分【答案】解:【难度】4【分数】15【课程结构】00362001004【题型】计算题【题干】利用分部积分法计算定积分【答案】解:【难度】4【分数】15【课程结构】00362001005【题型】计算题【题干】已知函数,求定积分【答案】解:【难度】4【分数】15【课程结构】00362001005【题型】计算题【题干】用洛必达法则求极限【答案】解:原式【难度】4【分数】15【课程结构】00362001002;00362001003;00362001005【题型】计算题【题干】求由参数方程所确定函数的一阶及二阶导函数。
西安科技大学真题 612 数学分析复习题及答案

,记此级数的
和函数为 s( x ) ,则使 s( x) f ( x ) 成立的范围是
(A) [ , ) ; (B) ( , ) ; (C) [ , ] ; (D) ( , ]
8.
曲线
y
1
x x
2
,y
0, x
0和x
2 所围成的平面图形的面积为
(A) 4;
(B) 1 ln 2 ; 2
(C) 1 ln 5 ; 2
y sin3xdx)
a
0
0
(D) cos
x
sin[(
y sin3tdt)]dy sin(
y sin3tdt)
a
0
0
lim 5.
1
(e x
1)
(D)
n
x
(A) e
(B) e2
(C) e3
(D) e4
二.填空题(每题 2 分,共 10 分)
lim 1. y
n
1
1 xn
(x
0)
的间断点为:
证明:
由3
1
f (u)du 1
知道
1 f (u)du 1 ,所以
1
(
f
(u)
u2
)du
0
。
0
0
3
0
因为 f (u) u2 C[0,1] ,故由积分中值定理知: [0,1] ,使得
1
(f
(u) u2)du
f
( ) 2 (1 0)
0 ,即
[0,1] :
f
( )
2。
0
3. 设 f (x) 在区间[a,b] 上有二阶导数。 f '(a) f '(b) 0 ,证明:在区间 (a,b) 内至少存在一
(完整word版)数学分析复习题及答案(word文档良心出品)

数学分析复习题及答案一.单项选择题1. 已知, 则=()A. B. C. D.2. 设, 则()A. B. C. D.3. ()A. B. C. D.4. 下列函数在内单调增加的是()A. B. C. D.二、填空题1. 设函数2.3.在处连续, 则三、判断题1. 若函数在区间上连续, 则在上一致连续。
()2. 实轴上的任一有界无限点集至少有一个聚点。
()3.设为定义在上的单调有界函数, 则右极限存在。
()四、名词解释1. 用的语言叙述函数极限的定义2. 用的语言叙述数列极限的定义五、计算题1. 根据第四题第1小题证明2. 根据第四题第2小题证明3. 设, 求证存在, 并求其值。
4.证明:在上一致连续, 但在上不一致连续。
5. 证明: 若存在, 则6. 证明: 若函数在连续, 则与也在连续, 问: 若在或在上连续, 那么在上是否必连续。
一、1.D 2.C 3.B 4.C二、1. 2. 3.三、1.× 2.√ 3.√四、1.函数极限定义: 设函数在点的某个空心邻域内有定义, 为定数。
, , 当时, , 则。
2.数列极限定义:设为数列, 为定数, , , 当时, 有, 则称数列收敛于。
五、1.证明:, , 当时, ;得证。
2.证明:令, 则, 此时, ,, , 当时,3.证明:⑴,⑵)1)(1(1111111----+++-=+-+=-n n n n n n n n n n x x x x x x x x x x 而, 由数学归纳法可知, 单调增加。
综合⑴, ⑵可知存在,设, 则由解得=A 215+(负数舍去)4.证明: 先证在上一致连续。
, 取, 则当且有时, 有 []δ•''+'≤''-'''+'=''-'x x x x x x x f x f ))(()()(εε<+⋅++≤)(2)1(2b a b a故2)(x x f =在[]b a ,上一致连续。
中国科学院大学《高等代数》《数学分析》考研真题汇总(2009-2018年汇编)

|z| ≤ na, |x| ≤ nh, |y| ≤ nk.
(2) 求证: Hermite 矩阵的特征值都是实数.
(3) 求证:反对称矩阵的非零特征值都是纯虚数.
六、 ( 15 分) 设 A 是 n 维实线性空间 V 的线性变换, n ≥ 1. 求证: A 至少存在一个一维或者二维的不变 子空间.
七、 ( 20 分) 设循环矩阵 C 为
01
生成的子空间. 求 W ⊥ 的一组标准正交基.
00
11
八、 ( 18 分) 设 T1, T2, · · · , Tn 是数域 F 上线性空间 V 的非零线性变换, 试证明存在向量 α ∈ V , 使得 Ti(α) = 0, i = 1, 2, · · · , n.
7
5. 2013年中国科学院大学《高等代数》研究生入学考试试题
三、 ( 20 分) 已知 n 阶方阵
a21
a1a2 + 1 · · · a1an + 1
A
=
a2a1 + 1
a22
···
a2an + 1
,
···
··· ··· ···
ana1 + 1 ana2 + 1 · · ·
a2n
n
n
其中 ai = 1, a2i = n.
i=1
八、 ( 15 分) 设 A 是 n 阶实方阵, 证明 A 为实对称阵当且仅当 AAT = A2, 其中 AT 表示矩阵 A 的转置.
6
4. 2012年中国科学院大学《高等代数》研究生入学考试试题
一、 ( 15 分) 证明:多项式 f (x) = 1 + x + x2 + · · · + xn 没有重根.
第一课数学分析复习3一致收敛

C[a
,
b],
⑵ fn'(x) 在[a,b]一致收敛于g(x),
⑶ x0 [a,b], fn( x0 )收敛
则 fn( x)在[a,b]上一致收敛于f ( x),
且对x [a,b], f '( x) g( x),
即
[ lim n
fn ( x)]'
[lim n
f
2 一致收敛
定义:
设 fn在点集I上逐点收敛于f ,
若 0, 与x无关N ( ),
s.t 当n N时,对一切x I,
都有 fn( x) f ( x) ,
称 fn在I上一致收敛于f .
2 一致收敛
定理1. 记 : n sup fn ( x) f ( x)
n1 n n1 n
0
证明:
取an
cos nx,bn
1 ,则 n
bn (x)单调减,一致趋于0.
n ak (x)
k 1
n
cos kx
k 1
1 sin x
1
sin
2
2
一致有界
cos nx 在[ ,2 ]上一致收敛.
n1 n
Abel判别法 an ( x)bn ( x) n1
由M任意性, S( x)C(,).
二、逐项积分 1.函数列:
定理3:设 fn R[a,b],且fn ( x) uni f ( x),
则f R[a,b] 且 lim ab fn( x)dx ab f ( x)dx n 极限与积分交换
推论 设 fn C[a,b],且fn uni f ( x),则
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学分析(1)复习题(一)一、按要求写出下列定义的数学描述(4⨯/5=20/)1、A x f x ≠+∞→)(lim 的X -ε正面描述为2、由Cauchy 收敛准则,若数列{}n x 收敛,则3、η为非空数集S 的下确界即4、a 为无限集合S 的聚点即5、区间套[]{}n n b a ,的定义为 二、计算题(8⨯/6=48/)1、求210)sin (lim x x xx →.2、求)sin2sin1(sinlim 222nn n n n +⋅⋅⋅++++∞→πππ.3、确定xx x f sin )(=的间断点并判断其类型.4、设x x x x f xxsin )(sin +=,求)(x f '.5、x y 3sin =,求)(n y .6、求x e x x f 2)(=带有Lagrange 余项的n 阶Maclaurin 展式.7、设)7ln 12(4-=x x y ,试确定其凹凸区间及拐点.8、确定,,b a 使函数⎩⎨⎧≥++<+=0,10,2)(2x bx x x a e x f x 在0=x 处连续.三、证明题(4⨯/8=32/) 1、用δε-定义证明.1031lim23=+→x x x 2、设)(x f 在[]b a ,上连续,在()b a ,内可导,证明至少存在(),,b a ∈ξ使得下式成立: .ln )()()(abf a f b f ξξ'=-3、证明:若f 在[]b a ,上连续,)(lim x f x +∞→存在且有限,则f 在[)+∞,a 上一致连续.4、设f 在()+∞,a 内可微并且,0)(lim ='+∞→x f x 证明0)(lim=+∞→xx f x .数学分析(1)复习题(二)一、单项选择题(5⨯/3=15/) 1、=∞→n n n2lim( ) A.0;B 、21;C 、1;D 、2. 2、设函数是n 次多项式,则=+)()1(x f n ( ) A 、n ;B 、n+1;C 、0;D 、1.3、如果当0→x 时,)(x f 是x 的高价无穷小量,则=→xx f x sin )(lim 0( ). A.21; B 、0; C 、2; D 、1. 4、设f 在x 的某邻域内有有定义,则下列命题哪一个为假?( )A.f 在点x 可微,则f 在点x 连续; B 、f 在点x 不连续,则f 在点x 一定不可导;C 、f 在点x 连续,则f 在点x 可微;D 、f 在点x 可导当且仅当f 在点x 可微.5、函数2)(x x f =与x x g =)(定义在[)∞,0上,它们在定义区间上是一致连续的吗?( )A.两个都是一致连续的; B 、两个都不是一致连续的; C 、f 是一致连续的,g 不是一致连续的; D 、f 不是一致连续的,g 是一致连续的.二、填空题(5⨯/3=15/)1、如果要使函数xx x f 1sin )(=在点0=x 连续,需重新定义=)0(f2、设1)(0='x f ,则=--+→hh x f h x f h )()(lim000 3、函数⎩⎨⎧≤>+=,1,,1,)(2x x x b ax x f 在1=x 处可导,则=+2013b a4、设)(x y y =由方程e xy e y =+确定,则=')0(y5、设⎩⎨⎧-=-=ty t t x cos 1sin ,则==2πt dx dy三、计算题(6⨯/6=36/)1、用N -ε语言叙述数列{}n x 收敛到a 的定义,并根据定义验证数列⎭⎬⎫⎩⎨⎧++11222n n 收敛.2、①求极限xx x 2211lim ⎪⎭⎫ ⎝⎛++∞→; ②求极限xx e x x cos 1sin )1(lim 0--→ 3、设xtg a x x y 1)ln(222--+=,求dy . 4、设函数22)(x e x f -=,求)0()4(f .5、求曲线211x y +=在)21,1(-处的切线方程和法线方程. 6、求函数1)(23+--=x x x x f 的单调区间、凹凸区间、极值和拐点. 四、证明题(1、2、3题各9分,4题7分,共34分)1、叙述单调有界定理并考虑下列问题.设,1),,2,1)(1(211>⋅⋅⋅=+=+x n x x x nn n(1) 证明数列{}n x 单调递减有下界. (2)求数列{}n x 的极限.2、用罗尔(Rolle )定理证明拉格朗日(Lagrange)中值定理并证明不等式:)0()1l n (1><+<+x x x xx3、叙述连续函数的零点定理并用区间套定理加以证明.4、用柯西收敛准则证明数列n n nx 2sin 22sin 21sin 12+⋅⋅⋅+++=收敛. 数学分析(1)复习题(三)一、 填空(共15分,每题5分):1. 设=∈-=E R x x x E sup ,|][{则 , =E inf ;2. 设=--='→5)5()(lim,2)5(5x f x f f x 则 ;3. 设⎩⎨⎧>++≤=0,)1ln(,0,sin )(x b x x ax x f 在==a x 处可导,则0 , =b 。
二、 计算下列极限:(共20分,每题5分)1、n n n1)131211(lim ++++∞→ ; 2、3)(21limn nn ++∞→; 3、 ax ax a x --→sin sin lim ; 4、xx x 1)21(lim +→。
三、 计算导数(共15分,每题5分):1. );(),1ln(1)(22x f x x x x f '++-+=求2.3. 设。
求)100(2,2sin )23(y x x y -= 四、 (12分)设0>a ,}{n x 满足:,00>x ,2,1,0),(211 =+=+n x ax x nn n证明:}{n x 收敛,并求。
n n x ∞→lim五、 10分)求椭圆),(1002222y x by a x 过其上点=+ 处的切线方程。
六、 (10分)利用Cauchy 收敛原理证明:单调有界数列必收敛。
七、(8分)设满足:上在)0(),[)(>+∞a a x f|||)()(|),,[,y x K y f x f a y x -≤-+∞∈∀为常数)。
证明:0(≥K1、上有界;在),[)(+∞a xx f 2、上一致连续。
在),[)(+∞a xx f ;sin cos 33表示的函数的二阶导数求由方程⎩⎨⎧==t a y ta x八、(10分)设n a a a ,,21为实常数,证明:nxa x a x a x f n cos 2cos cos )(21+++=内必有零点。
在),0(π数学分析(1)复习题(四)一、单项选择题(每小题3分,共15分)1、设)()()(x a x x f ϕ-=,其中)(x ϕ在a x =处连续但不可导,则=)('a f ( ) A 、不存在; B 、)('a ϕ; C 、)(a ϕ; D 、)('a ϕ-。
2、当x 很小时,下列近似公式正确的是( )A 、x e x ≈ ;B 、x x ≈ln ;C 、x x n +≈+11; `D 、x x ≈sin 。
3、曲线x x y arctan =的图形应为( )A 、在),(+∞-∞内上凸;B 、在),(+∞-∞内下凸;C 、在),(+∞-∞内单调上升;D 、在),(+∞-∞内单调下降。
4、当0→x 时,)cos 3(cos 41x x -是2x 的( )A 、高阶无穷小;B 、同阶无穷小,但不是等阶无穷小;C 、低阶无穷小;D 、等阶无穷小。
5、设)(x f 三阶连续可导于[]δδ,-上且0)0('')0('==f f ,2)('''lim 0=→xx f x 则( ) A 、)0(f 是)(x f 的极大值 ; B 、)0(f 是)(x f 的极小值; C 、)0(,0(f 是曲线)(x f y =的拐点; D 、))0(,0(f 不是)(x f y =的拐点。
二、填空题(每小题3分,共15分)1、设)sgn(cos )(x x f =,则[]ππ,)(-在x f 上的全部间断点是 。
2、=-+-+∞→12)1323(lim x x x x 。
3、抛物线2x y =的最小曲率半径是 。
4、设)1(1)(x x x f -=,则)()(x f n 。
5、曲线x y x y 2sin )(==与在原点相切,则=∞→)4(lim n nf n 。
三、计算题(每小题8分,共40分)。
1、求极限)sin 11(lim 220xx x -→。
2、求')(ln sin 2y x x x x y 的导数++=。
3、设函数)(x y y =由方程e xy e y =+所确定,求)0(''y 。
4、如果函数⎩⎨⎧≥++<+=0,10,2)(2x bx x x a e x f x 在0=x 连续可导,求b a +5、求x e x x f 2)(=带有Lagrange 余项的n 阶Maclaurin 展式。
四、证明题(每小题5分,共20分)。
1、按δε-定义证明5311lim22=++→x x x 。
2、证明:当)2,0(π∈x 时有不等式πx x 2sin >。
3、设)(x f 在[]b a ,上连续)0( a ,在),(b a 内可导,则存在ξ,),(b a ∈η使)('2)('ηηξf ba f +=。
4、若[]上连续在+∞,)(a x f ,)(lim x f x +∞→存在且有限,则[)+∞,)(a x f 在上一致连续。
五、应用题(本题共10分)已知曲线1=xy 在第一象限的分支上有一定点)1,(aa P )0(>a ,在给定曲线的第二象限中的分支上有一动点Q 。
试求使线段PQ 长度为最短的Q 点的坐标。