人大2016年量子力学考研回忆
量子力学答案陈鄂生

量子力学答案陈鄂生【篇一:考研理论物理:备考复习的重难点与轻易面】ss=txt>易面虽然各高校的考试科目不同,但复习方法是相同的。
物理作为一门基础学科,无论是基础物理还是四大力学,都需要掌握最基本的原理和公式,复习主要侧重课本、习题集、往年真题三方面。
2014考研理论物理:考复习的重难点与轻易面经典物理:很多院校都是把经典物理作为必考科目,但不会涉及力、热、光、电、原子物理的所有部分。
每一院校都会给出参考书目和考试范围,如果没有参考书目,可以用该校的本科教材。
复习是最关键的部分是吃透课本,对基本概念、基本原理熟练掌握,这个过程要通过看课本、推导公式与结论以及做课后习题来实现。
然后是认真做历年真题,建议考生准备一个习题集,把自己推导过的公式和做过的题目整理出来,这样有利于厘清薄弱环节。
最后就是根据自己的薄弱点找几本参考书目浏览,推荐中国科学技术大学出版的《物理学大题典》和陈秉乾的《物理学难题集萃》,这些书题量大,最好是根据自己的薄弱环节先挑出几个章节扫一下题目,如果觉得有思路,大概算一下,如果思路不清晰,则直接看解答。
考试之前最好再把课本浏览一遍,可以只看目录,通过目录检查自己对课本里的基本概念、基本公式是否都掌握了,如果不清楚,再翻开去详读。
高等数学:建议考生每天保证至少三个小时的复习时间。
数学题目做不完,但如果不经过大量的习题训练,成绩很难得到提高。
高等数学的考试不会出现太多的偏题、怪题,考生要从基础学起,先把教材中的概念、公式复习好,然后在此基础上选择一些题目进行强化,尤其是综合性试题和应用题。
解应用题一般是在理解题意的基础上建立数学模型,这种题目现在每年都考,考生需要平时进行强化训练。
最后是重视历年试卷,高等数学部分试题重复率比较高。
推荐复习书目有中国科学技术大学数学系的《高等数学导论习题集》、同济大学的《高等数学习题集》。
量子力学:和复习经典物理一样,吃透课本和课后习题是量子力学复习的第一步。
中国人民大学《617量子力学》考研真题详解

中国人民大学《617量子力学》考研真题详解2021年中国人民大学理学院物理系《617量子力学》考研全套目录•全国名校量子力学考研真题汇编•2021年量子力学考研真题精解精析50题说明:本科目考研真题不对外公布(暂时难以获得),通过分析参考教材知识点,精选了有类似考点的其他院校相关考研真题,以供参考。
2.教材教辅•曾谨言《量子力学教程》(第3版)配套题库【名校考研真题+课后习题+章节题库+模拟试题】•曾谨言《量子力学导论》(第2版)网授精讲班【39课时】说明:以上为本科目参考教材配套的辅导资料。
•试看部分内容2021年量子力学考研真题精解精析50题1当前冷原子物理研究非常活跃,在实验中,粒子常常是被束缚在谐振子势中,因此其哈密顿量为。
假设粒子间有相互作用,其中分别代表粒子1和粒子2的自旋,参数J>0。
(1)如果把两个自旋1/2的全同粒子放在上述势阱中,试写出基态能量和基态波函数;(2)如果把两个自旋1的全同粒子放在上述势阱中,试写出基态能量和基态波函数。
(注意:参数在不同范围内,情况会不同)[浙江大学2014研]【解题思路】①研究体系处在线性谐振子势场中,有关单个体系在谐振子势中的问题,一般可以通过求解薛定谔方程得出相应的本征波函数和本征能量,确定体系的波函数,研究对象的量子状态、对其进行测量可得到的测量值的大小和几率等问题,都可以一一解决。
②研究体系内包含两个粒子,它们之间存在自旋-自旋相互作用,利用角动量的合成来解决这部分相互作用引出的相关问题。
③在两个问题中,涉及到不同自旋的粒子,即玻色子和费米子,可以通过它们满足的统计性质来决定在势场中的分布情况,从而解决要求的基态能量和波函数。
【解析】(1)对于处在线性谐振子势中粒子的哈密顿量由薛定谔方程得本征能量为本征波函数为两粒子间有相互作用设因此即所以因为所以两粒子是费米子,满足费米狄拉克统计,体系的总波函数要求交换反对称,并且S=0或者S=1。
因为,所以体系基态选择,因此体系坐标部分的波函数为满足交换对称性。
杭州师范大学 量子力学 2016年硕士研究生考研真题

四、 证明题 (每题 10 分,共 30 分)
ˆ ˆ ˆ ˆL ˆ 2ip ˆ; ˆ 和L L p 1. p 分别是动量算符和角动量算符, 证明: p
ˆ L ˆ iL ˆ ,证明: [ L ˆ ,L ˆ ] iL , [ L ˆ ,L ˆ ] iL ˆ ; 2.定义 L x y z z
杭 州 师 范 大 学 硕 士 研 究 生 入 学 考 试 命 题 纸
杭
州
师
范
大
学
2016 年招收攻读硕士研究生入学考试题
考试科目代码: 考试科目名称: 727 量子力学
说明:考生答题时一律写在答题纸上,否则漏批责任自负。
一、 填空题(每空 3 分,共 30 分)
1. 含时薛定谔方程的表达式为 定态薛定谔方程的表达式为 , 。 ,角动量算符 ,其中 , x, y, z.
,
ˆ n, l , m 1 n, l , m L z
于量子态m , n, l , m L x y
。 如果一个体系处
1 1 2,1,0 2,2,1 c 2,2,0 ,则系数 c 的取值为 2 3
ˆ 的可能 ,L z
值为
, L2 本征值为 6 出现的几率为
ˆ ˆ ˆ 是作用在两个不同粒子上的 Pauli 矩阵,证明: ˆ 和 3. 1 2 2 1
2
ˆ ˆ . 32 1 2
2016
年
考试科目代码 727 考试科目名称 量子力学(本考试科目共 2 页,第 2 页)
如动量 k ( k x , k y ) ,速度 v ,玻尔磁矩 B ,外磁场 B 等均为已知或待定参数。试分 别计算当外磁场沿 x 轴或 z 轴时这种载流子的能量本征值和本征态。
历年量子力学考研真题试卷

历年量子力学考研真题试卷历年量子力学考研真题试卷量子力学是现代物理学的重要分支,也是考研物理专业的必考内容之一。
历年来,考研真题试卷中的量子力学部分涵盖了许多重要的概念和原理,对于考生来说是一项重要的挑战。
本文将对历年的量子力学考研真题试卷进行回顾和分析,帮助考生更好地准备考试。
首先,我们来看一道经典的考研真题:2015年考研物理专业真题中的一道量子力学选择题。
题目如下:在一个一维无限深势阱中,一束波长为λ的平面波入射,其入射角为θ。
已知势阱宽度为a,求波函数在势阱内的形式。
这道题目考查了量子力学中的一维无限深势阱问题。
解答这道题目需要运用波函数的性质和边界条件来分析。
首先,我们可以根据波函数的性质得出波函数在势阱内的形式是一个定态波函数。
其次,根据边界条件,我们可以得到波函数在势阱两侧的形式是分别由入射波和反射波组成。
因此,波函数在势阱内的形式可以表示为:Ψ(x) = Ae^{ikx} + Be^{-ikx},其中A和B分别表示入射波和反射波的振幅,k 为波矢。
接下来,我们来看一道稍微复杂一些的考研真题:2018年考研物理专业真题中的一道量子力学计算题。
题目如下:考虑一个束缚在一维势阱中的粒子,势阱宽度为a。
已知粒子的质量为m,势阱内的势能为V_0,势阱外的势能为0。
求粒子在势阱内的能级。
这道题目考查了量子力学中的束缚态问题。
解答这道题目需要运用定态薛定谔方程和边界条件来分析。
首先,我们可以根据定态薛定谔方程得到粒子在势阱内的波函数形式。
其次,根据边界条件,我们可以得到波函数在势阱两侧的形式是分别由入射波和反射波组成。
因此,波函数在势阱内的形式可以表示为:Ψ(x) = Ae^{ikx} + Be^{-ikx},其中A和B分别表示入射波和反射波的振幅,k 为波矢。
然后,我们需要将波函数在势阱两侧的形式进行匹配,并利用边界条件得到粒子在势阱内的能级。
通过求解定态薛定谔方程,我们可以得到粒子在势阱内的能级为:E_n = \frac{n^2 \pi^2 \hbar^2}{2ma^2},其中n为能级的量子数。
量子力学经典八十题(推荐版本)【含答案】

ψ
nxnynz
(x,
y,
z)
=
⎧ ⎪ ⎨ ⎪⎩0
8 abc ,
sin
nxπx a
sin
nyπ b
y
sin
nzπ c
z
, 0 < x < a,0 其余区域
<
y
<
b
,
0
<
z
<
c
n = 1, 2,3,""
9. 粒子在一维 δ 势阱
V (x) = −γ δ (x) (γ > 0)
中运动,波函数为ψ (x) ,写出ψ ′(x) 的跃变条件。
8. 写出三维无限深势阱
V (x,
y, z)
=
⎧0 , 0 < x < a , 0 ⎩⎨∞ , 其余区域
<
y
<
b
,
0
<
z
<
c
1
量子力学复习题答案(安徽大学)
中粒子的能级和波函数。
解:能量本征值和本征波函数为
+ + Enxnynz
=
= 2π 2 2m
⎜⎛ ⎜⎝
n
2 x
a2
n
2 y
b2
n
2 z
⎟⎞
c 2 ⎟⎠
∑ ψ (x) = cnψ n (x) , n
写出展开式系数 cn 的表达式。
解:
∫ cn = (ψ n (x) ,ψ (x)) =
ψ
* n
(
x)ψ
(
x)
dx
。
29.
一个电子运动的旋量波函数为
2016年北京师范大学959量子力学考研真题

(若在t=0时出现中微子状态是|2>)
(1)计算t>0时中微子状态
(2)最短经过多长时间该中微子变成电子中微子?
5.(30分)某电子波函数角度部分为 ,其中 为球谐函数, 表示取自旋处于|+,z>( 为正的本征态)总角动量 等于轨道角动量和自旋角动量之和,即 ,计算 的可能测值、相应几率以及期望值。
(3)若 ,求各能级简并度
提示:
3.(30分)氢原子处于轨道角动量量子数为l=2的态中,计算 的本征值及简并度,其中,l及s分别为氢原子的轨道角动量和自旋角动量。提示:
第1页共2页
科目代码:959科目名称:量子力学
4.(30分)中微子有两个态|1>和|2>,且正交归一,分别对应电子中微子和 中微子,其哈密顿量可以写为H=h|1><1|+g|1><2|+g|2><1|+h|2><2|,g、h分别为常数
北京师范大学
2016年硕士研究生入学考试试题
部(院、系):物理学系
科目代码:959科目名称:量子力学
1.(30分)粒子在如下势中做一维运动
(1)写出束缚态能级E所满足的方程
(2)用图示法求出至少存在一个能级的条件
2.(30分)质量为m的粒子在势场 中做二维运动
(1)写出能级表达式
(2)计算 在基态时的平均值
中科院量子力学历年详解

1.10 2006 乙 A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.11 2006 乙 B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.12 2005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.13 2004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.14 2001 理论型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2 详解 i 19
4 曾谨言《量子力学》卷 I 练习详解 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9
量子力学的诞生 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 波函数与 Schrödinger 方程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 一维定态问题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 力学量用算符表达 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 力学量随时间的演化与对称性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 中心力场 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 粒子在电磁场中的运动 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 表象变换与量子力学的矩阵形式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 自旋 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 ii 目录 返回
中国人民大学617-量子力学考研参考书目、考研真题、复试分数线

中国人民大学617-量子力学考研参考书目、考研真题、复试分数线617-量子力学课程介绍量子力学(Quantum Mechanics)是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础。
量子力学不仅是近代物理学的基础理论之一,而且在化学等有关学科和许多近代技术中也得到了广泛的应用。
同时,量子力学也面临着无法诠释自身理论基础的难题,成为当前物理学的困惑。
面对此理论现象,《量子笔迹》一书首次提出了“微观作用”原理,微观作用属于量子力学背后更深层次的理论,微观作用力属于一种未被发现的力(《量子笔迹》一书已经给出,不同于已知力的作用形式),这种力存在于微观粒子之间,在知道了这种力的作用形式之后,量子力学现象得到理解,量子力学由概率因果关系重新回归到决定论的因果关系。
量子力学是描写微观物质的一个物理学理论,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的学科都是以量子力学为基础所进行的。
19世纪末,经典力学和经典电动力学在描述微观系统时的不足越来越明显。
量子力学是在20世纪初由马克斯·普朗克、尼尔斯·玻尔、沃纳·海森堡、埃尔温·薛定谔、沃尔夫冈·泡利、路易·德布罗意、马克斯·玻恩、恩里科·费米、保罗·狄拉克、阿尔伯特·爱因斯坦、康普顿等一大批物理学家共同创立的。
通过量子力学的发展人们对物质的结构以及其相互作用的见解被革命化地改变。
通过量子力学许多现象才得以真正地被解释,新的、无法直接想象出来的现象被预言,但是这些现象可以通过量子力学被精确地计算出来,而且后来也获得了非常精确的实验证明。
除通过广义相对论描写的引力外,至今所有其它物理基本相互作用均可以在量子力学的框架内描写(量子场论)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(一)一个单轴量子转体的哈密顿量形式为I =H Z 220L ,其中I 为转动惯量Z L 是沿转轴方向的角动量算符。
(1)求解该转体所有的能量本征值和能量本征态。
(2)假设给该转体施加一个微扰,其形式为ϕcos A =H ',A 为实常数,ϕ是转子的角度,写出在0H 的能量本征态表象下的微扰哈密顿量的矩阵形式。
(3)假设我们只保留能量最低的三个态构成一组基函数,写出H '+H =H 0所有的能量本征值和能量本征态
(4)用合适的微扰理论求H '+H =H 0 的本征态和本征值,并讨论所得结果与上一问的结果的联系。
(二)
(1)证明实波函数的几率流密度为零
(2)证明不同能量本征值的能量本征态相互正交
(3)证明h a ip h a ip x
x ae e --=⎥⎥⎦
⎤⎢⎢⎣⎡,x
(三)
(1)写出电子自旋算符的对易与反对易关系以及在Z 自旋方向分量的本征态的矩阵形式。
(2)计算h s i e R ϕϕ ⋅=算符在Z 自旋方向分量的本征态的矩阵形式,ϕ为一个经典矢量,算符的物理意义是什么?
(3)把电子置于沿Z 方向大小为B 的磁场中,写出自旋方向随时间演变的方程,如果同时施加一个沿x 轴方向形式为t cos 1ϖB 的交变磁场结果会如何
(四)
(1)两个电子,动量分别为1κ 和2κ ,自旋分别指向z +和方向z -,写出处于这个态上的态函数,并计算两个电子相距为r 的对应几率
(2)两个电子,总自旋为零,总动量也为零,写出处于这个态上的态函数的最一般形式
(3)用微扰理论求氦原子的。