相似三角形之射影定理
高中 相似三角形的应用 射影定理(教学设计)

相似三角形的应用·射影定理(教学设计)怀化市铁路第一中学高用一、教材衔接分析初中阶段,《相似三角形的应用》是湖南教育出版社义务教育教科书《数学》九年级上册第3章第五节内容,射影定理以习题的形式出现在第3章复习题B组第12题,属于基于教材又高于教材的拓展性内容,学习射影定理可以进一步熟练掌握相似三角形的应用,同时也是相似三角形应用得出的重要结论,其本质是一种特殊且非常常见的相似三角形模型,熟悉这种模型对于很多平面几何问题的证明有非常重要的作用.高中阶段,原人教A版《数学》选修4-1《几何证明选讲》中专门有一节《直角三角形的射影定理》,在新高中课程中,相似三角形的应用和射影定理在基本不等式的几何解释、平面向量、立体几何和解析几何中都有重要的应用,还是物理学科中力的分析、几何光学等的重要数学基础.另外,平面几何证明思路的探寻过程中常用执果索因的方法,也就是高中阶段所说的分析法,这是思维层面的初高中衔接.二、教学目标1、能够熟练应用相似三角形证明射影定理及一些简单问题,发展学生几何直观、逻辑推理的核心素养;2、理解射影定理、熟悉射影定理的基本图形,并能利用射影定理求解和证明一些简单问题.三、教学重难点教学重点:1、熟练应用相似三角形的性质;2、理解射影定理、熟悉射影定理的基本图形,熟练利用射影定理求解或证明问题.教学难点:熟练应用相似三角形的性质、射影定理解决问题四、教学方法从回顾相似三角形的性质和判定定理入手,先探究射影定理,再引申到“歪射影定理”,形成问题探究、基础训练、思维拓展、反思提高四个教学环节.采取课堂讨论、问题探究的教学方法,发挥教师的主导作用,尽可能调动学生的积极性,参与到学习中来,学会构建数学模型解题,让学生在愉快的氛围中自然构建自己的知识体系.五、教学过程(一)旧知回顾相似三角形的判定:1、平行于一边的直线截得的三角形与原三角形相似;2、两角对应相等;3、三边对应成比例;4、两边对应成比例且夹角相等.若两三角形相似,则1、对应长度成比例,2、对应角相等.【设计意图】通过复习相似三角形判定方法和两三角形相似可以得到的结论,为进一步熟练应用相似三角形定下基调,更为探究射影定理作准备.(二)问题探究中,CD为斜边AB上的高.探究1:如图,在Rt ABC问题:图中有哪些相似三角形?由这些相似三角形,你能得到哪些与长度有关的结论?(学生自行探究并上黑板展示,教师点评并加以引导)例如,由ADC CDB ∆∆ ,可得CD AD AC BD CD BC==,从而可得2CD AD BD =⋅.类似地,可得2AC AD AB =⋅2BC BD BA=⋅【设计意图】通过引导学生自主探究射影定理,使学生进一步熟练应用相似三角形,同时在已有的知识基础上探究新知,符合学生最近发展区,体现数学自然生成的教学理念.注意到,CD AB ⊥,垂足为D ,则称点D 为点C 在AB 上的正射影,那么线段AD 为线段AC 在AB 上的正射影,线段BD 为线段BC 在AB 上的正射影.探究1得到的三个等式都反映了两直角边在斜边上的射影与其他线段之间的关系,因而称之为射影定理.直角三角形中的射影定理:直角三角形斜边上的高是两直角边在斜边上射影的比例中项,两直角边分别是它们在斜边上的射影与斜边的比例中项.(教师强调射影定理的图形特征:“双垂直结构”)【设计意图】介绍射影定理命名的缘由,让学生对定理理解更加形象、深刻,也使学生对射影定理的识记更加容易,培养学生用模型解决问题的能力.定理的初步应用例1如图,圆O 上一点C 在直径AB 上的射影为D ,已知90ACB ∠=︒,2AD =,8DB =.求CD 、AC 和BC 的长.【解析】在Rt ABC ∆中,CD AB ⊥,则由射影定理有22816CD AD BD =⋅=⨯=,则4CD =,221020AC AD AB =⋅=⨯=,则AC =281080BC BD BA =⋅=⨯=,则BC =.【设计意图】通过例1对射影定理进行最直接、最简单的运用,让学生基本熟悉射影定理.思考:若AD a =,DB b =,计算CD 的长;当点C 在 AB 上运动时,ACB ∠始终为90︒,比较CD 与AB 的长度,你发现了什么结论?易得CD =,AB a b =+,当点C 在 AB 上运动时,CD 的长不超过圆的半径,2a b +≤(基本不等式).【设计意图】在例1的基础上进行一般化,通过观察CD 长度的变化得到不等式2a b +≤,为高中学习基本不等式、理解基本不等式作铺垫.探究2:如图,已知ABC ∆中,D 为AB 上一点,且BCD BAC ∠=∠.是否还能得到类似在直角三角形中射影定理的结论?(学生自主探究,并展示成果)成果展示:因为BCD BAC ∠=∠,又同角B ∠,所以BCD BAC ∆∆ ,从而BD BC BC BA=,即2BC BD BA =⋅.教师点评:虽然ABC ∆不是直角三角形,D 也不再是C 在AB 上的正射影,但有BCD BAC ∆∆ ,从而仍得到一个类似直角三角形中射影定理的结论2BC BD BA =⋅,我们形象地称之为“歪射影定理”.【设计意图】“歪射影定理”的基本图形是一种较为常见的相似三角形的形式,通过“歪射影定理”的探究,主要是让学生熟悉这种相似三角形的图形结构特征,建立起一种解题模型,在较为复杂的证明问题中能快速识别图形,并用相似三角形求解.同时,引入“歪射影定理”还可以激发学生的学习兴趣,可以为今后学习圆幂定理奠定基础.(三)应用提升例2如图,AD 为Rt ABC ∆斜边BC 边上的高,过点B 作BE BA =,连接,ED EC .求证:BED BCE ∠=∠.【思路分析】要证BED BCE ∠=∠,因为EBD CBE ∠=∠,只要证EBD CBE ∆∆ ,只要证BE BD BC BE=,即2BE BD BC =⋅,不难发现BA BE =,则只要证2AB BD BC =⋅,这就是射影定理,于是思路打通.【证明】由射影定理可得2AB BD BC =⋅,因为BA BE =,所以2BE BD BC =⋅,即BE BD BC BE=,又EBD CBE ∠=∠,所以EBD CBE ∆∆ ,从而BED BCE ∠=∠.例3如图,点D 为Rt ABC ∆直角边斜边AC 延长线上一点,连接BD .过点A 分别作BC 、BD 的垂线,垂足分别为,E F ,连接EF .求证:EF BD BE CD ⋅=⋅.【思路分析】要证EF BD BE CD ⋅=⋅,只需证EBF DBC ∆∆ ,因为EBF DBC ∠=∠,只要证BE BF BD BC=,即BE BC BF BD ⋅=⋅,联系题目的垂直条件,容易想到射影定理2AB BE BC =⋅,2AB BF BD =⋅,从而思路打通.【证明】由射影定理,有2AB BE BC =⋅,2AB BF BD =⋅,所以BE BC BF BD ⋅=⋅,即BE BF BD BC=,又EBF DBC ∠=∠,所以EBF DBC ∆∆ ,从而EF BE CD BD =,即EF BD BE CD ⋅=⋅.【设计意图】通过例2和例3,使学生进一步熟练应用相似三角形和射影定理、熟悉定理的基本图形,体会结论倒推法分析证明思路的思维方法,提升学生思维能力.(四)课堂小结1、射影定理、歪射影定理及其图形特征,本质上是一种特殊且常见的相似三角形模型;2、平面几何证明思路探寻方法:结论倒推法(执果索因法).【设计意图】通过课堂小结进一步巩固本节课所学所得.。
相似三角形射影型例题

相似三角形射影型例题
射影定理模型,是和直角三角形有关的三角形相似,最经典的模型了。
在很多考题中都有出现。
这个模型的证明也很简单,也是利用两组角对应相等,得出三角形相似,再得出边之间的比例关系。
当然,我们也常常把这个结论,再引申了一下,变成了某边的平方=某两边的乘积。
如上图,从直角三角形的直角顶点,向斜边作高,这样得出来的三个直角三角形都是相似的。
后面的结论1,结论2,结论3,也就出来了。
这些的结论不要死记硬背,在理解的基础上,就很容易记住。
射影定理,是基础考题,在压轴大题,也应用广泛。
特别是一些隐藏着的摄影定理模型,要善于观察和发现,信手拈来。
例题1,例题2,是最基础的。
这个几个空,先好好的学,一步步的推导,理解了,也就理解了。
例题3,正方形中,若有如图的两线垂直,我们可以想到,除了三垂直三角形全等以外,三角形相似,射影定理也是需要考虑到的。
几何学中的射影定理和相似三角形——几何知识要点

几何学中的射影定理和相似三角形——几何知识要点几何学是研究空间和形状的学科,其中射影定理和相似三角形是其中重要的概念和定理。
本文将介绍这两个知识点,并探讨它们在几何学中的应用。
一、射影定理射影定理是几何学中的重要定理之一,它描述了两条平行线与一条横截线所形成的射影关系。
射影定理可以用于求解平行线之间的距离、角度和比例等问题。
射影定理的几何表述如下:当一条横截线与两条平行线相交时,它们所形成的对应的线段长度相等。
换句话说,射影定理说明了平行线与横截线之间的相似关系。
射影定理的应用非常广泛。
在建筑设计中,我们常常需要确定建筑物的高度、宽度等尺寸,射影定理可以帮助我们通过测量建筑物的阴影长度来确定其实际尺寸。
在地理测量中,射影定理也可以用于确定高山的高度、河流的宽度等。
二、相似三角形相似三角形是指具有相同形状但大小不同的三角形。
相似三角形之间存在一种特殊的比例关系,即对应边的比例相等。
相似三角形的判定条件有两种:AAA判定和AA判定。
AAA判定是指两个三角形的对应角度相等,而AA判定是指两个三角形的两个对应角度相等且对应边成比例。
相似三角形的性质有很多。
首先,相似三角形的对应角度相等,对应边成比例。
其次,相似三角形的周长和面积之间也存在一定的比例关系。
另外,相似三角形的高度、中线、角平分线等也成比例。
相似三角形在几何学中的应用非常广泛。
例如,在地图上测量两座建筑物之间的距离时,我们可以利用相似三角形的性质来计算。
此外,在工程设计中,相似三角形也可以用于计算物体的尺寸、角度等。
总结:几何学中的射影定理和相似三角形是非常重要的知识点。
射影定理描述了平行线与横截线之间的射影关系,可以用于求解距离、角度和比例等问题。
相似三角形是具有相同形状但大小不同的三角形,其对应边成比例。
相似三角形的性质有很多,可以用于计算距离、尺寸和角度等。
这些知识点在实际应用中具有广泛的用途,对于几何学的学习和应用都具有重要意义。
通过学习射影定理和相似三角形,我们可以更好地理解和应用几何学知识,提高解决实际问题的能力。
相似-射影角平分线定理3师

第7讲 相似三角形3:射影定理、角平分线定理一、 基础知识1. 相似三角形的定义对应角相等,对应边成比例的三角形叫做相似三角形. 2. 相似三角形的判定定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似;判定定理1:两角对应相等,两三角形相似;判定定理2:两边对应成比例且夹角相等,两三角形相似; 判定定理3:三边对应成比例,两三角形相似. 3. 判定直角三角形的其他方法定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似;直角三角形被斜边上的高分成的两个直角三角形和原三角形相似. 4. 相似三角形的性质(1)相似三角形的对应角相等,对应边成比例;(2)相似三角形的对应高的比、对应中线的比、对应角平分线的比及周长的比,都等于相似比; (3)相似三角形的面积的比等于相似比的平方. 二、 例题部分 例1.(★,射影定理)在Rt ⊿ABC 中,∠A =90°,AD 是斜边上的高,求证: (1)2AD BD DC =⋅;(2)2AB BD BC =⋅;(3)2AC CD CB =⋅ 【证明】:直接根据“直角三角形被斜边上的高分成的两个直角三角形和原三角形相似.”即可得到例2.(★)如图,AD 是⊿ABC 的BC 边上的高,DE 、DF 分别垂直于AB 、AC ,垂足为E 、F ,求证:AE AFAC AB=【证明】:由射影定理:2AD AE AB =⋅2AD AF AC =⋅∴AE AB AF AC ⋅=⋅例3.(★)在Rt ⊿ABC 中,∠ACB =90°,CD ⊥AB 于D ,DE ⊥AC 于E ,DF ⊥BC 于F ;求证:33AE AC BF BC = 《全国奥林匹克初二竞赛教材》数学 京华出版社,P188,例2例4.(★)如图,在Rt ⊿ABC 中,∠A =90°,BC 边的垂直平分线和AB 、CA 的延长线分别交于D 、E ,BC的中点为F,求证AF是DF与EF的比例中项.【证明】:易得∠E=∠B=∠DAF在⊿FDA和⊿FAE中:∠FAD=∠FEA,∠DFA=∠AFE∴⊿FDA∽⊿FAE∴FA FD FE FA=例5.(★★,96年全国初中数学联赛四川赛区预赛)如图,Rt⊿ABC 中,∠C=90°,∠A的平分线AD交BC边于D,求证:222 AC BC AD BD=《华罗庚数学奥林匹克教材》初二年级知识出版社,P180,6例6.(★)Rt⊿ABC中∠C=90°,∠A的平分线AE交BA上的高CH于D点,过D点引AB的平行线交BC于F,求证:BF=EC【证明】:∵AE平分∠A∴CE ACEB AB=;∵DF∥AB,∴HD BFDC FC=∵⊿AC B∽⊿AHC,∴AC AH HD BF AB AC DC FC ===∴EC BFEB FC=,即EC BFEF FB EF EC=++整理得EC=BF例7.(★★)已知P、Q分别是正方形ABCD边AB、BC上的点,且BP=BQ,过B点作PC的垂线,垂足为H,证明:DH⊥HQ【证明】:∵∠PBC=90°BH⊥PC∴⊿HBC∽⊿PBC,∴BH BP CH BC=∵BP=BQ,∴BH BP BQ CH BC CD==又易得∠HBQ=∠HCD,∴⊿BHQ∽⊿CHD ∴∠BHQ=∠CHD,∴DH⊥HQ例8.(★★,93年黄冈初中竞赛)在等边三角形ABC的边BC上取点D,使12BDCD=,作CH⊥AD,连结BH,求证:∠DBH=∠DAB【证明】:过A作AM⊥BC,垂足为M易证⊿BHQ∽⊿CHD,∴AD MDCD HD=,∵AM为⊿ABC的高,∴BM=CM∵12 BD CD=∴CD=2BD,DM=12 BD,易得AD BDBD HD=,又∠ADB=∠BDH∴⊿ADB∽⊿BDH,∴∠DBH=∠DAB例9.(★★,94年安徽省数学竞赛)设P是等边三角形ABC的BC边上任一点,连结AP,作AP的中垂线交AB、AC于M、N;证明:BP PC BM CN⋅=⋅《华罗庚数学奥林匹克教材》初二年级知识出版社,P180,5例10.(★★,辽宁省竞赛题)设AM是⊿ABC边BC上的中线,任作一条直线分别交AB、AC、AM于P、Q、N,求证:ABAP、AMAN、ACAQ成等差数列.【证明】:过B、C分别作MN的平行线交PQ的延长线于E、F;易得1()2MN BE CF=+则1()2MN BE CF AN AN AN=+∵⊿BEP∽⊿ANP,∴BE BP AN AP=∵⊿CFQ∽⊿ANQ,∴CF CQ AN AQ=∴1()2MN BP CQ AN AP AQ=+根据合比定理得:1()2AM AB ACAN AP AQ=+【证明2】:过B、C分别作PQ的平行线交AM的延长线于E、F例11.(★★,97年河北初中竞赛)在等腰直角三角形ABC中,∠C=90°,AC=BC,BE=ED=CF,求∠CEF+∠CAD的度数;《华罗庚数学奥林匹克教材》初二年级知识出版社,P181,9例12.(★★★,99年上海中学数学实验班选拔赛)如图,AD是锐角⊿ABC边BC上的高,E是AD上的一点且满足AE CDED DB=,过D作DF⊥BE于F,求证:∠AFC=90°【证明】:易得Rt⊿EFD∽Rt⊿DFB,ED DB EF DF=∴AE AE ED AE DB EF ED EF ED DF =⋅=⋅∵AE CDED DB=,∴AE CD DBEF DB DF=⋅,即AE CDEF DF=又∵∠AEF=90°+∠EDF=∠CDF∴⊿AEF∽⊿CDF,故∠AFC=∠DFE=90°例13.(★★★,第17届IMO)在任意三角形ABC的边上向外作⊿BPC、⊿CQA、⊿ARB,使得∠PBC =∠CAQ=45°,∠BCP=∠QCA=30°,∠ABR=∠BAR=15°,试证:(1)∠QRP=90°;(2)PQ=PR【证明】:以AB为边向外作正三角形ABS,连结RS、CS则∠SAR=45°,∠ASR=30°∴⊿CQA∽⊿SRA,∴SA RA CA AQ=∵∠SAC=∠RAQ,∴⊿CAS∽⊿RAQ∴∠CSA=∠QRA,且AR ASQR CS=(1)同理可得∠CSB=∠PRB,且BR BSPR CS=(2)∵AR=BR,AS=BS由(1),(2)可得PR=QR∵∠ARB=180°-15°-15°=150°∴∠QRP=150°-(∠ARQ+∠BRP)=150°-(∠CSA+∠CSB)=150°-60°=90°拓展:(★★★)如图,AD、BE、CF是锐角三角形ABC的三条高,M、N分别是BE、CF的中点,求证:⊿DMN∽⊿ABC【证明】取BC、CA、AB的中点P、S、Q,易知P、M、S共线,P、N、Q共线,连结SQ、DS、DQ∵DS=12AB=PQ,PS=12AC=DQ,PD为公共边∴⊿DSP≌⊿PQD∴∠DSP=∠PQD,即∠DSM=∠DQN;①又1212ABDS ABDQ ACAC==;1212AESM AEQN AFAF==又由⊿ABE∽⊿ACF,得AB AE AC AF=∴DS SMDQ QN= ② 由①②可知⊿DSM ∽⊿DQN ∴SD QDMD ND=,∠SDM =∠QDN ∴∠MDN =∠SDQ ∴⊿DMN ∽⊿DSQ但⊿DSQ ≌⊿ASQ ,⊿ASQ ∽⊿ABC ∴⊿DMN ∽⊿ABC 例14.(★,三角形内角平分线的性质)AD 是⊿ABC 的内角平分线,求证:BD ABDC AC=;反之亦然. 【证明】:过C 作CE ∥DA ,交BA 延长线于E ;易得AE =AC 则BD AB ABDC AE AC==例15.(★,三角形外角平分线的性质)如图,AE 是⊿ABC 的一条外角平分线,交BC 延长线于E ,求证:AB BEAC CE=. 【证明】:过C 作CF ∥EA ,交AB 于F ;易得AC =AF 则AB AB BEAC AF CE==例16.(★★★,90年上海)在⊿ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,且a b c >>,AS ,AS ’分别是∠A 的平分线和外角平分线,BT ,BT ’分别是∠B 的平分线和外角平分线,CU ,CU ’分别是∠C 的平分线和外角平分线,求证:111'''SS UU TT +=(图中只画出了AS ,AS ’) 【证明】∵AS ,AS ’分别是∠A 的平分线和外角平分线∴','CS b CS bSB c S B c == ∴',CS b CS b BC b c BC b c==+- 即,'ab abCS CS b c b c==+- ∴222''ab ab abcSS CS CS b c b c b c=-=-=-+- 同理可得:222222','abc abcUU TT a b a c ==-- 22222211()()1''22'b c a b a c SS UU abc abc TT -+--+===三、 练习题1.(★)在⊿ABC 中,∠C =90°,ED ⊥AB 于D ,AD =DB ,AB =20,AC =12,则DE 的长是( ) A .10 B .8.5 C .9.5 D .7.5【解】:D2.(★)⊿ABC 中,∠C =90°,CD 是高,BC =2AC ,则AD :DB 等于( ) A .1:2B .1:2C .1:3D .1:4【解】:D3.(★)Rt ⊿ABC 中,∠C =90°,∠A 、∠B 、∠C 所对的边长为a 、b 、c ,斜边上的高为x ,则下列各式中成立的是( ) A .2ab x = B .111a b x+= C .222a b x +=D .222111x a b =+ 【解】:D4.(★★)在直角梯形ABCD 中,上底AD =3,下底BC =33,与两底垂直的腰AB =6,在AB 上任取一点P ,使⊿PAD 和⊿PBC 相似,这样的点P ( ) A .有1个 B .有2个 C .有3个 D .不存在 【解】:B ; 5.(★★)在⊿ABC 中,∠A =2∠B ,AC =4,AB =5,则BC 等于( ) A .6B .7C .35D .5【解】:A ; 6.(★)如图,⊿ABC 被DE 、FG 分为面积相等的三部分,并且D E ∥FG ∥BC ,则D E :FG :BC =____________; 【解】:1:2:37.(★)如图,D 为⊿ABC 内一点,E 为⊿ABC 外一点,如果∠1=∠2,∠3=∠4,求证:⊿ABC ∽⊿DBE《三点一测丛书,初二数学》科学出版社,龙门书局,2004年版 P344,例78.(★★)图中,AD 、CF 是⊿ABC 的两条高线,在AB 上取一点P ,使AP =AD ,再从P 点引BC 的平行线和AC 交于Q 点,求证:PQ =CF ; 《三点一测丛书,初二数学》科学出版社,龙门书局,2004年版 P346,例99.(★★,2000年重庆竞赛)⊿ABC 和⊿A 1B 1C 1均为正三角形,BC 和B 1C 1的中点均为D ,求证:AA 1⊥CC 1 【证明】:连结AD ,A 1D ,延长AA 1交直线DC 于O ,交直线C 1C 于E ,在⊿AA 1D 和⊿CC 1D 中: ∠ADA 1=90°-∠A 1DC =∠CDC 1; 又3ADDC=,113DA DC =,则⊿AA 1D ∽⊿CC 1D 则∠A 1AD =∠C 1CD又∠AOD =∠COE则∠CEO =∠ADO =90° 即AA 1⊥CC 110. (★★,96上海)如图,AD 为⊿ABC 的内角平分线,AD 的垂直平分线交BC 的延长线于F ,若34AC AB =,求FCFB的值; 【解】:916《全国初中数学竞赛试题分类集锦》几何分册 上海远东出版社,P122,611.(★★)AD 是等腰⊿ABC 底边BC 上的高,BM 及BN 是∠B 的三等分角线,分别交AD 于M 、N 点,连结CN 并延长交AB 于E ,求证:AM AEMN EB=【证明】易得EB=EN∵AN平分∠BAC,∴AE EN AC NC=∴AE AC AB EN NC BN==∵AB AMBN MN=,∴AE AMEN MN=∴AM AE MN EB=。
相似三角形中的射影定理知识讲解

相似三角形――相似直角三角形及射影定理【知识要点】1直角三角形的性质:(1) 直角三角形的两个锐角 _____________ (2)Rt A ABC 中,/ C=90o ,贝U2+(3) 直角三角形的斜边上的中线长等于2、已知,△ ABC 中,/ ACB=90 ° , CD 丄 AB 于 D 。
( 1)若 AD=8 , BD=2,求 AC 的长。
(2)若 AC=12 , BC=16,求 CD 、AD 的长。
精品文档(4)等腰直角三角形的两个锐角都是,且三边长的比值为(5)有一个锐角为30o 的直角三角形,30o 所对的直角边长等于 ,且三边长的比值为2、直角三角形相似的判定定理(只能用于选择填空题)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例, 那么这两个直角三角形相似。
3、双垂直型:Rt A ABC 中,/ C=90o , CD 丄 AB 于 D ,则① S s②射影定理:CD 2= ______【常规题型】AC 2= _____ BC 2= ____1 已知:如图,△ ABC 中,/ ACB=90【典型例题】例1.如图所示,在厶ABC 中,/ ACB=90BM 2=MN • AM 。
例2.已知:如图,在四边形 ABCD 中,/ ABC= / ADC=90 o , DF 丄AC 于E ,且与 AB 的延长线相交 于F ,与BC 相交于G 。
求证:AD 2=AB • AF【拓展练习】1、已知:如图, AD 是厶ABC 的高,BE 丄AB , AE 交BC 于点F , AB • AC=AD • AE 。
求证:△ BEFACF,AM 是BC 边的中线,CN 丄AM 于N 点,连接BN ,求证:例 3. (1)已知 ABC 中, ACB 90 , CD 高,这时 DEF 和 CAB 是否相似?AB ,垂足为D , DE 、DF 分别是 ADC 和 BDC 的CBCFD3、已知,如图,CE 是直角三角形斜边 AB 上的高,在EC 的延长线上任取一点 P ,连结AP, BG AP ,垂足为G ,交CE 于D ,求证:CE 2 PE DE .4、如图,在四边形ABCD 中,B AD 2 AB AE 。
相似三角形知识点归纳

初三数学《相似三角形》知识提纲一:比例的性质及平行线分线段成比例定理(一)相关概念:1.两条线段的比:两条线段的比就是两条线段长度的比 在同一长度单位下两条线段a ,b 的长度分别为m ,n ,那么就说这两条线段 的比是,或写成a :b=m :n ; 其中 a 叫做比的前项,b 叫做比的后项 2:比例尺= 图上距离/实际距离3:成比例线段:在四条线段a ,b ,c ,d 中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段,记作:cda b =(或a :b=c :d ) ① 线段a ,d 叫做比例外项,线段b ,c 叫做比例内项, ② 线段a 叫首项,d 叫a ,b ,c 的第四比例项。
③ 比例中项:若c a b c a b cbb a ,,2是则即⋅==的比例中项. (二)比例式的性质 1.比例的基本性质:bc ad dcb a =⇔= 更比性质(交换比例的内项或外项):()()()a bc d a c d cb d b ad bc a ⎧=⎪⎪⎪=⇔=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项 2. 合比:若,则或a b c d a b b c d d a b a c d c =±=±±=±3.等比:若……(若……)a b c d e f mn k b d f n =====++++≠0则…………a c e m b d f n a b mn k++++++++===4、黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =⋅,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB .即512AC BC AB AC -== 简记为:512-长短==全长(三)平行线分线段成比例定理1.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.如图:当AD∥BE∥CF 时,都可得到=.=,= ,语言描述如下:=,=, =.nm b a =(4)上述结论也适合下列情况的图形:二:相似三角形: (一):定义:1:对应角相等,对应边成比例的三角形,叫做相似三角形。
相似三角形的六大证明技巧大全

相似三角形的六大证明技巧大全比例式的证明方法比例式是数学中常见的重要概念,其证明方法也是需要掌握的基本技能。
下面介绍几种比例式的证明方法。
1.相似三角形法若两个三角形相似,则它们对应边的比例相等。
因此,可以通过相似三角形的证明来得到比例式。
2.射影定理法射影定理指:在直角三角形中,直角边上的高的平方等于直角边与这个高的两个部分的乘积。
因此,可以通过射影定理来证明比例式。
3.平行线法若两条直线平行,则它们所截线段的比例相等。
因此,可以通过平行线的证明来得到比例式。
4.等角定理法等角定理指:在同一圆周角或同位角中,对应弧所对应的角相等。
因此,可以通过等角定理来证明比例式。
5.数学归纳法数学归纳法是数学中常见的证明方法,适用于证明一般情况下的比例式。
其基本思路是:证明当n=1时比例式成立,假设当n=k时比例式成立,证明当n=k+1时比例式也成立。
比例式的证明方法多种多样,需要根据具体情况选择合适的方法。
熟练掌握这些方法,可以更加轻松地解决各种数学问题。
通过前面的研究,我们知道,比例线段的证明离不开“平行线模型”(A型、X型、线束型),也离不开上述的6种“相似模型”。
但是,XXX认为,“模型”只是工具,怎样选择工具、怎样使用工具、怎样用好工具,取决于我们如何思考问题。
合理的思维方法能让模型成为解题的利刃,让复杂的问题变简单。
在本模块中,我们将研究比例式的证明中经常用到的思维技巧,包括三点定型法、等线段代换、等比代换、等积代换、证等量先证等比、几何计算。
技巧一:三点定型法例1】在平行四边形ABCD中,E是AB延长线上的一点,DE交BC于F,求证:$\frac{DC}{CF}=\frac{AE}{AD}$。
例2】在直角三角形△ABC中,$\angle BAC=90^\circ$,M为BC的中点,DM垂直于BC交CA的延长线于D,交AB 于E。
求证:$AM^2=MD\cdot ME$。
例3】在直角三角形△ABC中,AD是斜边BC上的高,$\angle ABC$的平分线BE交AC于E,交AD于F。
射影定理在中学数学中的应用

思考2、射影定理与勾股定理的等价性思考。
从证法①中可以看出,射影定理是在默认成立了勾股定理的基础上证明的,那么反过来我们也可以从射影定理来证明勾股定理,且成立。想要更好的掌握数学这一学科,就要学会融会贯通,作该思考有助于学生感受、体会数学证明的逻辑严密性、完整性。
思考1、能否把直角三角形中的射影定理一般化?
答:若△ABC不为直角三角形,当点D满足一定条件时,
类似地仍有部分结论成立。
如图2,在△ABC中,D为AB上一点,若∠CDB=∠ACB,
或∠DCB=∠A,则有△CDB∽△ABC,可得BC²=BD× AB;
反之,若△ABC中,D为AB上一点,且有BC²=BD× AB,则有△CDB∽△ABC,可得到∠DCB=∠A或∠CDB=∠ACB。
任意三角形射影定理
1、定理简介:定理由欧几里得提出,在解三角形,探究三角形边角关系作用很大,并且该定理可以与正弦定理、余弦定理相媲美。
2、定理内容:三角形的边长等于另外两边与所求边成夹角余弦值的乘积之和。
3、定理数学表达:△ABC的三边是a、b、c,它们所对的角分别是A、B、C,则有
a=b·cosC+c·cosB,
思考3、射影定理与切割线定理的等价思考。
观察定理表达式,是否能发现直角三角形中的射影定理与圆的切割线定理有相似之处呢?。
切割线定理:是指从圆外一点引圆的切线和割线,切线长是割线和这点到割线与圆交点的两条线段长的比例中项。
如图所示,以AB的中心为圆心,AB的一半为半径做圆,AC为 圆的切线,A为切点,AB⊥AC,BC为圆的割线,此处有个著名 的切割线定理:AC²=CD× BC。以此不难看出,直角三角形中的 射影定理其实就是去掉圆以后的切割线定理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相似三角形之射影定理
1、已知直角三角形ABC 中,斜边AB=5cm,BC=2cm ,D 为AC 上的一点,DE AB ⊥交AB 于E ,且AD=3.2cm ,则DE= ( )
A 、1.24cm
B 、1.26cm
C 、1.28cm
D 、1.3cm
2、如图1-1,在Rt ABC 中,CD 是斜别AB 上的高,在图中六条线段中,你认为只要知道( )线段的长,就可以求其他线段的长 A 、1 B 、2 C 、3 D 、4
3、在Rt ABC 中,90BAC ∠=
,AD BC ⊥于点D ,若34AC AB =,则BD
CD =( ) A 、34 B 、43 C 、169 D 、9
16
4、如图1-2,在矩形ABCD 中,1
,3DE AC ADE CDE
⊥∠=∠,则EDB ∠=( )
A 、22.5
B 、30
C 、45
D 、60
【填空题】
5、ABC 中,90A ∠=
,AD BC ⊥于点D ,AD=6,BD=12,则CD= ,AC= ,
22:AB AC = 。
6、如图2-1,在Rt ABC 中,90ACB ∠=
,CD AB ⊥,
AC=6,AD=3.6,则BC= .
【解答题】
7、已知CD 是ABC 的高,,DE CA DF CB ⊥⊥,如图3-1,求证:CEF CBA ∽
8、已知90CAB ∠=
,AD CB ⊥,ACE ,ABF 是正三角形,求证:DE DF ⊥
9、如图3-2,矩形ABCD 中,AB=a ,BC=b ,M 是BC 的中点,DE AM ⊥,E 是垂足,求证:
DE =
参考答案
1、C
2、B
3、C
4、C 5
、3,4:1
6、 8
7、证明:在Rt ADC 中,由射影定律得,
2CD CE AC = ,在R t B C
中,
2C D C F B C
=
,CE BC
CE AC CF BC CF AC ∴=∴
=
又ECF BCA ∠=∠ ,CEF CBA ∴
8、证明:如图所示,在Rt BAC 中,
22,AC CD CB AB BD BC ==
AC CD AD
AB AD BD
∴=====
,,AE AD
AC AE AB AF BF BD ==∴
=
60,60,FBD ABD EAD CAD ABD CAD ∠=+∠∠=+∠∠=∠ 又
FBD EAD ∴∠=∠,,EAD FBD BDF ADE ∴
∴∠=∠ 90FDE FDA ADE FDA BDF ∴∠=∠+∠=∠+∠= DE DF ∴⊥
9、证明:在Rt AMB 和Rt ADE 中,AMB DAE ∠=∠,90ABM AED ∠=∠=
所以Rt AMB ~Rt ADE
所以AB AM
DE
AD =
,因为AB=a ,BC=b ,
所以
AB AD
DE AM
=
==。